JPH07136553A - Treatment of coal ash - Google Patents
Treatment of coal ashInfo
- Publication number
- JPH07136553A JPH07136553A JP5339094A JP33909493A JPH07136553A JP H07136553 A JPH07136553 A JP H07136553A JP 5339094 A JP5339094 A JP 5339094A JP 33909493 A JP33909493 A JP 33909493A JP H07136553 A JPH07136553 A JP H07136553A
- Authority
- JP
- Japan
- Prior art keywords
- coal ash
- scavenger
- coal
- water slurry
- unburned
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010883 coal ash Substances 0.000 title claims abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000002002 slurry Substances 0.000 claims abstract description 27
- 239000003153 chemical reaction reagent Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 23
- 150000001768 cations Chemical class 0.000 claims abstract description 22
- 239000003245 coal Substances 0.000 claims abstract description 19
- 239000004088 foaming agent Substances 0.000 claims abstract description 15
- 239000002516 radical scavenger Substances 0.000 claims description 49
- 238000005188 flotation Methods 0.000 claims description 44
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 26
- 229910052799 carbon Inorganic materials 0.000 claims description 26
- 230000002209 hydrophobic effect Effects 0.000 claims description 12
- 238000003672 processing method Methods 0.000 claims 1
- 239000000839 emulsion Substances 0.000 abstract description 6
- 239000002904 solvent Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000010665 pine oil Substances 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 8
- 239000003350 kerosene Substances 0.000 description 6
- 239000002994 raw material Substances 0.000 description 5
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004567 concrete Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- REYJJPSVUYRZGE-UHFFFAOYSA-N Octadecylamine Chemical compound CCCCCCCCCCCCCCCCCCN REYJJPSVUYRZGE-UHFFFAOYSA-N 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- HBRNMIYLJIXXEE-UHFFFAOYSA-N dodecylazanium;acetate Chemical compound CC(O)=O.CCCCCCCCCCCCN HBRNMIYLJIXXEE-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- RUFPHBVGCFYCNW-UHFFFAOYSA-N 1-naphthylamine Chemical compound C1=CC=C2C(N)=CC=CC2=C1 RUFPHBVGCFYCNW-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium group Chemical group [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- RLGQACBPNDBWTB-UHFFFAOYSA-N cetyltrimethylammonium ion Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)C RLGQACBPNDBWTB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- -1 is added Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Landscapes
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、セメント、コンクリ
ートや建材の原料等に用いられる石炭灰(フライアッシ
ュ)の処理方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating coal ash (fly ash) used as a raw material for cement, concrete and building materials.
【0002】[0002]
【従来の技術】石炭灰は微粉炭焚きボイラ等から発生す
るが、この石炭灰の中には未燃炭分が含まれている。こ
の未燃炭分は、石炭灰を利用する上で次のような問題を
引き起こす。例えば、セメント混和材として石炭灰を利
用する場合、石炭灰中に未燃炭分が含まれていると、コ
ンクリート混練時に高価な空気連行剤(AE剤)が未燃
炭分に吸収されるため、多量の空気連行剤が必要にな
る。また人工軽量骨材等の原料として石炭灰を使用する
場合、原料中に多くの未燃炭分が含まれていると、骨材
等の強熱減量(Ig−Loss)が大きくなる。2. Description of the Related Art Coal ash is generated from a pulverized coal burning boiler or the like, and this coal ash contains unburned coal. This unburned coal content causes the following problems in utilizing coal ash. For example, when using coal ash as a cement admixture, if unburned carbon content is contained in the coal ash, an expensive air entraining agent (AE agent) is absorbed by the unburned carbon content during concrete kneading. Air entraining agent is required. Moreover, when using coal ash as a raw material of an artificial lightweight aggregate etc., when a large amount of unburned carbon content is contained in the raw material, the ignition loss (Ig-Loss) of the aggregate etc. becomes large.
【0003】そのため、未燃炭分の少ない石炭灰だけを
コンクリートの原料等に利用し、未燃炭分の多く含まれ
ている石炭灰は利用されず産業廃棄物として捨てられ
る。しかし、建材等の原料として有効な石炭灰を廃棄す
ることは不経済であり、またその廃棄処理には多くの費
用が必要となる。Therefore, only coal ash containing a small amount of unburned coal is used as a raw material for concrete, and coal ash containing a large amount of unburned coal is not used and is discarded as industrial waste. However, it is uneconomical to dispose of coal ash that is effective as a raw material for building materials, etc., and a large amount of cost is required for its disposal.
【0004】そこで従来浮遊選鉱、即ち石炭灰の水スラ
リに捕集剤を添加して未燃炭分を疎水化させる疎水化工
程と、該水スラリに気泡剤を添加して気泡を発生させ、
その気泡に前記未燃炭分を付着させ浮上させる浮選工程
とを備えた石炭灰の処理工程により石炭灰から未燃炭分
を分離している。Therefore, conventional flotation, that is, a hydrophobizing step of adding a scavenger to the water slurry of coal ash to make unburned carbon content hydrophobic, and adding a foaming agent to the water slurry to generate bubbles,
The unburned carbon content is separated from the coal ash by a coal ash treatment step including a flotation step in which the unburned carbon content is attached to the bubbles and floated.
【0005】[0005]
【発明が解決しようとする課題】従来の石炭灰の処理方
法は、捕集剤として重油を用いるものであり、大量処理
が可能であると言う長所を有するが、その反面、石炭灰
中の未燃炭分を効率よく分離できないという問題があ
る。The conventional method for treating coal ash uses heavy oil as a scavenger, and has the advantage that it can be treated in large quantities. There is a problem that the fuel coal cannot be separated efficiently.
【0006】この発明は、上記事情に鑑み石炭灰中の未
燃炭分を効率よく分離できるようにすることを目的とす
る。In view of the above circumstances, an object of the present invention is to enable efficient separation of unburned coal in coal ash.
【0007】[0007]
【課題を解決するための手段】本発明では次のような方
法で上記目的を達成するようにした。 (1)石炭灰の水スラリに捕集剤を添加し未燃炭分を疎
水化させる疎水化工程と、該水スラリに気泡剤を添加し
て気泡を発生させ、その気泡に前記未燃炭分を付着させ
浮上させる浮選工程とを備えた石炭灰の処理方法におい
て、捕集剤として陽イオン性捕集剤を使用することを特
徴とする(請求項1)。In the present invention, the above object is achieved by the following method. (1) A hydrophobizing step in which a scavenger is added to water slurry of coal ash to make unburned carbon content hydrophobic, and a foaming agent is added to the water slurry to generate bubbles, and the unburned carbon content is added to the bubbles. In a method for treating coal ash, which comprises a flotation step of adhering and floating, a cationic scavenger is used as a scavenger (claim 1).
【0008】(2)石炭灰の水スラリに捕集剤を添加し
て未燃炭分を疎水化させる疎水化工程と、該水スラリに
起泡剤を添加して気泡を発生させ、その気泡に前記未燃
炭分を付着させ浮上させる浮選工程とを備えた石炭灰の
処理方法において、捕集剤として陽イオン捕集剤と無極
性試薬を併用し処理を行うことを特徴とする(請求項
2)。(2) A hydrophobizing step in which a scavenger is added to water slurry of coal ash to make unburned carbon content hydrophobic, and a foaming agent is added to the water slurry to generate bubbles, and the bubbles are generated. In a method for treating coal ash, which comprises a flotation step in which the unburned coal is adhered and floated, the treatment is performed by using a cation scavenger and a non-polar reagent together as a scavenger (claim) 2).
【0009】(3)石炭灰の水スラリに捕集剤を添加し
て未燃炭分を疎水化させる疎水化工程と、該水スラリに
起泡剤を添加して気泡を発生させ、その気泡に前記未燃
炭分を付着させ浮上させる浮選工程とを備えた石炭灰の
処理方法において、予め陽イオン捕集剤と無極性試薬を
混合しエマルジョン化したものを捕集剤として使用し、
処理を行うことを特徴とする(請求項3)。(3) A hydrophobizing step in which a scavenger is added to the water slurry of coal ash to make the unburned carbon content hydrophobic, and a foaming agent is added to the water slurry to generate bubbles, and the bubbles are generated. In a method for treating coal ash, which comprises a flotation step of attaching and floating the unburned carbon content, a cation scavenger and a nonpolar reagent are mixed in advance and used as a scavenger,
It is characterized by performing processing (Claim 3).
【0010】以下、この発明を詳しく説明する。陽イオ
ン捕集剤としてはドデシルアミン、オクタデシルアミン
等のアミン類とその誘導体、ヘキサデシルトリメチルア
ンモニウム、ナフチルアミン、アニリン等のアンモニウ
ム類あるいはその誘導体が挙げられ、中でもドデシルア
ミンアセテート、オクタデシルアミンは後述する未燃炭
分の疎水化に極めて優れ、陽イオン捕集剤として好適に
用いることができる。陽イオン捕集剤はその内部に極性
部と非極性部を有しており、この非極性部が石炭灰の未
燃炭分表面で、酸化され形成されたCOOH,OH基等
の極性基と結び付き、非極性部が表面に出ることにより
未燃炭分を疎水化ものと思われる。また、陽イオン捕集
剤の添加量としては石炭灰に対して10−5〜10−2
Wt%である。これが10−5Wt%より少ないと疎水
化効果が十分ではなく、10−2Wt%以上添加しても
疎水化効果はあまり変わらず、経済的に不利となる。The present invention will be described in detail below. Examples of the cation scavenger include amines such as dodecylamine and octadecylamine and their derivatives, and ammoniums such as hexadecyltrimethylammonium, naphthylamine and aniline or derivatives thereof. Among them, dodecylamine acetate and octadecylamine are not described later. It is extremely excellent in hydrophobizing the fuel carbon and can be suitably used as a cation scavenger. The cation scavenger has a polar part and a non-polar part inside, and this non-polar part is connected to polar groups such as COOH and OH groups which are oxidized and formed on the surface of unburned coal of coal ash. It is considered that the unburned carbon content is made hydrophobic by the appearance of the non-polar part on the surface. Further, the addition amount of the cation scavenger is 10 −5 to 10 −2 with respect to the coal ash.
Wt%. If this amount is less than 10 −5 Wt%, the hydrophobizing effect is not sufficient, and even if 10 −2 Wt% or more is added, the hydrophobizing effect does not change so much, which is economically disadvantageous.
【0011】無極性試薬としてはケロシン、キシレン、
シクロヘキサン、デカン等が好適に用いられが、中でも
ケロシン、デカンが前記陽イオン捕集剤との相性に優
れ、より好適に用いられる。陽イオン性捕集剤と無極性
試薬を併用することにより陽イオン捕剤と結び付きある
程度疎水化された未燃炭分表面に更に無極性試薬が結び
付くことにより一層疎水化される。Nonpolar reagents include kerosene, xylene,
Cyclohexane, decane and the like are preferably used, and among them, kerosene and decane are more preferably used because they have excellent compatibility with the cation scavenger. When a cationic scavenger and a non-polar reagent are used in combination, the surface is further hydrophobized by further binding the non-polar reagent to the surface of the unburned carbon which has been hydrophobized to some extent.
【0012】陽イオン捕集剤と無極性試薬を混合しエマ
ルジョン化したものを捕集剤として添加することによ
り、さらに好適に未燃炭分を疎水化させることができ
る。このエマルジョン化した捕集剤は陽イオン捕集剤お
よび無極性試薬をそのまま添加したものと比較して、捕
集剤が溶媒中(水中)に細かく分散され、陽イオン捕集
剤と無極性試薬の交互作用がうまく行われることが考え
られる。陽イオン捕集剤と無極性試薬の混合比としては
10−3モル濃度の陽イオン捕集剤を基準としこの陽イ
オン捕集剤/無極性試薬体積比を1/3以上にすること
が好ましい。ここでエマルジョン化としては、陽イオン
捕集剤と無極性試薬の混合液に超音波をかけたりする
他、攪はん、振とう等、いずれの方法を用いても良い。The unburned carbon content can be more preferably made hydrophobic by adding a cation scavenger and a non-polar reagent mixed and emulsified as a scavenger. This emulsified scavenger is finely dispersed in the solvent (in water) as compared with the cation scavenger and the nonpolar reagent added as they are, and the cation scavenger and the nonpolar reagent are dispersed. It is conceivable that the interaction of As a mixing ratio of the cation scavenger and the nonpolar reagent, it is preferable to set the cation scavenger / nonpolar reagent volume ratio to 1/3 or more based on the cation scavenger having a concentration of 10 −3 mol. . Here, for the emulsification, any method such as stirring or shaking may be used in addition to applying ultrasonic waves to the mixed solution of the cation collector and the nonpolar reagent.
【0013】[0013]
【作用】石炭灰スラリに陽イオン捕集剤を単独で、ある
いは無極性試薬と併用して捕集剤として使用することで
未燃炭分を疎水化させるとともに、該水スラリに気泡剤
を添加し気泡を発生させ、その気泡表面に未燃炭分を付
着させて浮上させる。[Function] By using a cation scavenger alone or in combination with a non-polar reagent as a scavenger to the coal ash slurry, the unburned carbon content is made hydrophobic and a foaming agent is added to the water slurry. Bubbles are generated, and unburned carbon is attached to the surface of the bubbles to float.
【0014】[0014]
実施例1 浮選槽に水400mlと微粉炭焚きボイラ等から発生す
るIg−Loss(強熱減量)9.04Wt%の石炭灰
10gを攪伴しながら混合し、水スラリにする。このと
きのPHはPH調整を行わない自然PHで10〜11で
ある。これに陽イオン捕集剤の一種であるドデシルアミ
ンアセテート(以下DAA)をDAAモル濃度が2.
5,5.0,7.5,12.5,20.0x10−6M
になるように添加し、攪伴しながら3分間放置した(疎
水化工程)。これにより石炭灰中の未燃炭分を疎水化さ
せる。Example 1 In a flotation tank, 400 ml of water and 10 g of coal ash having an Ig-Loss (loss on ignition) of 9.04 Wt% generated from a pulverized coal burning boiler or the like are mixed with stirring to form a water slurry. The PH at this time is 10 to 11 as a natural PH without PH adjustment. Dodecylamine acetate (hereinafter referred to as DAA), which is a kind of cation scavenger, was added to this at a DAA molar concentration of 2.
5,5.0,7.5,12.5,20.0x10 -6 M
And added for 3 minutes while stirring (hydrophobization step). This makes the unburned carbon content in the coal ash hydrophobic.
【0015】疎水化工程の後、前記水スラリに気泡剤と
してパイン油を16mg添加し浮選槽の底部から空気を
吹き込み気泡を発生させ、該気泡に未燃炭分を付着させ
浮上させる。この浮上した気泡をオーバーフロー分とし
て取り出す。この工程を3分間継続して行う(浮選工程
1)。次にパイン油を16mg添加し再度、前記浮選工
程1と同様の工程を3分間行った(浮選工程2)。この
時のDAA添加量と浮選槽内に残った石炭灰のIg−L
ossの関係を図1に示した。After the hydrophobizing step, 16 mg of pine oil was added to the water slurry as a foaming agent, air was blown from the bottom of the flotation tank to generate bubbles, and unburned carbon was adhered to the bubbles to float. The floating bubbles are taken out as an overflow. This step is continuously performed for 3 minutes (flotation step 1). Next, 16 mg of pine oil was added, and the same process as the flotation process 1 was performed again for 3 minutes (flotation process 2). DAA addition amount at this time and Ig-L of coal ash remaining in the flotation tank
The relationship of oss is shown in FIG.
【0016】比較例1 浮選槽に水400mlとIg−Loss9.04%の石
炭灰10gを攪伴しながら混合し水スラリとする。この
水スラリにPH調整剤として塩酸あるいは水酸化ナトリ
ウムを加えPHを2〜12に調整する。これに、捕集剤
として無極性試薬であるケロシン、キシレン20mgあ
るいは捕集剤を加えずに攪伴しながら3分間放置する。
次に気泡剤としてパインオイルを16mg加え浮選槽底
部から空気を吹き込み気泡を生成させると同時に生成し
た気泡をオーバーフロー分として取り出した(浮選工程
1)。再度、気泡剤としてパインオイルを16mg加え
前記浮選工程1を行った(浮選工程2)。前記浮選工程
は3分間行う。この時の浮選槽内部に残った石炭灰とI
g−Lossの関係を図2に示した。Comparative Example 1 400 ml of water and 10 g of coal ash containing 9.04% Ig-Loss were mixed with stirring in a flotation tank to prepare a water slurry. To this water slurry, hydrochloric acid or sodium hydroxide is added as a pH adjusting agent to adjust the pH to 2-12. A non-polar reagent such as kerosene or xylene (20 mg) as a scavenger or a scavenger is not added thereto, and the mixture is left for 3 minutes with stirring.
Next, 16 mg of pine oil was added as a foaming agent, air was blown from the bottom of the flotation tank to generate bubbles, and at the same time, the generated bubbles were taken out as an overflow (flotation step 1). Again, 16 mg of pine oil was added as a foaming agent, and the flotation step 1 was performed (flotation step 2). The flotation process is performed for 3 minutes. The coal ash and I left inside the flotation tank at this time
The g-Loss relationship is shown in FIG.
【0017】図2から明らかなように、PH調整剤を添
加しない自然PH10〜11で無極性試薬を捕集剤とし
て添加して浮選処理を行ったものは、気泡剤のみで捕集
剤を添加せず処理を行ったものと変化はなく、捕集剤の
影響はないことが分かる。また図1を図2と比較するこ
とにより、自然PH10〜11で捕集剤としてDAAを
添加し処理を行ったものは、浮選槽内部に残った石炭灰
のIg−Lossが、捕集剤を添加せず処理を行ったも
のと比較して、かなり低下していることが分かる。この
ように自然PHにおいてもDAAを捕集剤として用いる
ことにより石炭灰中の未燃炭分を効果的に除去すること
ができた。As is clear from FIG. 2, when the flotation treatment was carried out by adding a non-polar reagent as a scavenger in natural PH10-11 without adding a PH adjuster, only the scavenger was used as the scavenger. There is no difference from the sample treated without addition, and it is understood that there is no influence of the scavenger. In addition, by comparing FIG. 1 with FIG. 2, it was found that IgA-Loss of the coal ash remaining inside the flotation tank was treated with DAA as a scavenger in natural PH10-11. It can be seen that the amount is considerably lower than that of the case where the treatment is performed without adding. As described above, even in the natural PH, it was possible to effectively remove the unburned carbon content in the coal ash by using DAA as the scavenger.
【0018】実地例2 浮選槽に水400mlと微粉炭焚きボイラ等から発生す
るIg−Loss9.04Wt%の石炭灰10gを攪伴
しながら混合し、水スラリにする。このときのPHはP
H調整を行わない自然PHで10〜11である。これに
DAAをモル濃度が5x10−6Mになるように添加し
攪伴しながら3分間放置した(疎水化工程)。この後、
気泡剤であるパインオイルを16mg添加し、浮選槽底
部から空気を吹き込み気泡を生成させる。この気泡に石
炭灰の未燃炭分を付着させ浮上させると同時に生成した
気泡をオーバーフロー分として取り出す工程を3分間行
った(浮選工程1)。次に無極性試薬であるケロシン2
0mgおよびデカン16mgを捕集剤として添加し浮選
槽底部から空気を吹き込み、前記浮選工程1と同様な工
程を行う。以上の結果を表1に示した。この表1と図1
を比較することにより浮選槽内部に残った石炭灰のIg
−Lossが、DAAを単独で捕集剤として使用したも
のと比較して、無極性試薬を併用することにより未燃分
を効果的に除去することができた。Practical example 2 In a flotation tank, 400 ml of water and 10 g of Ig-Loss 9.04 wt% coal ash generated from a pulverized coal-fired boiler or the like are mixed with stirring to form a water slurry. PH at this time is P
The natural PH without H adjustment is 10 to 11. DAA was added to this so that the molar concentration was 5 × 10 −6 M, and the mixture was allowed to stand for 3 minutes with stirring (hydrophobization step). After this,
16 mg of pine oil, which is a foaming agent, is added, and air is blown from the bottom of the flotation tank to generate bubbles. The step of adhering the unburned coal content of the coal ash to the bubbles to float the bubbles and taking out the generated bubbles as an overflow portion was performed for 3 minutes (flotation step 1). Next, kerosene 2 which is a non-polar reagent
0 mg and 16 mg of decane are added as a scavenger, air is blown in from the bottom of the flotation tank, and the same process as the flotation process 1 is performed. The above results are shown in Table 1. This Table 1 and Figure 1
Of the coal ash remaining inside the flotation tank by comparing
-Loss was able to effectively remove unburned components by using a non-polar reagent together, as compared to the one in which DAA was used alone as the scavenger.
【0019】[0019]
【表1】 [Table 1]
【0020】実地例3 浮選槽に水400mlと微粉炭焚きボイラ等から発生す
るIg−Loss9.04Wt%の石炭灰10gを攪伴
しながら混合し、水スラリにする。このときのPHはP
H調整を行わない自然PHで10〜11である。これに
DAA0.001M溶液と無極性試薬を2:1の体積比
で混合し、超音波をかけることによりエマルジョン化し
たものを捕集剤として0.1,0.3,0.5,1.
0,1.5ml添加し3分間放置した(疎水化工程)。
無極性試薬としてはケロシン及びデカンを使用した。疎
水化工程の後、前記水スラリに気泡剤としてパイン油を
16mg添加し浮選槽の底部から空気を吹き込み気泡を
発生させ、該気泡に未燃炭分を付着させ浮上させる。こ
の浮上した気泡をオーバーフロー分として取り出す。こ
の工程を3分間継続して行う(浮選工程1)。次にパイ
ン油を16mg添加し再度、前記浮選工程1と同様の工
程を3分間行った(浮選工程2)。この時のエマルジョ
ン添加量と浮選槽内に残った石炭灰のIg−Lossの
関係を図3に示した。Practical example 3 In a flotation tank, 400 ml of water and 10 g of Ig-Loss 9.04 wt% coal ash generated from a pulverized coal-fired boiler or the like are mixed with stirring to form a water slurry. PH at this time is P
The natural PH without H adjustment is 10 to 11. A DAA 0.001M solution and a non-polar reagent were mixed at a volume ratio of 2: 1, and the mixture was emulsified by applying ultrasonic waves to obtain 0.1, 0.3, 0.5, 1.
0, 1.5 ml was added and left for 3 minutes (hydrophobicizing step).
Kerosene and decane were used as nonpolar reagents. After the hydrophobizing step, 16 mg of pine oil was added to the water slurry as a foaming agent, air was blown from the bottom of the flotation tank to generate bubbles, and unburned carbon was attached to the bubbles to float. The floating bubbles are taken out as an overflow. This step is continuously performed for 3 minutes (flotation step 1). Next, 16 mg of pine oil was added, and the same process as the flotation process 1 was performed again for 3 minutes (flotation process 2). The relationship between the amount of emulsion added and the Ig-Loss of the coal ash remaining in the flotation tank at this time is shown in FIG.
【0021】この図3から分かるようにエマルジョンの
添加量が増えるにしたがい前記Ig−Lossは大幅に
低下しており、ケロシンを使用したエマルジョン添加量
1.0mlではIg−Loss1.9Wt%まで低下し
た。As can be seen from FIG. 3, the above-mentioned Ig-Loss decreased significantly as the amount of emulsion added increased, and it decreased to 1.9 Wt% Ig-Loss when the amount of emulsion added was 1.0 ml using kerosene. .
【0022】実施例4 浮選槽に水400mlと微粉炭焚きボイラ等から発生す
るIg−Loss9.04Wt%の石炭灰10gを攪伴
しながら混合し、水スラリにする。このときのPHはP
H調整を行わない自然PHで10〜11である。これに
DAAの濃度を10−6〜10−3Mに変化させた無極
性試薬と2:1の体積比で混合し、超音波をかけること
によりエマルジョン化したものを捕集剤として1ml添
加し3分間放置した(疎水化工程)。疎水化工程の後、
前記水スラリに気泡剤としてパイン油16mgを添加し
浮選槽の底部から空気を吹き込み気泡を発生させ、該気
泡に未燃炭分を付着させ浮上させる。この浮上した気泡
をオーバーフロー分として取り出す。この工程を3分間
継続して行う(浮選工程1)。次にパイン油を16mg
添加し再度、前記浮選工程1と同様の工程を3分間行っ
た(浮選工程2)。この時のDAA濃度と石炭灰のIg
−lossの関係を図4に示した。Example 4 In a flotation tank, 400 ml of water and 10 g of Ig-Loss 9.04 Wt% coal ash generated from a pulverized coal burning boiler or the like are mixed with stirring to form a water slurry. PH at this time is P
The natural PH without H adjustment is 10 to 11. To this, a nonpolar reagent having a DAA concentration changed from 10 −6 to 10 −3 M was mixed at a volume ratio of 2: 1 and 1 ml of a mixture obtained by emulsification by applying ultrasonic waves was added as a collecting agent. It was left for 3 minutes (hydrophobization step). After the hydrophobic process,
Pine oil (16 mg) is added to the water slurry as a foaming agent, air is blown from the bottom of the flotation tank to generate bubbles, and unburned carbon is attached to the bubbles to float. The floating bubbles are taken out as an overflow. This step is continuously performed for 3 minutes (flotation step 1). Then 16 mg of pine oil
After the addition, a process similar to the flotation process 1 was performed again for 3 minutes (flotation process 2). DAA concentration and Ig of coal ash at this time
The -loss relationship is shown in FIG.
【0023】この図4から分かるようにDAAの濃度が
高くなるにしたがいIg−lossは大幅に低下した。As can be seen from FIG. 4, the Ig-loss greatly decreased as the DAA concentration increased.
【発明の効果】本発明は陽イオン捕集剤を単独、あるい
は無極性試薬と併用し捕集剤として使用しているため
に、従来例と比較して多くの未燃炭分が気泡に付着す
る。このため、石炭灰中の未燃炭分をきわめて効率よく
分離することができる。INDUSTRIAL APPLICABILITY In the present invention, since a cation scavenger is used alone or in combination with a non-polar reagent as a scavenger, a large amount of unburned carbon content is attached to bubbles as compared with the conventional example. . Therefore, the unburned coal content in the coal ash can be separated very efficiently.
【図1】実施例1における浮選槽内に残った石炭灰のI
g−LossとDAA濃度の関係を示すグラフである。FIG. 1 is the I of the coal ash remaining in the flotation tank in Example 1.
It is a graph which shows the relationship between g-Loss and DAA concentration.
【図2】比較例1における浮選槽内に残った石炭灰のI
g−LossとpHの関係を示すグラフである。2 is the I of the coal ash remaining in the flotation tank in Comparative Example 1. FIG.
It is a graph which shows the relationship between g-Loss and pH.
【図3】実施例3における浮選槽内に残った石炭灰のI
g−Lossとエマルジョンの添加量の関係を示すグラ
フである。[Fig. 3] I of coal ash remaining in the flotation tank in Example 3
6 is a graph showing the relationship between g-Loss and the amount of emulsion added.
【図4】実施例4における浮選槽内に残った石炭灰のI
g−Lossとエマルジョン中のDAA濃度の関係を示
すグラフである。[Fig. 4] I of coal ash remaining in the flotation tank in Example 4
It is a graph which shows the relationship between g-Loss and DAA concentration in an emulsion.
Claims (3)
炭分を疎水化させる疎水化工程と、該水スラリに起泡剤
を添加して気泡を発生させ、その気泡に前記未燃炭分を
付着させ浮上させる浮選工程とを備えた石炭灰の処理方
法において、捕集剤として陽イオン捕集剤を使用するこ
とを特徴とする石炭灰の処理方法。1. A hydrophobizing step of adding a scavenger to water slurry of coal ash to make unburned carbon content hydrophobic, and adding a foaming agent to the water slurry to generate bubbles. A method for treating coal ash, comprising: a flotation step in which unburned coal is adhered and floated, wherein a cation scavenger is used as a scavenger.
炭分を疎水化させる疎水化工程と、該水スラリに起泡剤
を添加して気泡を発生させ、その気泡に前記未燃炭分を
付着させ浮上させる浮選工程とを備えた石炭灰の処理方
法において、捕集剤として陽イオン捕集剤と無極性試薬
を併用して処理を行うことを特徴とする石炭灰の処理方
法。2. A hydrophobizing step of adding a scavenger to the water slurry of coal ash to make the unburned carbon content hydrophobic, and adding a foaming agent to the water slurry to generate bubbles, and the bubbles are added to the aforesaid In a method of treating coal ash comprising a flotation step of attaching and floating unburned coal, a coal ash characterized by performing treatment using a cation scavenger and a non-polar reagent in combination as a scavenger Processing method.
炭分を疎水化させる疎水化工程と、該水スラリに起泡剤
を添加して気泡を発生させ、その気泡に前記未燃炭分を
付着させ浮上させる浮選工程とを備えた石炭灰の処理方
法において、予め陽イオン捕集剤と無極性試薬を混合し
エマルジョン化したものを捕集剤として使用し、処理を
行うことを特徴とする石炭灰の処理方法。3. A hydrophobizing step of adding a scavenger to the water slurry of coal ash to make the unburned carbon content hydrophobic, and adding a foaming agent to the water slurry to generate bubbles, which are then In a method for treating coal ash, which comprises a flotation step of adhering and floating unburned coal, a cation scavenger and a non-polar reagent are mixed and emulsified in advance and used as a scavenger. A method for treating coal ash, which is characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33909493A JP3411649B2 (en) | 1993-11-22 | 1993-11-22 | Processing method of coal ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33909493A JP3411649B2 (en) | 1993-11-22 | 1993-11-22 | Processing method of coal ash |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003016006A Division JP2003284973A (en) | 2003-01-24 | 2003-01-24 | Method for treating coal ash |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07136553A true JPH07136553A (en) | 1995-05-30 |
JP3411649B2 JP3411649B2 (en) | 2003-06-03 |
Family
ID=18324209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33909493A Expired - Lifetime JP3411649B2 (en) | 1993-11-22 | 1993-11-22 | Processing method of coal ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3411649B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005035134A1 (en) * | 2003-10-09 | 2005-04-21 | Taiheiyo Cement Corporation | Method of removing unburned carbon from fly ash |
JP2016215194A (en) * | 2015-05-15 | 2016-12-22 | 株式会社藤井基礎設計事務所 | Manufacturing method of coal ash with reduced coating weight of unburnt carbon and washing system |
-
1993
- 1993-11-22 JP JP33909493A patent/JP3411649B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005035134A1 (en) * | 2003-10-09 | 2005-04-21 | Taiheiyo Cement Corporation | Method of removing unburned carbon from fly ash |
CN100455357C (en) * | 2003-10-09 | 2009-01-28 | 太平洋水泥株式会社 | Method of removing unburned carbon from fly ash |
US8551223B2 (en) | 2003-10-09 | 2013-10-08 | Taiheiyo Cement Corporation | Method of removing unburned carbon from fly ash |
JP2016215194A (en) * | 2015-05-15 | 2016-12-22 | 株式会社藤井基礎設計事務所 | Manufacturing method of coal ash with reduced coating weight of unburnt carbon and washing system |
Also Published As
Publication number | Publication date |
---|---|
JP3411649B2 (en) | 2003-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3613347B1 (en) | How to remove unburned carbon in fly ash | |
AU594340B2 (en) | Method of separating carbonaceous compounds from particulate coal containing inorganic solids | |
CA1144496A (en) | Process for removal of sulfur and ash from coal | |
KR101269456B1 (en) | Method for removal of unburned carbon contained in fly ash | |
JP3580868B2 (en) | Coal ash treatment method | |
TW200732042A (en) | Method of removing unburned carbon from fly ash | |
JP3581707B2 (en) | Coal ash treatment method | |
CA1146893A (en) | Process for removal of sulfur and ash from coal | |
JP2003284973A (en) | Method for treating coal ash | |
JP3411649B2 (en) | Processing method of coal ash | |
JP3243568B2 (en) | Processing method of coal ash | |
KR20100014233A (en) | Apparatus for removing unburned carbon in fly ash | |
JP3411651B2 (en) | Processing method of coal ash | |
JP3505000B2 (en) | Coal ash treatment method | |
US6126014A (en) | Continuous air agglomeration method for high carbon fly ash beneficiation | |
TWI499456B (en) | Method for upgrading combustion ash | |
JP7372829B2 (en) | Method for producing modified fly ash | |
JP3519773B2 (en) | Call cleaning method | |
JP2022056672A (en) | Determination method of production condition of modified fly ash and production method | |
WO2023180027A1 (en) | Novel cationic collectors for improving a process for froth flotation of silicates | |
Patterson et al. | Relative floatability of coal and pyrites | |
JPS59179696A (en) | Preparation of mixed de-ashed coal/petroleum | |
JP2000176429A (en) | Cinder regenerating method | |
TH88789B (en) | Method for removing unburned carbon from fly ash | |
CN1044669A (en) | Building waterproofing powder and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080320 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090320 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110320 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120320 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130320 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |