JPH07138611A - Production of sintered and forged product - Google Patents

Production of sintered and forged product

Info

Publication number
JPH07138611A
JPH07138611A JP28365393A JP28365393A JPH07138611A JP H07138611 A JPH07138611 A JP H07138611A JP 28365393 A JP28365393 A JP 28365393A JP 28365393 A JP28365393 A JP 28365393A JP H07138611 A JPH07138611 A JP H07138611A
Authority
JP
Japan
Prior art keywords
powder
container
sintered body
porous sintered
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28365393A
Other languages
Japanese (ja)
Inventor
Keiji Ogino
恵司 荻野
Toshiya Yamaguchi
登士也 山口
Kazuhiko Takahashi
和彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP28365393A priority Critical patent/JPH07138611A/en
Publication of JPH07138611A publication Critical patent/JPH07138611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To provide the process for production of the sintered and forged product which eliminates the need for reduced powder of a high cost subjected to a reduction treatment and does not require consideration for compression moldability and lubricity by abolishing green compacts and a stage for molding these green compacts. CONSTITUTION:The non-reduced ferrous powder obtd. by an atomization method is charged into the cavity 1a of a container 1 made of ceramics, by which powder aggregate having pores is obtd. This powder aggregate in the container 1 is heated and sintered in a reducing atmosphere, by which a porous sintered compact 5 is obtd. At this time, the reducing atmosphere penetrates deep into the porous sintered compact 5, by which the porous sintered compact is subjected to the reduction treatment and the oxide layer is removed. Next, a cap member 1k is mounted at the container 1 emerged from a sintering furnace to hermetically close the container 1. The hermetically closed container 1 is transferred to a forging die 6. Next, the cap member 1k is opened and the porous sintered compact 5 is dropped into a forging cavity 63 and the high- temp. porous sintered compact 5 is hot forged by the forging mold 6, by which the sintered and forged product having the high density ratio is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は溶湯を噴霧して粉末粒子
とするアトマイズ法により得られた鉄系粉末を用いた焼
結鍛造品の製造方法に関する。本発明は車両部品、産業
部品例えばコンロッドや歯車等の製造に適用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered forged product using an iron-based powder obtained by atomizing a molten metal into powder particles. The present invention can be applied to the manufacture of vehicle parts, industrial parts such as connecting rods and gears.

【0002】[0002]

【従来の技術】焼結鍛造品は、金属粉末を焼結した焼結
体を鍛造型により大きな面圧で鍛造したものであり、残
留気孔が著しく低減して高強度、高靱性に有利であるた
め、産業界においてその開発が進められている。かかる
焼結鍛造品では、原料粉末として溶湯を噴霧したアトマ
イズ粉末を用いたものが知られている。一般的にはこの
アトマイズ粉末の粒子は比較的厚い酸化物層で覆われて
いる(酸素量:例えば0.4〜0.6重量%)。この酸
化物層は未焼結部を形成し易いので、好ましくない。そ
こで従来の焼結鍛造品の製造にあたり、酸化物層を取り
除くべく還元処理したアトマイズ粉末を用いることにし
ている。
2. Description of the Related Art A sintered forged product is a product obtained by forging a sintered body obtained by sintering a metal powder with a forging die with a large surface pressure, and has a significantly reduced residual porosity, which is advantageous for high strength and high toughness. Therefore, its development is being promoted in the industrial world. As such a sintered forged product, one using atomized powder obtained by spraying a molten metal as a raw material powder is known. In general, the particles of this atomized powder are covered with a relatively thick oxide layer (oxygen amount: for example, 0.4 to 0.6% by weight). This oxide layer is not preferable because it easily forms a non-sintered portion. Therefore, in the production of the conventional sintered forged product, the atomized powder reduced in order to remove the oxide layer is used.

【0003】即ち、原料粉末としてアトマイズ粉末を用
いて焼結鍛造品を製造する場合には、その製造方法は大
別すると図15に示す様に、還元処理して酸化物層を取
り除いたアトマイズ粉末を製造する方法Aと、還元処理
したそのアトマイズ粉末から焼結鍛造品を形成する方法
Bとからなる。方法Aにおいては、図15から理解でき
る様に、所定の組成の原料を用い、原料を溶解して溶湯
を形成し、その溶湯をアトマイズ(噴霧)して微小粒子
の粉末を形成し、その粉末を乾燥し、更にその粉末をふ
るいにかけて粒度を調整して原料粉末を得、その原料粉
末を還元性雰囲気で加熱して還元し、酸化物層を取り除
く。更に、還元の際における加熱により粉末粒子が固ま
るので、これを粉砕し、更にその粉末を再びふるいにか
け、これによりアトマイズ粉末を得る。
That is, when a sintered forged product is manufactured by using atomized powder as a raw material powder, the manufacturing method is roughly classified, as shown in FIG. 15, the atomized powder obtained by reduction treatment to remove the oxide layer. And a method B for forming a sintered forged product from the reduced atomized powder. In Method A, as can be understood from FIG. 15, a raw material having a predetermined composition is used, the raw material is melted to form a molten metal, and the molten metal is atomized (sprayed) to form a fine particle powder. Is dried, the particle size is adjusted by sieving the powder to obtain a raw material powder, and the raw material powder is heated and reduced in a reducing atmosphere to remove the oxide layer. Further, since powder particles are solidified by heating during the reduction, the powder particles are crushed, and the powder is sieved again to obtain atomized powder.

【0004】上記の様に溶湯を微小粒子として噴霧した
アトマイズ粉末粒子は硬質のため、その圧縮成形性や潤
滑性は必ずしも充分ではない。そこで方法Bにおいて
は、図15から理解できる様に、圧縮成形性や潤滑性を
向上させるべく、混粉工程においてアトマイズ粉末に他
の粉末を混合して混粉を得、その混粉を成形型のキャビ
ティに投入した後に成形型で強圧して高密度比をもつ圧
粉体を成形し、その圧粉体を焼結炉において焼結して高
密度比をもつ焼結体を形成し、更に、その焼結体を鍛造
型で熱間鍛造し、後処理し、焼結鍛造品を形成する。
Since atomized powder particles obtained by spraying the molten metal as fine particles as described above are hard, their compression moldability and lubricity are not always sufficient. Therefore, in Method B, as can be understood from FIG. 15, in order to improve compression moldability and lubricity, other powder is mixed with atomized powder in the powder mixing step to obtain a powder mixture, and the powder mixture is used as a mold. After being placed in the cavity of, the compact is pressed with a molding die to form a compact with a high density ratio, and the compact is sintered in a sintering furnace to form a sintered body with a high density ratio. The sintered body is hot forged with a forging die and post-treated to form a sintered forged product.

【0005】この様に従来の製造方法では、還元処理し
て酸化物層を取り除いためコスト高となった還元粉末を
用いざるを得ず、かかる還元粉末から、高密度比をもつ
圧粉体を形成し、その圧粉体から高密度比の焼結体を形
成し、その焼結体を熱間鍛造し、以て残留気孔が著しく
少ない焼結鍛造品を得ることにしている。また、特開昭
50−14510号公報には、内部が還元性雰囲気とさ
れたロータリーハース炉と、粉末成形プレスによる強圧
による成形された圧粉体である予成形体とを用い、予成
形体をロータリーハース炉に装入して還元性雰囲気で予
成形体を1100°C程度に加熱し、加熱された予成形
体を冷却炉で800〜1000°C程度まで冷却し、更
にその予成形体を鍛造型で熱間鍛造する技術が開示され
ている。
As described above, in the conventional manufacturing method, it is necessary to use the reduced powder whose cost is high because the oxide layer is removed by the reduction treatment, and the compacted powder having a high density ratio is obtained from the reduced powder. A sintered compact having a high density ratio is formed from the green compact, and the sintered compact is hot forged to obtain a sintered forged product having extremely few residual pores. Further, Japanese Unexamined Patent Publication No. 50-14510 uses a rotary hearth furnace having a reducing atmosphere inside and a preformed body which is a green compact formed by strong pressure by a powder molding press. Is charged into a rotary hearth furnace to heat the preformed body to about 1100 ° C in a reducing atmosphere, the heated preformed body is cooled to about 800 to 1000 ° C in a cooling furnace, and the preformed body is further cooled. A technique of hot forging with a forging die is disclosed.

【0006】この公報に係る技術では、圧粉体である予
成形体は粉末成形プレスによって強圧されているため、
密度比が高いものであり、特に予成形体の表層部の密度
比は高い。この様な密度比が高い予成形体では、その内
部深くまで還元性雰囲気を浸透させ深部まで充分に還元
するには不利である。また特開昭64−68406号公
報には、金属粉末をセラミックス容器に振動充填(密度
比68%程度)した後、真空または非酸化性雰囲気にお
いて、高周波コイルにより容器下部を液相と固相との共
存温度域に加熱して液相焼結を行い、更に高周波コイル
を容器上部に向けて順に移行させ、これにより液相焼結
領域を順に移行させ、密度比96%以上の焼結インゴッ
トを形成した後、その焼結インゴットを熱間鍛造または
圧延によって真密度化する技術が開示されている。この
ものでは液相焼結の状態で真空に保持される場合には、
液相に含まれるガス成分の脱ガス効果が期待でき、焼結
インゴットに残留している酸素ガス、窒素ガスが低減さ
れる。この公報に係る技術では、密度比96%以上の高
密度の焼結インゴットを得るものであり、そのため液相
焼結が採用されている。この様に密度比が高い場合に
は、非酸化性雰囲気として還元性雰囲気を採用したとし
ても、焼結インゴットの内部深くまで還元性雰囲気を浸
透させ、深部において還元処理を図るには不利である。
更に焼結と同時に還元するものでもない。殊に還元性を
もつCOガスが焼結インゴットに生成したとしても、雰
囲気が真空の場合には、真空ポンプ側に直ちに吸引除去
されてしまい、深部における還元処理は期待できない。
[0006] In the technique according to this publication, since the preformed body which is a green compact is strongly pressed by the powder compacting press,
The density ratio is high, and especially the density ratio of the surface layer portion of the preform is high. Such a preformed body having a high density ratio is disadvantageous in permeating the reducing atmosphere deep into the preformed body and sufficiently reducing it to the deep portion. Further, in Japanese Patent Laid-Open No. 64-68406, after metal powder is vibrated and packed (density ratio of about 68%) in a ceramic container, the lower part of the container is made into a liquid phase and a solid phase by a high frequency coil in a vacuum or non-oxidizing atmosphere. Liquid phase sintering is performed by heating to the coexisting temperature range of, and the high frequency coil is further moved toward the upper part of the container in order, whereby the liquid phase sintering region is sequentially moved to obtain a sintered ingot with a density ratio of 96% or more. A technique is disclosed in which, after forming, the sintered ingot is made to have a true density by hot forging or rolling. In this case, when the vacuum is maintained in the liquid phase sintering state,
A degassing effect of gas components contained in the liquid phase can be expected, and oxygen gas and nitrogen gas remaining in the sintered ingot are reduced. In the technique according to this publication, a high density sintered ingot having a density ratio of 96% or more is obtained, and therefore liquid phase sintering is adopted. When the density ratio is high as described above, even if a reducing atmosphere is adopted as the non-oxidizing atmosphere, it is disadvantageous to permeate the reducing atmosphere deep inside the sintered ingot and to carry out the reduction treatment in the deep portion. .
Furthermore, it does not reduce at the same time as sintering. In particular, even if reducing CO gas is generated in the sintered ingot, if the atmosphere is a vacuum, it is immediately sucked and removed by the vacuum pump side, and reduction treatment at a deep portion cannot be expected.

【0007】また特開昭57−54201号公報には、
黒鉛を塗布した鉄系粉末成形体を焼結し、黒鉛と還元性
雰囲気の水分とが水性ガス反応(C+H2 0→CO+H
2 )を生じることにより、粉末成形体の酸化防止を意図
した技術が開示されている。また特開平3−56602
号公報には、圧粉体や焼結体からなる鍛造素材を加熱炉
から出した直後において、黒鉛粉末を吹き付ける技術が
開示されている。このものでは、黒鉛が空気中の酸素と
反応して、鍛造工程に移送する間における鍛造素材の酸
化の防止を意図したものである。
Further, Japanese Patent Application Laid-Open No. 57-54201 discloses that
The iron-based powder compact coated with graphite is sintered, and the graphite and water in a reducing atmosphere react with each other in a water gas reaction (C + H 2 0 → CO + H).
The technology intended to prevent the oxidation of the powder compact by generating 2 ) is disclosed. In addition, JP-A-3-56602
The publication discloses a technique of spraying graphite powder immediately after a forging material made of a green compact or a sintered body is taken out of a heating furnace. This is intended to prevent oxidation of the forging material during the transfer of graphite to oxygen in the air and transfer to the forging process.

【0008】また特開昭59−182946号公報に
は、アトマイズ法によって得られたFe−Cr−Co系
の合金粉末を黒鉛型内に投入し、真空雰囲気また水素ガ
ス雰囲気で1000°Cにおいて300kg/cm2
ホットプレスして加圧成形と焼結とを同時に行い、引き
続いて熱処理して永久磁石化する技術が開示されてい
る。
Further, in JP-A-59-182946, Fe-Cr-Co alloy powder obtained by an atomizing method is put into a graphite mold, and 300 kg at 1000 ° C in a vacuum atmosphere or a hydrogen gas atmosphere. There is disclosed a technique in which hot pressing is performed at / cm 2 to perform pressure molding and sintering at the same time, followed by heat treatment to form a permanent magnet.

【0009】前述した特開昭57−54201号公報、
特開平3−56602号公報、特開昭59−18294
6号公報にかかる技術においても、図15に示した従来
方法と同様に、還元処理して酸化物層を取り除いた還元
粉末を原料粉末としているものと考えられる。更に圧粉
体や焼結体の密度比が高いものと考えられ、還元性雰囲
気を採用したとしても、圧粉体や焼結体の内部深くまで
還元性雰囲気を浸透させ、深部において還元処理を図る
には不利である。
Japanese Patent Laid-Open No. 57-54201, mentioned above,
JP-A-3-56602, JP-A-59-18294
It is considered that the technique according to Japanese Patent Publication No. 6 also uses the reduced powder obtained by reducing and removing the oxide layer as the raw material powder, as in the conventional method shown in FIG. Further, it is considered that the density ratio of the green compact and the sintered body is high, and even if the reducing atmosphere is adopted, the reducing atmosphere is permeated deep inside the green compact and the sintered body, and the reduction treatment is performed in the deep part. It is disadvantageous to try.

【0010】また特開昭53−34614号公報には、
焼結炉内で回転ロールにより高温の焼結体を圧下し、焼
結体の表面部を緻密化する技術が開示されている。この
ものでも還元処理して酸化物層を取り除いた還元粉末を
用いるものと考えられる。
Further, in Japanese Patent Laid-Open No. 53-34614,
A technique is disclosed in which a high temperature sintered body is pressed by a rotating roll in a sintering furnace to densify the surface portion of the sintered body. Even in this case, it is considered that the reduced powder obtained by removing the oxide layer by the reduction treatment is used.

【0011】[0011]

【発明が解決しようとする課題】請求項1〜請求項3に
係る方法の目的は、還元処理していない未還元の鉄系粉
末を原料粉末として用いることができ、還元処理したコ
スト高の還元粉末を用いず良く、しかも密度比が高い成
形体である圧粉体、圧粉体を形成する工程を廃止し、圧
縮成形性や潤滑性を考慮せずとも良く、従って圧縮成形
性や潤滑性を確保するための混粉工程を廃止し得る焼結
鍛造品の製造方法を提供することにある。
The object of the method according to claims 1 to 3 is to use unreduced iron-based powder that has not been subjected to reduction treatment as a raw material powder, and to carry out reduction treatment at high cost. It is not necessary to use powder, and the process of forming compacts and compacts, which are compacts with a high density ratio, has been eliminated, and compression moldability and lubricity are not taken into consideration. The object of the present invention is to provide a method for manufacturing a sintered forged product that can eliminate the powder mixing step for ensuring the above.

【0012】更に請求項2、3に係る方法の目的は、焼
結還元工程から鍛造工程に移送する間における多孔質焼
結体の酸化を軽減または回避し、未焼結部の解消に有利
な焼結鍛造品の製造方法を提供することにある。
Further, the object of the method according to claims 2 and 3 is to reduce or avoid the oxidation of the porous sintered body during the transfer from the sintering reduction step to the forging step, which is advantageous for eliminating the unsintered portion. It is to provide a method for manufacturing a sintered forged product.

【0013】[0013]

【課題を解決するための手段】上記した目的のもとに本
発明者は鋭意開発を進め、アトマイズ法により得られた
還元処理をしていない未還元鉄系粉末を容器に投入して
密度比が低い粉末集合体を得、その密度比が低い粉末集
合体を容器に収納した状態で還元性雰囲気において焼結
温度に加熱して焼結すれば、還元性雰囲気が粉末集合体
の表層ばかりか内部深くまで浸透し、焼結と同時に深部
においても酸化物層の還元を良好に行い得、そして、こ
の様にして形成した密度比が低い多孔質焼結体を熱間鍛
造すれば、未還元鉄系粉末の酸化物層が軽減または消失
しかつ高い密度の焼結鍛造品が得られることを知見し、
この知見に基づき本発明方法を完成させたものである。
[Means for Solving the Problems] Based on the above-mentioned object, the present inventor has eagerly made a development, and puts unreduced iron-based powder obtained by the atomization method and not subjected to reduction treatment into a container to obtain a density ratio. If a powder aggregate with a low density is obtained, and the powder aggregate with a low density ratio is housed in a container and heated to the sintering temperature in a reducing atmosphere to sinter, the reducing atmosphere is not only the surface layer of the powder aggregate. It penetrates deeply into the interior, and at the same time as sintering, the oxide layer can be reduced well in the deep part, and if the porous sintered body thus formed with a low density ratio is hot forged, it is not reduced. It was found that the oxide layer of iron-based powder was reduced or disappeared and a high-density sintered forged product was obtained,
The method of the present invention has been completed based on this finding.

【0014】即ち、請求項1に係る焼結鍛造品の製造方
法は、アトマイズ法により得られ還元処理をしていない
未還元の鉄系粉末と、所定形状のキャビティを備えた容
器とを用い、鉄系粉末を容器のキャビティに投入し、粉
末粒子間に気孔を備えた粉末集合体を得る投入工程と、
容器内の粉末集合体を還元性雰囲気において加熱して焼
結と同時に還元し、多孔質焼結体を得る焼結還元工程
と、容器から取り出した高温の多孔質焼結体を鍛造型で
熱間鍛造し、焼結鍛造品を得る鍛造工程とを順に実施す
ることを特徴とするものである。
That is, the method for producing a sintered forged product according to claim 1 uses unreduced iron-based powder obtained by the atomization method and not subjected to reduction treatment, and a container having a cavity of a predetermined shape, A step of introducing iron-based powder into the cavity of the container to obtain a powder aggregate having pores between the powder particles,
The powder aggregate in the container is heated in a reducing atmosphere to reduce it at the same time as sintering to obtain a porous sintered body, and a high-temperature porous sintered body taken out of the container is heated with a forging die. It is characterized in that the forging process is carried out in order to obtain a sintered forged product.

【0015】請求項2に係る焼結鍛造品の製造方法は、
アトマイズ法により得られ還元処理をしていない未還元
の鉄系粉末と、所定形状のキャビティを備えた容器とを
用い、鉄系粉末を容器のキャビティに投入し、粉末粒子
間に気孔を備えた粉末集合体を得る投入工程と、容器内
の粉末集合体を還元性雰囲気において加熱して焼結と同
時に還元し、多孔質焼結体を得る焼結還元工程と、多孔
質焼結体を収納した容器に蓋部材を装着して容器を密閉
し、密閉したままの状態で容器を鍛造型まで移送する密
閉工程と、容器から取り出した高温の多孔質焼結体を鍛
造型で熱間鍛造し、焼結鍛造品を得る鍛造工程とを順に
実施することを特徴とするものである。
A method for manufacturing a sintered forged product according to claim 2 is
Using an unreduced iron-based powder obtained by an atomizing method and not subjected to reduction treatment, and a container provided with a cavity of a predetermined shape, the iron-based powder was put into the cavity of the container, and pores were provided between the powder particles. A loading step to obtain a powder aggregate, a sintering reduction step in which the powder aggregate in the container is heated in a reducing atmosphere to reduce at the same time as sintering to obtain a porous sintered body, and the porous sintered body is stored. Attach the lid member to the container and seal the container, transfer the container to the forging die in the closed state, and hot forge the high temperature porous sintered body taken out from the container with the forging die. Then, a forging step for obtaining a sintered forged product is sequentially performed.

【0016】請求項3に係る焼結鍛造品の製造方法は、
アトマイズ法により得られ還元処理をしていない未還元
の鉄系粉末と、酸化抑制粉末と、所定形状のキャビティ
を備えた容器とを用い、鉄系粉末と酸化抑制粉末とを容
器のキャビティに投入し、粉末粒子間に気孔を備えかつ
外側に酸化抑制層を有する粉末集合体を得る投入工程
と、容器内の粉末集合体を酸化抑制層と共に還元性雰囲
気において加熱して焼結と同時に還元し、多孔質焼結体
を得る焼結還元工程と、容器から取り出した高温の多孔
質焼結体を鍛造型で熱間鍛造し、焼結鍛造品を得る鍛造
工程とを順に実施することを特徴とするものである。
A method for manufacturing a sintered forged product according to claim 3 is
Using an unreduced iron-based powder obtained by an atomizing method and not subjected to reduction treatment, an oxidation-suppressing powder, and a container having a cavity of a predetermined shape, the iron-based powder and the oxidation-suppressing powder are put into the cavity of the container. Then, a charging step of obtaining a powder aggregate having pores between the powder particles and having an oxidation inhibiting layer on the outside, and heating the powder aggregate in the container together with the oxidation inhibiting layer in a reducing atmosphere to simultaneously reduce the sintering. Characterized in that a sintering reduction step for obtaining a porous sintered body and a forging step for hot forging the high temperature porous sintered body taken out of the container with a forging die to obtain a sintered forged product are performed in order. It is what

【0017】[0017]

【作用】本発明方法で用いる鉄系粉末は、アトマイズ法
により得られかつ未還元処理をしていないものである。
従って鉄系粉末粒子の表面には酸化物層が残留してい
る。本発明方法で用いる容器はキャビティを備えてい
る。このキャビティは、焼結鍛造品と類似または酷似し
たプリフォーム形状にすることができ、但し、鍛造工程
において多孔質焼結体の高さ方向の寸法が大きく減少す
る場合には、容器のキャビティの深さ方向の寸法は、焼
結鍛造品の高さよりもかなり大きくする必要がある。そ
の理由は、鍛造工程の際に、多孔質焼結体は気孔潰れに
よりその深さ方向の寸法が大きく減少するため、その減
少寸法を考慮したものである。
The iron-based powder used in the method of the present invention is obtained by the atomizing method and has not been subjected to unreduced treatment.
Therefore, the oxide layer remains on the surface of the iron-based powder particles. The container used in the method of the present invention has a cavity. This cavity can have a preform shape that is similar to or closely resembles that of a sintered forged product, except that if the heightwise dimension of the porous sintered body is significantly reduced during the forging process, The dimension in the depth direction needs to be considerably larger than the height of the sintered forged product. The reason is that, in the forging step, the dimension of the porous sintered body in the depth direction is greatly reduced due to the collapse of the pores, and the reduced dimension is taken into consideration.

【0018】容器の材質は、鉄系粉末の焼結温度におい
ても耐熱性を有すると共に高温に加熱された鉄系粉末と
固着しにくいものが好ましく、一般的にはジルコニア、
アルミナ、窒化珪素、炭化珪素等のセラミックスにでき
る。本発明に係る投入工程では、鉄系粉末を容器のキャ
ビティに投入し、粉末粒子間に気孔を備えた密度比が低
い粉末集合体を得る。粉末集合体における気孔は、粉末
集合体の内部に還元性雰囲気が浸透し易い様に連続して
おり、孤立孔は少ない方が好ましい。粉末集合体の密度
比は、粉末集合体の内部深くまで還元性雰囲気が浸透し
易い値に設定する必要があり、一般的には35〜55%
特に40〜50%程度にできる。ここで密度比とは、同
一組成の物質の真密度に対する割合を意味する。
The material of the container is preferably one that has heat resistance even at the sintering temperature of the iron-based powder and is unlikely to stick to the iron-based powder heated to a high temperature. Generally, zirconia,
Ceramics such as alumina, silicon nitride, and silicon carbide can be used. In the charging step according to the present invention, iron-based powder is charged into the cavity of the container to obtain a powder aggregate having pores between the powder particles and having a low density ratio. The pores in the powder aggregate are continuous so that the reducing atmosphere can easily penetrate into the inside of the powder aggregate, and it is preferable that there are few isolated pores. The density ratio of the powder aggregate needs to be set to a value that allows the reducing atmosphere to easily penetrate deep inside the powder aggregate, and is generally 35 to 55%.
In particular, it can be about 40 to 50%. Here, the density ratio means the ratio of the substances having the same composition to the true density.

【0019】本発明に係る焼結還元工程では、容器内の
粉末集合体を還元性雰囲気において加熱して焼結と同時
に還元し、多孔質焼結体を得る。焼結温度は、液相が生
じない様に固相焼結を行う温度が好ましい。液相が生じ
ると、多孔質焼結体の密度比が高くなってしまう傾向に
あるからである。多孔質焼結体の密度比は一般的には粉
末集合体の密度比と略同様の値となり、具体的には通常
35〜55%特に40〜50%程度と低いものとなる。
従って焼結している間に、粉末集合体や多孔質焼結体の
内部深くまで還元性雰囲気が浸透でき、多孔質焼結体の
内部深くまで還元処理が良好に行われる。
In the sinter reduction step according to the present invention, the powder aggregate in the container is heated in a reducing atmosphere to be reduced simultaneously with sintering to obtain a porous sintered body. The sintering temperature is preferably a temperature at which solid phase sintering is performed so that a liquid phase does not occur. This is because when the liquid phase is generated, the density ratio of the porous sintered body tends to increase. The density ratio of the porous sintered body is generally the same value as the density ratio of the powder aggregate, and specifically, it is as low as usually 35 to 55%, especially 40 to 50%.
Therefore, during the sintering, the reducing atmosphere can penetrate deep inside the powder aggregate or the porous sintered body, and the reduction treatment can be well performed deep inside the porous sintered body.

【0020】本発明方法に係る鍛造工程では、密度比が
低い高温の多孔質焼結体を鍛造型で熱間鍛造するが、鍛
造は面圧が大きいので、多孔質焼結体中の気孔は大幅に
消失し、密度比が高く残留気孔が少ない焼結鍛造品が得
られる。請求項2の方法に係る密閉工程では、蓋部材を
容器に装着して容器内の多孔質焼結体を密閉する。これ
により容器内への外気の進入が抑制または回避され、高
温の多孔質焼結体を鍛造型まで移送する間において、多
孔質焼結体の酸化は軽減または回避される。
In the forging step according to the method of the present invention, a high-temperature porous sintered body having a low density ratio is hot forged with a forging die, but since the forging has a large surface pressure, the pores in the porous sintered body are A sintered forged product with a large disappearance and a high density ratio and few residual pores can be obtained. In the sealing step according to the method of claim 2, the lid member is attached to the container to seal the porous sintered body in the container. This suppresses or avoids the entry of outside air into the container, and reduces or avoids the oxidation of the porous sintered body while the high temperature porous sintered body is transferred to the forging die.

【0021】請求項3の方法に係る投入工程では、外側
に酸化抑制層を有する粉末集合体を得る。酸化抑制層
は、粉末集合体の酸化を軽減または回避するために、粉
末集合体の外側に積層された層である。酸化抑制層は、
炭素含有量が多い鉄系粉末、黒鉛粉末等の炭素系粉末、
粒径が微細または超微細な微小粉末などの酸化抑制粉末
を利用して構成できる。炭素含有量が多い鉄系粉末で酸
化抑制層を構成した場合には、多孔質焼結体を構成する
酸化抑制層から脱炭が進行すると、外気が多孔質焼結体
の内部に浸透した場合であっても、脱炭した炭素と外気
の酸素との反応により、還元性をもつCOガスの生成
(C+1/202 →COガス)を期待でき、これにより
多孔質焼結体の酸化は軽減または回避される。
In the charging step according to the method of claim 3, a powder aggregate having an oxidation suppressing layer on the outside is obtained. The oxidation suppression layer is a layer laminated on the outer side of the powder aggregate in order to reduce or avoid the oxidation of the powder aggregate. The oxidation suppression layer is
Iron-based powder with a high carbon content, carbon-based powder such as graphite powder,
It can be constituted by using an oxidation-inhibiting powder such as a fine powder having a fine or ultrafine particle size. When the oxidation suppressing layer is composed of iron-based powder with a high carbon content, when decarburization proceeds from the oxidation suppressing layer that constitutes the porous sintered body, outside air permeates into the inside of the porous sintered body. However, due to the reaction between the decarburized carbon and the oxygen in the outside air, CO gas having a reducing property (C + 1/20 2 → CO gas) can be expected, which reduces the oxidation of the porous sintered body. Or be avoided.

【0022】黒鉛粉末等の炭素系粉末で酸化抑制層を構
成した場合にも同様の作用が期待される。また、微小粉
末で酸化抑制層を構成した場合には、酸化抑制層は密度
比が高くなる。従って比較的長い時間を要する焼結にお
いては還元性雰囲気は多孔質焼結体の内部に浸透できる
ものの、多孔質焼結体を焼結炉から鍛造型に移送するま
での比較的短い時間(例えば数秒〜数10秒)において
は、外気が焼結体の内部に浸透する時間が不足するの
で、多孔質焼結体の酸化は抑制される。
The same effect is expected when the oxidation suppressing layer is made of carbon powder such as graphite powder. Further, when the oxidation suppressing layer is made of fine powder, the oxidation suppressing layer has a high density ratio. Therefore, in the sintering that requires a relatively long time, the reducing atmosphere can permeate the inside of the porous sintered body, but a relatively short time until the porous sintered body is transferred from the sintering furnace to the forging die (for example, In several seconds to several tens of seconds), the time for the outside air to penetrate into the sintered body is insufficient, so that the oxidation of the porous sintered body is suppressed.

【0023】[0023]

【実施例】以下、本発明方法の各実施例を説明する。 (第1実施例)重量%で、Fe−2%Cu−0.6%C
の組成をもつ1650〜1700°C程度の溶湯を用
い、その溶湯を水アトマイズし、粉末を得る。この粉末
粒子には酸化物層が生成しており、酸素含有量は一般的
には0.4〜0.6重量%程度である。その粉末を乾燥
した後、ふるいにかけ80メッシュ以下の粒度の原料粉
末を得る。そして、図1に示すセラミックス製(アルミ
ナ製)の焼結容器1のキャビティ1aにその原料粉末を
投入し、粉末集合体2を得る。粉末集合体2の密度比は
40〜50%程度であり、粉末粒子間には互いに連通す
る気孔が残留している。投入の際には焼結容器1に振動
を加えておらず、また粉末を圧縮するプレスもしていな
い。従って、粉末集合体2における粒子間隔はかなり大
きいものである。
EXAMPLES Examples of the method of the present invention will be described below. (First embodiment) Fe-2% Cu-0.6% C in% by weight
Using a molten metal having a composition of about 1650 to 1700 ° C, the molten metal is atomized with water to obtain a powder. An oxide layer is formed in the powder particles, and the oxygen content is generally about 0.4 to 0.6% by weight. After the powder is dried, it is sieved to obtain a raw material powder having a particle size of 80 mesh or less. Then, the raw material powder is put into the cavity 1a of the ceramics (alumina) sintering container 1 shown in FIG. 1 to obtain a powder aggregate 2. The density ratio of the powder aggregate 2 is about 40 to 50%, and pores communicating with each other remain between the powder particles. At the time of charging, neither vibration was applied to the sintering container 1 nor press for compressing the powder. Therefore, the particle spacing in the powder aggregate 2 is quite large.

【0024】焼結容器1のキャビティ1aの平面形状は
後述の焼結鍛造品7の平面形状に類似した形状である
が、キャビティ1aに収納された粉末集合体2の高さ寸
法をH1とし、焼結鍛造品7の高さ寸法をH3とする
と、H1はH3よりもかなり大きい。その後、図1から
理解できる様に、AXガス雰囲気の焼結炉4の炉室に焼
結容器1を装入し、炉室内で1150°Cで20分間加
熱保持する。このとき、粉末粒子の表面の酸化物層が還
元により除去されると共に、粉末粒子同士が結合して粉
末集合体2の焼結が行われ、多孔質焼結体5が得られ
る。
The cavity 1a of the sintering container 1 has a plane shape similar to that of a sintered forged product 7 described later, but the height dimension of the powder aggregate 2 housed in the cavity 1a is H1, When the height dimension of the sintered forged product 7 is H3, H1 is considerably larger than H3. Then, as can be understood from FIG. 1, the sintering container 1 is loaded into the furnace chamber of the sintering furnace 4 in the AX gas atmosphere, and heated and held at 1150 ° C. for 20 minutes in the furnace chamber. At this time, the oxide layer on the surface of the powder particles is removed by reduction, the powder particles are bonded to each other and the powder aggregate 2 is sintered, and the porous sintered body 5 is obtained.

【0025】ここで、粉末集合体2、これを焼結した多
孔質焼結体5はその密度比が40〜50%程度と低いも
のであり、この粉末集合体2や多孔質焼結体5の内部に
は互いに連通するとともに外表面に連通する気孔が残留
している。従って焼結炉4内のAXガス雰囲気が粉末集
合体2や多孔質焼結体5の内部深くまで浸透でき、多孔
質焼結体5の深部における酸化物層が還元により取り除
かれる。即ち焼結と同時に還元が行われる。AXガス雰
囲気の圧力は(大気圧+2〜6mmaq)程度である。
Here, the powder aggregate 2 and the porous sintered body 5 obtained by sintering the powder aggregate 2 have a low density ratio of about 40 to 50%. Pores that communicate with each other and communicate with the outer surface remain inside. Therefore, the AX gas atmosphere in the sintering furnace 4 can penetrate deep into the powder aggregate 2 and the porous sintered body 5, and the oxide layer in the deep portion of the porous sintered body 5 is removed by reduction. That is, reduction is performed simultaneously with sintering. The pressure of the AX gas atmosphere is about (atmospheric pressure + 2 to 6 mmaq).

【0026】ここで、AXガスとは、アンモニアを高温
域で触媒を介して分解したガスであり、体積%でH2
5%とN2 75%とが混合した組成をもつ還元性をもつ
ガスであり、露点が低い(−30〜−40°C)。次
に、焼結炉4から取り出したあるいは焼結炉4内の焼結
容器1の上面開口に蓋部材1k(材質:例えばアルミナ
製)を直ちに装着し、高温の多孔質焼結体5を収納した
焼結容器1を密閉する。これにより高温の多孔質焼結体
5と外気との接触を遮断する。この状態を図2に示す。
Here, the AX gas is a gas obtained by decomposing ammonia through a catalyst in a high temperature range, and is H 2 7 in volume%.
It is a reducing gas having a composition in which 5% and 75% N 2 are mixed, and has a low dew point (-30 to -40 ° C). Next, the lid member 1k (material: for example, made of alumina) is immediately attached to the upper surface opening of the sintering container 1 taken out from the sintering furnace 4 or inside the sintering furnace 4, and the high temperature porous sintered body 5 is stored. The sintered container 1 is sealed. As a result, the contact between the high temperature porous sintered body 5 and the outside air is blocked. This state is shown in FIG.

【0027】この様に密閉した状態で焼結容器1を、図
3に示す鍛造型6まで移送手段あるいは手作業等で移送
する。移送時間は一般的には5〜15秒程度と短時間で
ある。そして、図3に示す様に鍛造型6の上方で焼結容
器1を上下反転する。この鍛造型6はダイス型60と下
パンチ型61と上パンチ型62(図5参照)と鍛造キャ
ビティ63とを備えている。
In this sealed state, the sintering container 1 is transferred to the forging die 6 shown in FIG. 3 by transfer means or manual work. The transfer time is as short as about 5 to 15 seconds in general. Then, as shown in FIG. 3, the sintering container 1 is turned upside down above the forging die 6. The forging die 6 includes a die die 60, a lower punch die 61, an upper punch die 62 (see FIG. 5), and a forging cavity 63.

【0028】更に図4に示す様に蓋部材1kを矢印E1
方向にスライドさせて焼結容器1の開口を開放し、焼結
容器1内の高温状態の多孔質焼結体5を鍛造型6の鍛造
キャビティ63内に落下させる。そして直ちに上パンチ
型62を図5に示す様に降下し、上パンチ型62の型面
で多孔質焼結体5をその高さ方向に強圧して熱間鍛造す
る。熱間鍛造の際、多孔質焼結体5の温度は1100〜
1050°Cと考えられ、また鍛造面圧は10トン/c
2 程度である。そして離型及び後処理を経て焼結鍛造
品7が得られる。
Further, as shown in FIG. 4, the lid member 1k is attached to the arrow E1.
The opening of the sintering container 1 is opened by sliding in the direction, and the high temperature porous sintered body 5 in the sintering container 1 is dropped into the forging cavity 63 of the forging die 6. Immediately thereafter, the upper punch die 62 is lowered as shown in FIG. 5, and the porous sintered body 5 is strongly pressed in the height direction by the die punch surface of the upper punch die 62 to perform hot forging. At the time of hot forging, the temperature of the porous sintered body 5 is 1100 to 100
It is considered to be 1050 ° C and the forging surface pressure is 10 tons / c
It is about m 2 . Then, the sintered forged product 7 is obtained through release and post-treatment.

【0029】この場合、多孔質焼結体5の鍛造前の高さ
をH2(H1と実質的に同じ)とし、鍛造後の高さをH
3とすると、一般的には(H3/H2)=0.35〜
0.4程度となる。ここで、焼結鍛造品7の炭素含有量
の目標値は0.45%程度である。鉄系粉末をアトマイ
ズする溶湯の炭素含有量と焼結鍛造品7の炭素含有量と
の間に差があることがあり、この差に相当する炭素含有
量が焼結加熱の際に脱炭し、還元性を有するCOガス生
成に寄与したと考えられる。この場合、還元するのに一
層有利となる。
In this case, the height of the porous sintered body 5 before forging is H2 (substantially the same as H1), and the height after forging is H.
When set to 3, generally (H3 / H2) = 0.35-
It will be about 0.4. Here, the target value of the carbon content of the sintered forged product 7 is about 0.45%. There may be a difference between the carbon content of the molten metal that atomizes the iron-based powder and the carbon content of the sintered forged product 7. The carbon content corresponding to this difference causes decarburization during sintering heating. It is considered that it contributed to the generation of CO gas having a reducing property. In this case, it is more advantageous for reduction.

【0030】第1実施例の基本工程は図6に示されてい
る。第1実施例に係る図6と従来例に係る図15との比
較から理解できる様に、第1実施例では工程数が少なく
なっていることがわかる。ところで前述した様に多孔質
焼結体5の密度比は40〜50%程度と低いため、多孔
質焼結体5を収納した焼結容器1を焼結炉4から鍛造型
6まで移送する間に、焼結容器1に収納されている高温
の多孔質焼結体5に外気が浸透し、多孔質焼結体5が酸
化し始め、その酸化が進行するおそれがある。この点本
例では、前述した様に、焼結容器1の上面開口に蓋部材
1kを装着し、高温の多孔質焼結体5を収納した焼結容
器1を密閉し、密閉した状態で焼結炉4から鍛造型6ま
で移送するため、かかる移送の際において、高温の多孔
質焼結体5と外気との接触は効果的に遮断され、高温の
多孔質焼結体5の酸化は軽減または回避される。この様
に多孔質焼結体5の酸化は軽減または回避されるので、
焼結鍛造品7の高強度、高靭性化に有利である。
The basic steps of the first embodiment are shown in FIG. As can be understood from the comparison between FIG. 6 according to the first embodiment and FIG. 15 according to the conventional example, it can be seen that the number of steps is reduced in the first embodiment. By the way, since the density ratio of the porous sintered body 5 is as low as 40 to 50% as described above, while the sintering container 1 containing the porous sintered body 5 is transferred from the sintering furnace 4 to the forging die 6, Moreover, outside air may permeate the high temperature porous sintered body 5 housed in the sintering container 1 and the porous sintered body 5 may start to oxidize, which may promote the oxidation. In this respect, in this example, as described above, the lid member 1k is attached to the upper opening of the sintering container 1, the sintering container 1 containing the high-temperature porous sintered body 5 is sealed, and the sintering is performed in a sealed state. Since it is transferred from the furnace 4 to the forging die 6, the contact between the high temperature porous sintered body 5 and the outside air is effectively blocked during the transfer, and the oxidation of the high temperature porous sintered body 5 is reduced. Or be avoided. In this way, since the oxidation of the porous sintered body 5 is reduced or avoided,
This is advantageous for increasing the strength and toughness of the sintered forged product 7.

【0031】この例は内燃機関の鉄系コンロッドの製造
や歯車の製造に適用できる。 (第2実施例)重量%で、Fe−2%Ni−0.5%M
o−1.0%Cの組成をもつ溶湯を用い、その溶湯を水
アトマイズし、粉末を得る。その粉末を乾燥した後、ふ
るいにかけ80メッシュ以下の粒度の原料粉末を得る。
その原料粉末と、実施例1で製造した原料粉末とをセラ
ミックス製の焼結容器1のキャビティ1aに投入し、図
7に模式的に示す粉末集合体2を得る。
This example can be applied to the manufacture of iron-based connecting rods of internal combustion engines and the manufacture of gears. (Second Example) Fe-2% Ni-0.5% M in% by weight
Using a molten metal having a composition of o-1.0% C, the molten metal is water atomized to obtain a powder. After the powder is dried, it is sieved to obtain a raw material powder having a particle size of 80 mesh or less.
The raw material powder and the raw material powder produced in Example 1 are put into the cavity 1a of the ceramic sintering container 1 to obtain a powder aggregate 2 schematically shown in FIG.

【0032】図7に示す粉末集合体2は、粉末集合体2
の大部分を形成する内層2cと、内層2cの外周面を覆
う様に配置された円筒状をなす酸化抑制層2eとで形成
されている。内層2cは、実施例1で製造した原料粉末
で構成されている。酸化抑制層2eは、実施例2で製造
した(実施例1よりも炭素含有量が多い)原料粉末で構
成されている。
The powder aggregate 2 shown in FIG. 7 is the powder aggregate 2
Of the inner layer 2c and a cylindrical oxidation suppressing layer 2e arranged so as to cover the outer peripheral surface of the inner layer 2c. The inner layer 2c is composed of the raw material powder manufactured in Example 1. The oxidation suppressing layer 2e is composed of the raw material powder manufactured in Example 2 (having a higher carbon content than in Example 1).

【0033】ここで、図7に示す粉末集合体2は例えば
次の様にして製造できる。即ち、図9に示す様に筒具1
rおよび筒具1tを用い、筒具1rおよび筒具1tを焼
結容器1のキャビティ1a内にほぼ同軸的に配置する。
この状態で筒具1tの内周面で包囲された空間に鉄系粉
末を投入して内層2cを得る。その後に図10から理解
できる様に筒具1rを上方に抜き、筒具1tの外周面と
焼結容器1の立壁1iの内周面との間のリング状隙間を
形成する。そしてリング状隙間に鉄系粉末を投入して酸
化抑制層2eを得る。その後に筒具1tも抜く。筒具1
tを抜いた跡の空間は粉末の流動により埋められる。
Here, the powder aggregate 2 shown in FIG. 7 can be manufactured, for example, as follows. That is, as shown in FIG.
Using r and the tubular tool 1t, the tubular tool 1r and the tubular tool 1t are arranged substantially coaxially in the cavity 1a of the sintering container 1.
In this state, the iron-based powder is put into the space surrounded by the inner peripheral surface of the tubular tool 1t to obtain the inner layer 2c. After that, as can be understood from FIG. 10, the tubular tool 1r is pulled out upward to form a ring-shaped gap between the outer peripheral surface of the tubular tool 1t and the inner peripheral surface of the standing wall 1i of the sintering container 1. Then, the iron-based powder is put into the ring-shaped gap to obtain the oxidation suppressing layer 2e. After that, the tube tool 1t is also pulled out. Cylinder tool 1
The space left after t is filled with the flow of powder.

【0034】図7における酸化抑制層2eは内層2cの
外周面を覆う形態であるが、これに限らず図8に示す様
に内層2cの全面を覆う形態としても良い。図8に示す
酸化抑制層2eは、周方向に連続するリング層2xと下
層2y層と上層2zとからなる。図8に示す粉末集合体
2も前述同様に筒具1rおよび筒具1tを利用して形成
できる。即ち、空の状態の焼結容器1の底壁に、下層2
yを構成する鉄系粉末を載せた後に、筒具1rおよび筒
具1tを下層2yの上に載せ、前述同様にして筒具1r
を抜いてリング層2xを形成し、筒具1tを上方に抜い
た後に、上層2zを構成する鉄系粉末を載せる。
Although the oxidation suppressing layer 2e in FIG. 7 covers the outer peripheral surface of the inner layer 2c, the present invention is not limited to this, and the entire surface of the inner layer 2c may be covered as shown in FIG. The oxidation suppression layer 2e shown in FIG. 8 includes a ring layer 2x, a lower layer 2y, and an upper layer 2z which are continuous in the circumferential direction. The powder aggregate 2 shown in FIG. 8 can also be formed by utilizing the tubular tool 1r and the tubular tool 1t as described above. That is, the lower layer 2 is formed on the bottom wall of the empty sintering container 1.
After placing the iron-based powder that constitutes y, the tube tool 1r and the tube tool 1t are placed on the lower layer 2y, and the tube tool 1r is placed in the same manner as described above.
Is removed to form the ring layer 2x, and the tubular tool 1t is pulled out upward, and then the iron-based powder constituting the upper layer 2z is placed.

【0035】さて、上記した様に酸化抑制層2eを備え
た図7に示す粉末集合体2を形成したら、第1実施例と
同様に、AXガス雰囲気の焼結炉4に焼結容器1を粉末
集合体2と共に装入し、AXガス雰囲気において115
0°Cで20分間加熱保持する。このとき第1実施例と
同様に、粉末粒子の表面の酸化物層が還元により除去さ
れると共に、粉末粒子同士が結合して粉末集合体2の焼
結が行われ、多孔質焼結体5が得られる。
When the powder aggregate 2 shown in FIG. 7 having the oxidation suppressing layer 2e is formed as described above, the sintering container 1 is placed in the sintering furnace 4 in the AX gas atmosphere, as in the first embodiment. Charged with the powder aggregate 2 and 115 in an AX gas atmosphere.
Heat and hold for 20 minutes at 0 ° C. At this time, as in the first embodiment, the oxide layer on the surface of the powder particles is removed by reduction, the powder particles are bonded to each other and the powder aggregate 2 is sintered, and the porous sintered body 5 is obtained. Is obtained.

【0036】第2実施例に係る粉末集合体2及びこれを
焼結した多孔質焼結体5も、その密度比が第1実施例と
同様に40〜50%程度と低いものである。従って焼結
炉4内のAXガス雰囲気が粉末集合体2、多孔質焼結体
5の内部深くまで浸透でき、深部における酸化物層も還
元により取り除かれる。即ち、実施例1の場合と同様に
粉末集合体2を焼結と同時に還元し、多孔質焼結体5を
得る。
The density ratio of the powder aggregate 2 and the porous sintered body 5 obtained by sintering the powder aggregate 2 according to the second embodiment is as low as about 40 to 50% as in the first embodiment. Therefore, the AX gas atmosphere in the sintering furnace 4 can penetrate deep into the inside of the powder aggregate 2 and the porous sintered body 5, and the oxide layer in the deep portion can also be removed by reduction. That is, as in the case of Example 1, the powder aggregate 2 is reduced at the same time as the sintering to obtain the porous sintered body 5.

【0037】次に、第1実施例と同様に焼結容器1を鍛
造型6まで移送し、高温状態の多孔質焼結体5を熱間鍛
造する。離型、後処理を経て焼結鍛造品7が得られる。
ところで第2実施例においても前述した様に多孔質焼結
体5の密度比は40〜50%程度と低いものである。そ
のため多孔質焼結体5を焼結炉4から鍛造型6まで移送
する間に高温の多孔質焼結体5に外気が浸透し、多孔質
焼結体5が酸化するおそれがある。この点本例では、炭
素含有量が多い鉄系粉末で酸化抑制層2eを構成してい
るので、多孔質焼結体5を構成する酸化抑制層2eから
脱炭が進行するので、高温の多孔質焼結体5が外気中を
移送される場合において、外気が多孔質焼結体5に触れ
る場合であっても、脱炭した炭素と外気の酸素との高温
下における反応により、還元性をもつCOガスの生成
(C+1/202 →COガス)を期待でき、これにより
多孔質焼結体5の酸化は軽減または回避される。
Next, as in the first embodiment, the sintering container 1 is transferred to the forging die 6 and the porous sintered body 5 in the high temperature state is hot forged. A sintered forged product 7 is obtained through release and post-treatment.
By the way, also in the second embodiment, as described above, the density ratio of the porous sintered body 5 is as low as about 40 to 50%. Therefore, while the porous sintered body 5 is transferred from the sintering furnace 4 to the forging die 6, outside air may permeate the high temperature porous sintered body 5 and the porous sintered body 5 may be oxidized. In this respect, in this example, since the oxidation suppressing layer 2e is made of the iron-based powder having a high carbon content, decarburization proceeds from the oxidation suppressing layer 2e forming the porous sintered body 5, so that the high temperature porous In the case where the fine sintered body 5 is transferred in the open air, even if the open air contacts the porous sintered body 5, the reducing property is reduced by the reaction between the decarburized carbon and the oxygen in the open air at a high temperature. It is possible to expect the production of CO gas (C + 1/20 2 → CO gas), which reduces or avoids the oxidation of the porous sintered body 5.

【0038】更にこの例に係る焼結鍛造品7の外面部
は、炭素含有量が多目の酸化抑制層2eから形成されて
いるので、鍛造後の急冷により表面硬度が高くなる。よ
って表面特性が向上し、浸炭焼入と同様な硬度向上効果
を期待できる。 (試験例)上記した第1実施例及び第2実施例に従い、
焼結鍛造品からなる第1実施例にに係る試験片、第2実
施例に係る試験片を製造した。試験片は円柱状(鍛造方
向は軸長方向)である。そして各試験片を切断して、光
学顕微鏡を用いて切断面の表面の酸化深さを測定した。
測定結果は、第1実施例に係る試験片では0.05mm
と良好であり、第2実施例に係る試験片では0.07m
mと良好であった。また第1実施例において蓋部材1k
を被着しなかった場合においても、酸化深さは0.13
mmと良好であった。
Further, since the outer surface of the sintered forged product 7 according to this example is formed of the oxidation suppressing layer 2e having a large carbon content, the surface hardness becomes high due to the rapid cooling after forging. Therefore, the surface characteristics are improved and the same hardness improvement effect as carburizing and quenching can be expected. (Test Example) According to the first and second embodiments described above,
A test piece according to the first example and a test piece according to the second example made of a sintered forged product were manufactured. The test piece is cylindrical (forging direction is the axial direction). And each test piece was cut | disconnected and the oxidation depth of the surface of the cut surface was measured using the optical microscope.
The measurement result is 0.05 mm for the test piece according to the first embodiment.
And the test piece according to the second example is 0.07 m.
m was good. Further, in the first embodiment, the lid member 1k
Even if it is not deposited, the oxidation depth is 0.13
mm was good.

【0039】更に、図15に示す従来工程に従い、比較
例に係る試験片を製造した。即ち、この比較例では、水
アトマイズした鉄系粉末に2重量%黒鉛粉末、0.6重
量%ステアリン酸亜鉛を混合し、面圧5トン/cm2
密度6.8g/cm3 (密度比86%)に成形し圧粉体
を形成し、その後1150°Cで20分間、AXガス雰
囲気中で圧粉体を加熱保持することにより焼結して高密
度比をもつ焼結体(密度比90%)とした。更に、焼結
炉から焼結体を取り出して鍛造工程へ外気中を移送し
た。そして、焼結炉から焼結体を取り出した約10秒後
に外気中で面圧10トン/cm2 にて鍛造し、焼結鍛造
品(密度比ほぼ100%)を得た。この様にして製造し
た比較例の試験例についても同様に酸化深さを測定した
ところ、0.13mmであった。
Further, a test piece according to a comparative example was manufactured according to the conventional process shown in FIG. That is, in this comparative example, 2 wt% graphite powder and 0.6 wt% zinc stearate were mixed with water-atomized iron-based powder, and the density was 6.8 g / cm 3 (density ratio) at a surface pressure of 5 ton / cm 2. 86%) to form a green compact, which is then sintered by heating and holding the green compact in an AX gas atmosphere at 1150 ° C. for 20 minutes to obtain a sintered body having a high density ratio (density ratio). 90%). Further, the sintered body was taken out of the sintering furnace and transferred to the forging process in the open air. Approximately 10 seconds after the sintered body was taken out of the sintering furnace, it was forged in the open air at a surface pressure of 10 ton / cm 2 to obtain a sintered forged product (a density ratio of about 100%). The oxidation depth of the comparative test example manufactured in this manner was also measured and found to be 0.13 mm.

【0040】(変形例)なお、図11に示す様に焼結容
器1に通気孔1fを形成しても良い。この場合には、粉
末集合体2の高さが大きくてAXガス雰囲気が粉末集合
体2の底部まで浸透し辛い場合に適する。また、焼結容
器1と粉末集合体2との境界域に、耐熱性を備えた無機
系の多孔体を配置し、この多孔体の通気性を利用して、
AXガス雰囲気を粉末集合体2の内部まで浸透させる様
にしても良い。多孔体は鉄系粉末と結着しにくいものが
好ましい。多孔体としてはガラス繊維、ロックウール等
の集積体がある。
(Variation) As shown in FIG. 11, a ventilation hole 1f may be formed in the sintering container 1. This case is suitable when the height of the powder aggregate 2 is large and it is difficult for the AX gas atmosphere to penetrate to the bottom of the powder aggregate 2. In addition, an inorganic porous body having heat resistance is arranged in the boundary region between the sintering container 1 and the powder aggregate 2, and the air permeability of this porous body is utilized to
The AX gas atmosphere may penetrate into the inside of the powder aggregate 2. The porous body is preferably one that is hard to bind to the iron-based powder. As the porous body, there is an aggregate of glass fiber, rock wool and the like.

【0041】(第3実施例)重量%で、Fe−2%Cu
−0.7%Cの組成をもつ溶湯を水アトマイズし、原料
粉末を得る。その原料粉末を乾燥した後、ふるいにかけ
80メッシュ以下の粒度の粉末を得る。その粉末を焼結
容器1のキャビティ1aに投入し、密度比が低い粉末集
合体2を得る。
(Third Example) Fe-2% Cu by weight%
A molten metal having a composition of −0.7% C is water atomized to obtain a raw material powder. After drying the raw material powder, it is sieved to obtain a powder having a particle size of 80 mesh or less. The powder is put into the cavity 1a of the sintering container 1 to obtain a powder aggregate 2 having a low density ratio.

【0042】この例では図12に示す様に、駆動ローラ
100aと従動ローラ100bとベルト100cとを備
えた駆動ベルト装置100を用いると共に、入口4m及
び出口4nを備えかつ還元性をもつRXガス雰囲気の焼
結炉4を用いる。そして焼結容器1を保持したベルト1
00cを矢印W1方向に搬送し、粉末集合体2を焼結炉
4の炉室に順に装入する。これにより焼結炉4の炉室で
1150°Cで30分間程度加熱保持し、粉末集合体2
を焼結し、多孔質焼結体5を得る。
In this example, as shown in FIG. 12, a driving belt device 100 having a driving roller 100a, a driven roller 100b and a belt 100c is used, and an RX gas atmosphere having an inlet 4m and an outlet 4n and having a reducing property is used. The sintering furnace 4 is used. And the belt 1 holding the sintering container 1
00c is conveyed in the direction of the arrow W1, and the powder aggregate 2 is sequentially charged into the furnace chamber of the sintering furnace 4. As a result, the powder aggregate 2 was heated and held at 1150 ° C. for about 30 minutes in the furnace chamber of the sintering furnace 4.
Is sintered to obtain a porous sintered body 5.

【0043】第3実施例に係る粉末集合体2、これを焼
結した多孔質焼結体5は、その密度比が40〜50%程
度と低いため、焼結時の還元性ガスが多孔質焼結体5の
内部深くまで浸透でき、多孔質焼結体5の深部における
酸化物層が還元により取り除かれる。即ち第3実施例に
おいても、実施例1の場合と同様に粉末集合体2を焼結
と同時に還元し、多孔質焼結体5を得る。
Since the powder aggregate 2 and the porous sintered body 5 obtained by sintering the powder aggregate 2 according to the third embodiment have a low density ratio of about 40 to 50%, the reducing gas at the time of sintering is porous. It is possible to penetrate deep into the sintered body 5, and the oxide layer in the deep portion of the porous sintered body 5 is removed by reduction. That is, also in the third embodiment, as in the case of the first embodiment, the powder aggregate 2 is reduced simultaneously with sintering to obtain the porous sintered body 5.

【0044】ここでRXガスとは吸熱型ガスとも呼ば
れ、CO、H2 に富んだガスが生成される様に空気と炭
化水素類を混合し、加熱触媒の中で変成したものであ
る。この例では、図12、図13に模式的に例示されて
いる様に、焼結炉4の出口4n側に熱間加工機8が装備
されている。熱間加工機8は第1回転ロール81と第2
回転ロール82とを備えている。第1回転ロール81の
周縁部には所定の間隔で押圧突起部81cが形成されて
いる。そして焼結した多孔質焼結体5の上面を第1回転
ロール81の押圧突起部81cで機械的に潰して圧下す
る。圧下率は53%である。圧下率とは、圧下前の厚み
をh0 とし、圧下後の厚みをh1 とすると、{(h0
1 )/h0 }×100〔%〕を意味する。この圧下に
より多孔質焼結体5の表面付近は緻密化し、表面付近に
おける密度比は96%と高くなる。従って多孔質焼結体
5の表面付近における開気孔の閉塞性が向上する。よっ
て多孔質焼結体5を鍛造型6に移送するまでの間(約1
0秒間)に、多孔質焼結体5の表面が酸化することが抑
制される。
The RX gas, which is also called an endothermic gas, is a mixture of air and hydrocarbons which is transformed so that a gas rich in CO and H 2 is produced. In this example, as schematically illustrated in FIGS. 12 and 13, a hot working machine 8 is provided on the outlet 4n side of the sintering furnace 4. The hot working machine 8 includes a first rotating roll 81 and a second rotating roll 81.
And a rotating roll 82. Pressing protrusions 81c are formed on the peripheral portion of the first rotating roll 81 at predetermined intervals. Then, the upper surface of the sintered porous sintered body 5 is mechanically crushed by the pressing protrusion 81c of the first rotating roll 81 and pressed down. The rolling reduction is 53%. The rolling reduction is {(h 0 −, where h 0 is the thickness before rolling and h 1 is the thickness after rolling).
It means h 1 ) / h 0 } × 100 [%]. Due to this reduction, the vicinity of the surface of the porous sintered body 5 is densified, and the density ratio near the surface becomes as high as 96%. Therefore, the plugging property of the open pores near the surface of the porous sintered body 5 is improved. Therefore, until the porous sintered body 5 is transferred to the forging die 6 (about 1
Oxidation of the surface of the porous sintered body 5 during 0 seconds is suppressed.

【0045】その後第1実施例と同様に、多孔質焼結体
5を鍛造型6で強圧して鍛造する。鍛造面圧は8トン/
cm2 程度である。 (試験例)第3実施例に従い試験片を形成し、その試験
片の静的破断面をSEM観察し、静的破断面における未
焼結部の面積率を測定した。測定結果を図14の特性線
S1に示す。特性線S1から理解できる様に、未焼結部
が面積率で5%観察される深さは、0.2mm程度であ
った。
Then, as in the first embodiment, the porous sintered body 5 is forcibly pressed by a forging die 6 to be forged. Forging surface pressure is 8 tons /
It is about cm 2 . (Test Example) A test piece was formed according to the third example, and the static fracture surface of the test piece was observed by SEM to measure the area ratio of the unsintered portion in the static fracture surface. The measurement result is shown by the characteristic line S1 in FIG. As can be understood from the characteristic line S1, the depth at which the unsintered portion was observed at an area ratio of 5% was about 0.2 mm.

【0046】一方、第3実施例と同様に製造されている
が、熱間加工機8により表面緻密化加工をしなかった場
合には、0.7mmであった。この測定結果から熱間加
工機8による表面緻密化が酸化防止に有効であることが
わかる。
On the other hand, the thickness was 0.7 mm when manufactured in the same manner as in the third embodiment but the surface densification processing was not performed by the hot working machine 8. From this measurement result, it can be seen that surface densification by the hot working machine 8 is effective in preventing oxidation.

【0047】[0047]

【発明の効果】請求項1〜3の方法によれば、粉末集合
体及びこれを焼結した多孔質焼結体の密度比は小さいた
め、焼結還元工程において焼結を行う際に、多孔質焼結
体の内部深くまで還元性雰囲気を浸透でき、多孔質焼結
体の深部における還元処理が良好に行われる。この様に
焼結と同時に還元できるため、アトマイズ法により形成
しかつ還元処理をしていないコストの面で有利な鉄系粉
末を原料粉末として用いることができ、したがって、還
元処理したコスト高な還元粉末を原料粉末とせずとも良
く、コストの低廉化に有利である。
According to the method of claims 1 to 3, since the density ratio of the powder aggregate and the porous sintered body obtained by sintering the powder aggregate is small, the porosity during sintering in the sintering reduction step is reduced. The reducing atmosphere can penetrate deep into the porous sintered body, and the reduction treatment in the deep portion of the porous sintered body can be performed well. In this way, since it can be reduced at the same time as sintering, it is possible to use an iron-based powder that is formed by the atomization method and is not subjected to reduction treatment, which is advantageous in terms of cost, as a raw material powder. It is not necessary to use the powder as the raw material powder, which is advantageous for cost reduction.

【0048】更に請求項1〜3の方法によれば、鉄系粉
末を容器のキャビティに投入して形成した粉末集合体を
用いるのであり、密度比が高い成形体である圧粉体を用
いるものではない。従って、圧粉成形の際における圧縮
成形性や潤滑性を考慮したりする必要がない。従って混
粉工程も必要とせず、目標組成の鉄系粉末をそのまま使
用できる効果を期待できる。
Further, according to the method of claims 1 to 3, the powder aggregate formed by charging the iron-based powder into the cavity of the container is used, and the green compact which is a compact having a high density ratio is used. is not. Therefore, it is not necessary to consider the compression moldability and lubricity at the time of compacting. Therefore, it is possible to expect an effect that the iron-based powder having the target composition can be used as it is without the need for a powder mixing step.

【0049】また多孔質焼結体の密度比が低いため、多
孔質焼結体を鍛造工程に移行するまでの間に、多孔質焼
結体の内部に外気が浸透して酸化が進行するおそれがあ
る。この点請求項2の方法によれば、蓋部材により容器
内の多孔質焼結体を密閉し、密閉した状態で多孔質焼結
体を鍛造型つまり鍛造工程まで移送するため、多孔質焼
結体の内部に外気が浸透することは軽減または回避され
る。よって、多孔質焼結体の酸化は抑制され、高強度、
高靭性の焼結鍛造品を得るのに有利である。
Further, since the density ratio of the porous sintered body is low, outside air may permeate the inside of the porous sintered body and oxidation may progress before the porous sintered body is transferred to the forging step. There is. In this respect, according to the method of claim 2, since the porous sintered body in the container is sealed by the lid member and the porous sintered body is transferred to the forging die, that is, the forging step in the sealed state, the porous sintered body is sintered. The penetration of outside air into the body is reduced or avoided. Therefore, the oxidation of the porous sintered body is suppressed, high strength,
It is advantageous for obtaining a high toughness sintered forged product.

【0050】また請求項3の方法によれば、外側に酸化
抑制層を有する粉末集合体を用いるため、鍛造型に移送
するまでの間における多孔質焼結体の酸化は軽減または
回避される。よって、高強度、高靭性の焼結鍛造品を得
るのに有利である。更に酸化抑制層が焼結鍛造品の表層
に残る場合には、表面特性の改善も期待できる。
Further, according to the method of claim 3, since the powder aggregate having the oxidation suppressing layer on the outside is used, the oxidation of the porous sintered body is reduced or avoided before being transferred to the forging die. Therefore, it is advantageous to obtain a sintered forged product having high strength and high toughness. Further, when the oxidation suppressing layer remains on the surface layer of the sintered forged product, improvement in surface characteristics can be expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】粉末集合体を収納した焼結容器を焼結炉に保持
している状態を模式的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing a state in which a sintering container containing a powder aggregate is held in a sintering furnace.

【図2】粉末集合体を収納した焼結容器に蓋部材を被着
した状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state in which a lid member is attached to a sintering container containing a powder aggregate.

【図3】上下反転した焼結容器を鍛造型の鍛造キャビテ
ィに対面する様に配置した状態を示す断面図である。
FIG. 3 is a cross-sectional view showing a state in which a vertically inverted sintering container is arranged so as to face a forging cavity of a forging die.

【図4】上下反転した焼結容器から鍛造型の鍛造キャビ
ティに多孔質焼結体を落下させた状態を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a state in which a porous sintered body is dropped from a vertically inverted sintering container into a forging cavity of a forging die.

【図5】鍛造型により多孔質焼結体を熱間鍛造している
状態を示す断面図である。
FIG. 5 is a cross-sectional view showing a state in which a porous sintered body is hot forged by a forging die.

【図6】第1実施例に係る各工程の流れを示す工程流れ
図である。
FIG. 6 is a process flow chart showing a flow of each process according to the first embodiment.

【図7】別例に係る粉末集合体を焼結容器に収納した状
態を示す断面図である。
FIG. 7 is a cross-sectional view showing a state where a powder aggregate according to another example is housed in a sintering container.

【図8】別例に係る粉末集合体を焼結容器に収納した状
態を示す断面図である。
FIG. 8 is a cross-sectional view showing a state where a powder aggregate according to another example is housed in a sintering container.

【図9】酸化抑制層を備えた別例に係る粉末集合体を得
る形態を示す断面図である。
FIG. 9 is a cross-sectional view showing a form of obtaining a powder aggregate according to another example including an oxidation suppression layer.

【図10】酸化抑制層を備えた別例に係る粉末集合体を
得る形態を示す断面図である。
FIG. 10 is a cross-sectional view showing a form of obtaining a powder aggregate according to another example including an oxidation suppression layer.

【図11】別例に係る焼結容器の断面図である。FIG. 11 is a cross-sectional view of a sintering container according to another example.

【図12】焼結炉において焼結すると共に多孔質焼結体
を熱間加工機で圧下している状態を模式的に示す第3実
施例に係る構成図である。
FIG. 12 is a configuration diagram according to a third embodiment schematically showing a state where the porous sintered body is pressed by a hot working machine while being sintered in a sintering furnace.

【図13】多孔質焼結体を熱間加工機で圧下する状態を
模式的に示す第3実施例に係る構成図である。
FIG. 13 is a configuration diagram according to a third embodiment schematically showing a state in which a porous sintered body is rolled down by a hot working machine.

【図14】未焼結部の面積率と焼結鍛造品の表面からの
深さとの関係を示すグラフである。
FIG. 14 is a graph showing the relationship between the area ratio of the unsintered portion and the depth from the surface of the sintered forged product.

【図15】従来方法に係る各工程の流れを示す工程流れ
図である。
FIG. 15 is a process flow chart showing a flow of each process according to a conventional method.

【符号の説明】 図中、1は焼結容器、1aはキャビティ、1kは蓋部
材、2は粉末集合体、5は多孔質焼結体、6は鍛造型、
7は焼結鍛造品、8は熱間加工機を示す。
DESCRIPTION OF SYMBOLS In the figure, 1 is a sintering container, 1a is a cavity, 1k is a lid member, 2 is a powder aggregate, 5 is a porous sintered body, 6 is a forging die,
Reference numeral 7 indicates a sintered forged product, and 8 indicates a hot working machine.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アトマイズ法により得られ還元処理をして
いない未還元の鉄系粉末と、所定形状のキャビティを備
えた容器とを用い、 該鉄系粉末を該容器のキャビティに投入し、粉末粒子間
に気孔を備えた粉末集合体を得る投入工程と、 該容器内の粉末集合体を還元性雰囲気において加熱して
焼結と同時に還元し、多孔質焼結体を得る焼結還元工程
と、 該容器から取り出した高温の該多孔質焼結体を鍛造型で
熱間鍛造し、焼結鍛造品を得る鍛造工程とを順に実施す
ることを特徴とする焼結鍛造品の製造方法。
1. An unreduced iron-based powder obtained by an atomizing method and not subjected to reduction treatment, and a container having a cavity of a predetermined shape are used, and the iron-based powder is put into the cavity of the container to obtain a powder. A charging step of obtaining a powder aggregate having pores between particles, and a sintering reduction step of heating the powder aggregate in the container in a reducing atmosphere to reduce it simultaneously with sintering to obtain a porous sintered body. A method for producing a sintered forged product, which comprises sequentially performing a hot forging process on the high-temperature porous sintered body taken out of the container with a forging die to obtain a sintered forged product.
【請求項2】アトマイズ法により得られ還元処理をして
いない未還元の鉄系粉末と、所定形状のキャビティを備
えた容器とを用い、 該鉄系粉末を該容器のキャビティに投入し、粉末粒子間
に気孔を備えた粉末集合体を得る投入工程と、 該容器内の粉末集合体を還元性雰囲気において加熱して
焼結と同時に還元し、多孔質焼結体を得る焼結還元工程
と、 該多孔質焼結体を収納した該容器に蓋部材を装着して該
容器を密閉し、密閉したままの状態で該容器を鍛造型ま
で移送する密閉工程と、 該容器から取り出した高温の該多孔質焼結体を該鍛造型
で熱間鍛造し、焼結鍛造品を得る鍛造工程とを順に実施
することを特徴とする焼結鍛造品の製造方法。
2. An unreduced iron-based powder obtained by an atomizing method, which has not been subjected to a reduction treatment, and a container having a cavity of a predetermined shape. The iron-based powder is put into the cavity of the container to obtain a powder. A charging step of obtaining a powder aggregate having pores between particles, and a sintering reduction step of heating the powder aggregate in the container in a reducing atmosphere to reduce it simultaneously with sintering to obtain a porous sintered body. , A lid member is attached to the container containing the porous sintered body, the container is hermetically sealed, and the container is sealed and transferred to a forging die; A method for manufacturing a sintered forged product, comprising performing hot forging of the porous sintered body with the forging die to sequentially perform a forging step for obtaining a sintered forged product.
【請求項3】アトマイズ法により得られ還元処理をして
いない未還元の鉄系粉末と、酸化抑制粉末と、所定形状
のキャビティを備えた容器とを用い、 該鉄系粉末と酸化抑制粉末とを該容器のキャビティに投
入し、粉末粒子間に気孔を備えかつ外側に酸化抑制粉末
からなる酸化抑制層を有する粉末集合体を得る投入工程
と、 該容器内の粉末集合体を該酸化抑制層と共に還元性雰囲
気において加熱して焼結と同時に還元し、多孔質焼結体
を得る焼結還元工程と、 該容器から取り出した高温の該多孔質焼結体を該鍛造型
で熱間鍛造し、焼結鍛造品を得る鍛造工程とを順に実施
することを特徴とする焼結鍛造品の製造方法。
3. An iron-based powder, which is obtained by an atomizing method and is not subjected to reduction treatment, an oxidation-suppressing powder, and a container having a cavity of a predetermined shape. In a cavity of the container to obtain a powder aggregate having pores between the powder particles and having an oxidation suppression layer made of an oxidation suppression powder on the outside, and the powder aggregate in the container is charged with the oxidation suppression layer. Together with the sintering and reduction step of heating in a reducing atmosphere and simultaneously reducing with sintering to obtain a porous sintered body, and hot forging the high temperature porous sintered body taken out of the container with the forging die. And a forging step of obtaining a sintered forged product in order, and a method for manufacturing a sintered forged product.
JP28365393A 1993-11-12 1993-11-12 Production of sintered and forged product Pending JPH07138611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28365393A JPH07138611A (en) 1993-11-12 1993-11-12 Production of sintered and forged product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28365393A JPH07138611A (en) 1993-11-12 1993-11-12 Production of sintered and forged product

Publications (1)

Publication Number Publication Date
JPH07138611A true JPH07138611A (en) 1995-05-30

Family

ID=17668317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28365393A Pending JPH07138611A (en) 1993-11-12 1993-11-12 Production of sintered and forged product

Country Status (1)

Country Link
JP (1) JPH07138611A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906687A (en) * 1987-12-31 1990-03-06 Shell Oil Company Blends of polar thermoplastic polymers and modified block copolymers
JP5195754B2 (en) * 2007-07-18 2013-05-15 株式会社Ihi Discharge surface treatment electrode manufacturing method and discharge surface treatment electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906687A (en) * 1987-12-31 1990-03-06 Shell Oil Company Blends of polar thermoplastic polymers and modified block copolymers
JP5195754B2 (en) * 2007-07-18 2013-05-15 株式会社Ihi Discharge surface treatment electrode manufacturing method and discharge surface treatment electrode
US8993917B2 (en) 2007-07-18 2015-03-31 Ihi Corporation Fabrication method of electrode for spark surface modification, and spark surface modification electrode

Similar Documents

Publication Publication Date Title
RU2181317C2 (en) Method for making parts by powder metallurgy process and part made by such method
KR100923604B1 (en) High density stainless steel products and method for the preparation thereof
US4063940A (en) Making of articles from metallic powder
KR970001557B1 (en) Method of manufacturing an object of powdered material by isostatic pressing
CA1186920A (en) Method of making sintered powder metallurgical bodies
JP6549586B2 (en) Method of manufacturing sintered member and sintered member
US4455275A (en) Method of manufacturing bodies of silicon nitride
US4719078A (en) Method of sintering compacts
CA2160857C (en) Porous metal body and process for producing same
US5561834A (en) Pneumatic isostatic compaction of sintered compacts
JPS6376803A (en) Production of water spraying powder metallurgical product
JPH07138611A (en) Production of sintered and forged product
AU2003269785B2 (en) Iron-based powder composition including a silane lubricant
GB1590953A (en) Making articles from metallic powder
JPS5847444B2 (en) Method for manufacturing metal articles from metal powder
JP2945115B2 (en) Method for producing large sintered body made of iron-based metal powder
JPH01275702A (en) Production of sintered powder material
GB1562788A (en) Production of metal articles from tool steel or alloy steel powder
JPH07100629A (en) Production of high-density material
JPH08218102A (en) Production of metallic porous body
Mamedov et al. New technological approach to fabrication of high density PM parts by cold pressing sintering
JPS5819409A (en) Manufacture of isotropic mn-al-c magnet
JP2857751B2 (en) Manufacturing method of cast iron based high density powder sintered compact
RU2041023C1 (en) Method of manufacturing articles from hard-alloyed metal powders
TW200423158A (en) Heat treatment of iron-based components