JP3580868B2 - Coal ash treatment method - Google Patents

Coal ash treatment method Download PDF

Info

Publication number
JP3580868B2
JP3580868B2 JP21658994A JP21658994A JP3580868B2 JP 3580868 B2 JP3580868 B2 JP 3580868B2 JP 21658994 A JP21658994 A JP 21658994A JP 21658994 A JP21658994 A JP 21658994A JP 3580868 B2 JP3580868 B2 JP 3580868B2
Authority
JP
Japan
Prior art keywords
coal ash
coal
unburned
flotation
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21658994A
Other languages
Japanese (ja)
Other versions
JPH0857351A (en
Inventor
秀治 道端
光弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP21658994A priority Critical patent/JP3580868B2/en
Publication of JPH0857351A publication Critical patent/JPH0857351A/en
Application granted granted Critical
Publication of JP3580868B2 publication Critical patent/JP3580868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【0001】
【産業上の利用分野】
この発明は、セメント、コンクリートや建材の原料等に用いられる石炭灰(フライアッシュ)の処理方法に関するものである。
【0002】
【従来の技術】
石炭灰は微粉炭焚きボイラ等から発生するが、この石炭灰の中には未燃炭分が含まれている。この未燃炭分は、石炭灰を利用する上で次のような問題を引き起こす。例えば、セメント混和材として石炭灰を利用する場合、石炭灰中に未燃炭分が含まれていると、コンクリート混練時に高価な空気連行剤(AE剤)が未燃炭分に吸収されるため、多量の空気連行剤が必要となる。また人工軽量骨材等の原料として石炭灰を利用する場合、原料中に多くの未燃炭分が含まれていると、骨材等の強熱減量(Ig−Loss)が大きくなる。
【0003】
そのため、未燃炭分の少ない石炭灰だけをコンクリートの原料等に利用し、未燃炭分の多く含まれている石炭灰は利用されず産業廃棄物として捨てられる。しかし、建材等の原料として有効な石炭灰を廃棄することは不経済であり、またその廃棄処理には多くの費用が必要となる。
【0004】
そこで従来浮遊選鉱、即ち石炭灰の水スラリに捕集剤を添加して未燃炭分を疎水化させる疎水化工程と、該水スラリに起泡剤を添加して気泡を発生させ、その気泡に前記未燃炭分を付着させ浮上させる浮選工程とを備えた石炭灰の処理工程により石炭灰から未燃炭分を分離している。
【0005】
【発明が解決しようとする課題】
従来の石炭灰の処理方法は、大量処理が可能であると言う長所を有するが、その反面、未燃炭分の除去率が低く、石炭灰中の未燃炭分を効率よく分離できないという問題がある。
【0006】
この発明は、上記事情に鑑み石炭灰中の未燃炭分を効率よく分離できるようにすることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明の石炭灰の処理方法によれば、石炭灰の水スラリに捕集剤を添加して未燃炭分を疎水化させる疎水化工程と、該水スラリに起泡剤を添加して気泡を発生させ、その気泡に前記未燃炭分を付着させ浮上させる浮選工程とを備えた石炭灰の浮選処理方法において、あらかじめ石炭灰を風力分級することにより石炭灰の粗大粒子を除去し、石炭灰粒子の88μm篩上残分値を3重量%以下とした石炭灰を浮選処理に供することを特徴とする。以下、この発明を詳しく説明する。
【0008】
石炭灰は、空気分級機等により風力分級し、あらかじめ粗大粒子を取り除く。この石炭灰を用いて浮選処理を行うことにより、未燃炭分の除去率を大幅に高めることができる。これは、石炭灰中に粗大粒子が存在すると、疎水化工程において添加する捕集剤等の界面活性剤の影響により、粗大な未燃炭分粒子が核となり粒子成長を起こすことで、より粗大な粒子に成長するため浮選工程において未燃炭分を浮上させることが困難になることが考えられるが、あらかじめ粗大粒子を除去することで、この影響をなくし、効率的な浮選処理を行うことができる。石炭灰の粗大粒子は、88μm篩上残分値が3重量%以下となるように風力(空気)分級することが好ましい。すなわち、風力分級により石炭灰粒子の88μm篩上残分値を3重量%以下とした石炭灰を浮選処理に供する。これが3重量%を越えると、前述した影響をなくし、未燃炭分の除去率を高めることができなくなる。
【0009】
次に、疎水化工程で使用する捕集剤として重油、灯油等、又、浮選工程で使用する起泡剤としてパイン油等従来公知のものを使用できるが、特に捕集剤としては、イオン性捕集剤を単独もしくは無極性試薬と混合しエマルジョン化したものが好適に使用できる。イオン性捕集剤としてはアルキルアミン、アルキルアンモニウム、ザンセート、オレイン酸、アルキル硫酸塩、アルキルスルフォン酸塩等が挙げられ、中でもアルキルアミン、アルキルスルフォン酸塩は未燃炭分の疎水化に極めて優れイオン性捕集剤として好適に用いることができる。無極性試薬としてはケロシン、キシレン、シクロヘキサン、デカン等が好適に用いられる。エマルジョン化としてはイオン性捕集剤と無極性試薬の混合液に超音波をかける他、攪拌、振とう等、いずれの方法を用いても良い。
【0010】
【作用】
石炭灰スラリに捕集剤を添加することで未燃炭分を疎水化させるとともに、該水スラリに起泡剤を添加し気泡を発生させ、その気泡表面に未燃炭分を付着し上昇させるとき、あらかじめ88μm篩上残分値が3重量%以下となるように石炭灰を風力分級し、粗大粒子を除去した石炭灰、すなわち、石炭灰粒子の88μm篩上残分値を3重量%以下とした石炭灰を使用することで、未燃炭分を上昇しやすくする。
【0011】
【実施例】
実施例1
原粉のIg−Loss(強熱減量)が9.0重量%(以下%は、いずれも重量%を示す)、88μm篩上残分値が6.1%の石炭灰を空気分級機(アキュカットA−12:(株)日本ドナルドソン社製)で分級点を変化させ分級を行い、粗大粒子の除去された88μm残分値がそれぞれ2.6%,2.3%,1.5%の石炭灰を得た(分級工程)。原粉及び分級された石炭灰それぞれ80gと水800mlを浮選槽に攪拌しながら混合して水スラリにし、これに捕集剤として石油スルフォン剤水溶液(濃度1.0重量%)を2.0ml添加し、攪拌しながら3分間放置し、石炭灰中の未燃炭分を疎水化させる(疎水化工程)。疎水化工程の後、前記水スラリに起泡剤としてパイン油を60mg添加すると共に、浮選槽の底部から空気を吹き込み気泡を発生させ、該気泡に未燃炭分を付着させ浮上させる。この浮上した気泡をオ−バ−フロ−分として取り出す。この工程を3分間継続して行った(浮選工程)。次いでオ−バ−フロ−分を取り除いた石炭灰のIg−Lossを測定した。
【0012】
浮選処理した石炭灰のIg−Lossと88μm残分値の関係を図1に示す。これから分かるように分級点を下げ、88μm残分を下げることにより処理後Ig−Lossは減少している。しかし、ある程度以上88μmを下げると、それ以上処理後Ig−Lossは減少しなくなる。これは、ある一定以上の大きさの粒子のみが浮選工程に影響しているためだと考えられる。
【0013】
実施例2
Ig−Lossが異なる3種類の石炭灰(原粉)を空気分級機(アキュカットA−12:日本ドナルドソン)により、同一条件(空気量、ブレード回転数、原料供給速度一定)で分級を行い、粗大粒子を除去した。結果を表1に示す。未燃炭分は粗大粒子側に多く存在するため分級することによりIg−Lossはわずかながら減少している。
【0014】
【表1】

Figure 0003580868
【0015】
次に、原粉及び分級した石炭灰それぞれ80gと水800mlを浮選槽に攪拌しながら混合して水スラリにし、これに捕集剤として石油スルフォン剤水溶液(濃度1.0重量%)を2.0ml添加し、攪拌しながら3分間放置した(疎水化工程)。これにより石炭灰中の未燃炭分を疎水化させる。疎水化工程の後、前記水スラリに起泡剤としてパイン油を60mg添加し浮選槽の底部から空気を吹き込み気泡を発生させ、該気泡に未燃炭分を付着させ浮上させた(浮選工程)。次いでオ−バ−フロ−分を取り除いた石炭灰のIg−Lossを測定した。
【0016】
分級石炭灰で前記浮選処理を行ったときの未燃炭分除去率を、分級処理を行わず原粉で浮選処理を行った結果と比較して図2に示した。この未燃炭分除去率は浮選処理前Ig−Lossを処理後Ig−Lossで割ったものであり、この値が高いほど処理効果が大きいことを示す。これからIg−Lossの異なる石炭灰を使用し処理を行っても、分級処理を行うことで未燃炭分除去率は上昇することが分かった。
【0017】
発明の効果】
本発明は、88μm篩上残分値が3重量%以下となるように石炭灰を風力分級し粗大粒子を除去した石炭灰、すなわち、風力分級により石炭灰粒子の88μm篩上残分値を3重量%以下とした石炭灰を用いて浮選処理を行うことにより、石炭灰の未燃炭分を効率よく除去することが出来る。
【図面の簡単な説明】
【図1】実施例1における88μm残分値と浮選処理した石炭灰のIg−Lossの関係を示すグラフである。
【図2】実施例2における分級品石炭灰と分級されていない石炭灰の浮選処理による未燃炭分除去率を示すグラフである。[0001]
[Industrial applications]
The present invention relates to a method for treating coal ash (fly ash) used as a raw material for cement, concrete, building materials, and the like.
[0002]
[Prior art]
Coal ash is generated from pulverized coal-fired boilers and the like, and this coal ash contains unburned coal. This unburned coal causes the following problems in utilizing coal ash. For example, when coal ash is used as a cement admixture, if unburned coal is contained in coal ash, an expensive air entraining agent (AE agent) is absorbed by the unburned coal during kneading of concrete, so that a large amount of coal is used. Of air entraining agent is required. In the case where coal ash is used as a raw material for artificial lightweight aggregate or the like, if a large amount of unburned coal is contained in the raw material, the ignition loss (Ig-Loss) of the aggregate or the like increases.
[0003]
Therefore, only coal ash containing a small amount of unburned coal is used as a raw material for concrete, and coal ash containing a large amount of unburned coal is not used and is discarded as industrial waste. However, it is uneconomical to dispose of effective coal ash as a raw material for building materials and the like, and the disposal thereof requires a lot of cost.
[0004]
Therefore, conventional flotation, i.e., a hydrophobizing step of adding a trapping agent to a water slurry of coal ash to hydrophobize the unburned coal content, and adding a foaming agent to the water slurry to generate bubbles, The unburned coal content is separated from the coal ash by a coal ash treatment process including a flotation process of attaching and floating the unburned coal content.
[0005]
[Problems to be solved by the invention]
The conventional method of treating coal ash has the advantage that large-scale treatment is possible, but on the other hand, there is a problem that the removal rate of unburned coal is low and the unburned coal in coal ash cannot be efficiently separated. .
[0006]
The present invention has been made in view of the above circumstances, and has as its object to enable efficient separation of unburned coal in coal ash.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the method for treating coal ash of the present invention, a hydrophobizing step of adding a collector to a water slurry of coal ash to hydrophobize unburned coal is provided. A flotation step of adding a foaming agent to generate air bubbles, adhering the unburned coal to the air bubbles, and floating the coal ash. Of coal ash particles having a residual value of 3% by weight or less on the 88 μm sieve of coal ash particles is subjected to a flotation treatment. Hereinafter, the present invention will be described in detail.
[0008]
Coal ash is air-classified by an air classifier or the like to remove coarse particles in advance. By performing the flotation treatment using the coal ash, the removal rate of the unburned coal can be greatly increased. This is because, when coarse particles are present in the coal ash, coarse unburned coal particles become nuclei and cause particle growth due to the effect of a surfactant such as a collecting agent added in the hydrophobizing step, so that more coarse particles are formed. It is thought that it is difficult to raise unburned coal in the flotation process due to the growth of particles.However, by removing coarse particles in advance, this effect can be eliminated and efficient flotation processing can be performed. it can. The coarse particles of coal ash are preferably classified by wind (air) so that the residual value on the 88 μm sieve is 3% by weight or less. That is, coal ash whose coal ash particle residual value on a 88 μm sieve is 3% by weight or less is subjected to flotation treatment by air classification. If this exceeds 3% by weight, the above-mentioned effect is lost and the unburnt coal removal rate cannot be increased.
[0009]
Next, heavy oil, kerosene and the like as a collector used in the hydrophobizing step, and conventionally known substances such as pine oil as a foaming agent used in the flotation step can be used. An emulsifier obtained by mixing a sex collector alone or with a nonpolar reagent can be suitably used. Examples of the ionic scavenger include alkylamine, alkylammonium, xanthate, oleic acid, alkylsulfate, alkylsulfonate and the like.Alkylamine and alkylsulfonate are extremely excellent in hydrophobizing unburned carbon. It can be suitably used as a sex collector. Kerosene, xylene, cyclohexane, decane and the like are preferably used as the nonpolar reagent. As the emulsification, any method such as stirring or shaking may be used, in addition to applying ultrasonic waves to a mixture of the ionic collector and the nonpolar reagent.
[0010]
[Action]
When adding a trapping agent to the coal ash slurry to hydrophobize the unburned coal content, add a foaming agent to the water slurry to generate air bubbles, and attach the unburned coal content to the surface of the air bubbles to raise them. The coal ash was air-classified in advance so that the residual value on the 88 μm sieve was 3% by weight or less, and the coal ash from which coarse particles were removed , that is, the residual value on the 88 μm sieve of the coal ash particles was 3% by weight or less. By using coal ash, the unburned coal content is easily increased.
[0011]
【Example】
Example 1
Coal ash having an Ig-Loss (loss on ignition) of the raw powder of 9.0% by weight (hereinafter% indicates each% by weight) and a residue of 88% on a sieve of 6.1% was classified into an air classifier (accu). Classification was performed by changing the classification point with Cut A-12 (manufactured by Nippon Donaldson Co., Ltd.), and the residual values of 88 μm from which coarse particles were removed were 2.6%, 2.3%, and 1.5%, respectively. Was obtained (classification process). 80 g of each of the raw powder and the classified coal ash and 800 ml of water were mixed with stirring in a flotation tank to form a water slurry, and 2.0 ml of a petroleum sulfone aqueous solution (concentration: 1.0% by weight) was collected as a collecting agent. The mixture is added and left for 3 minutes with stirring to hydrophobize the unburned coal in the coal ash (hydrophobizing step). After the hydrophobization step, 60 mg of pine oil is added to the water slurry as a foaming agent, and air is blown from the bottom of the flotation tank to generate air bubbles, and unburned coal is attached to the air bubbles and floated. The floating bubbles are taken out as an overflow. This step was continuously performed for 3 minutes (flotation step). Next, the Ig-Loss of the coal ash from which the overflow was removed was measured.
[0012]
FIG. 1 shows the relationship between the Ig-Loss of the coal ash subjected to the flotation treatment and the residual value of 88 μm. As can be seen from the figure, the Ig-Loss after the treatment is reduced by lowering the classification point and lowering the 88 μm residue. However, if 88 μm is reduced to a certain degree or more, Ig-Loss does not decrease after further processing. It is considered that this is because only particles having a certain size or more affect the flotation process.
[0013]
Example 2
Classification of three types of coal ash (raw powder) having different Ig-Loss by an air classifier (Acucut A-12: Nippon Donaldson) under the same conditions (air amount, blade rotation speed, raw material supply speed constant). , Coarse particles were removed. Table 1 shows the results. Since unburned coal is present in large amounts on the coarse particle side, Ig-Loss is slightly reduced by classification.
[0014]
[Table 1]
Figure 0003580868
[0015]
Next, 80 g of each of the raw powder and the classified coal ash and 800 ml of water were mixed with stirring in a flotation tank to form a water slurry, and an aqueous solution of a petroleum sulfone agent (concentration: 1.0% by weight) was collected as a collector. Then, it was left for 3 minutes while stirring (hydrophobizing step). Thereby, the unburned coal content in the coal ash is made hydrophobic. After the hydrophobizing step, 60 mg of pine oil was added as a foaming agent to the water slurry, air was blown from the bottom of the flotation tank to generate bubbles, and unburned coal was attached to the bubbles and floated (flotation step) ). Next, the Ig-Loss of the coal ash from which the overflow was removed was measured.
[0016]
FIG. 2 shows the unburned coal removal rate when the above-mentioned flotation treatment was performed with the classified coal ash in comparison with the result of performing the flotation treatment with the raw powder without performing the classification treatment. The unburned coal removal rate is obtained by dividing Ig-Loss before the flotation treatment by Ig-Loss after the treatment, and the higher the value, the greater the treatment effect. From this, it was found that even if the treatment was performed using coal ash having different Ig-Loss, the unburned coal removal rate was increased by performing the classification treatment.
[0017]
Effect of the Invention]
The present invention relates to coal ash obtained by air classification of coal ash to remove coarse particles so that the 88 μm sieve residue value is 3% by weight or less. By performing the flotation treatment using the coal ash having a weight percent or less, the unburned coal content of the coal ash can be efficiently removed.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the residual value of 88 μm and the Ig-Loss of coal ash subjected to flotation processing in Example 1.
FIG. 2 is a graph showing a removal rate of unburned coal by flotation treatment of classified coal ash and unclassified coal ash in Example 2.

Claims (1)

石炭灰の水スラリに捕集剤を添加して未燃炭分を疎水化させる疎水化工程と、該水スラリに起泡剤を添加して気泡を発生させ、その気泡に前記未燃炭分を付着させ浮上させる浮選工程とを備えた石炭灰の浮選処理方法において、あらかじめ石炭灰を風力分級することにより石炭灰の粗大粒子を除去し、石炭灰粒子の88μm篩上残分値を3重量%以下とした石炭灰を浮選処理に供することを特徴とする石炭灰の処理方法。A hydrophobizing step of adding a collecting agent to a water slurry of coal ash to hydrophobize unburned coal, and adding a foaming agent to the water slurry to generate air bubbles, and attaching the unburned coal to the air bubbles. In the method for flotation treatment of coal ash comprising a flotation step of making the coal ash float, the coarse particles of coal ash are removed by air classification in advance, and the residual value of the coal ash particles on the 88 μm sieve is 3 wt. % Coal ash, which is subjected to a flotation treatment.
JP21658994A 1994-08-18 1994-08-18 Coal ash treatment method Expired - Fee Related JP3580868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21658994A JP3580868B2 (en) 1994-08-18 1994-08-18 Coal ash treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21658994A JP3580868B2 (en) 1994-08-18 1994-08-18 Coal ash treatment method

Publications (2)

Publication Number Publication Date
JPH0857351A JPH0857351A (en) 1996-03-05
JP3580868B2 true JP3580868B2 (en) 2004-10-27

Family

ID=16690794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21658994A Expired - Fee Related JP3580868B2 (en) 1994-08-18 1994-08-18 Coal ash treatment method

Country Status (1)

Country Link
JP (1) JP3580868B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613347B1 (en) 2003-10-09 2005-01-26 太平洋セメント株式会社 How to remove unburned carbon in fly ash
JP2005334819A (en) * 2004-05-28 2005-12-08 Osaka Prefecture Method for recycling shredder dust by wet classification method
JP2007054773A (en) * 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd Unburned carbon removal method in coal ash
WO2007023937A1 (en) 2005-08-26 2007-03-01 Taiheiyo Cement Corporation Apparatus and method for dissolution/reaction
US8282263B2 (en) 2005-10-31 2012-10-09 Taiheiyo Cement Corporation Apparatus and method for adding wet ash to cement
CN101326011B (en) * 2005-12-07 2013-02-27 太平洋水泥株式会社 Apparatus for removing of unburned carbon from fly ash and relevant removing method
JP4917309B2 (en) * 2005-12-26 2012-04-18 三井造船株式会社 How to remove unburned carbon in fly ash
JP2007222800A (en) * 2006-02-24 2007-09-06 Taiheiyo Cement Corp Apparatus and method for removing unburnt carbon in fly ash
CN100391574C (en) * 2006-04-25 2008-06-04 开滦精煤股份有限公司范各庄矿业分公司 Process for dehydrating floatation coal
CN101528953B (en) 2006-10-24 2011-10-19 太平洋水泥株式会社 Method for removing lead from cement kiln
CN101583578A (en) 2006-12-05 2009-11-18 太平洋水泥株式会社 Method of processing coal ash and processing system
EP2103361A1 (en) * 2006-12-11 2009-09-23 Mitsui Engineering and Shipbuilding Co, Ltd. Method of removing unburned carbon from coal ash
CN110766673B (en) * 2019-07-22 2021-04-30 中南大学 Texture roughness defining method based on Euclidean distance judgment
CN110728253B (en) * 2019-07-22 2021-03-02 中南大学 Texture feature measurement method based on particle roughness

Also Published As

Publication number Publication date
JPH0857351A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
JP3580868B2 (en) Coal ash treatment method
JP3613347B1 (en) How to remove unburned carbon in fly ash
CN102834181B (en) Cleaning and dewatering fine coal
JP5326168B2 (en) A method for treating coal ash used in concrete materials.
JP2007054773A (en) Unburned carbon removal method in coal ash
TWI362966B (en) Method of removing unburned carbon from fly ash
US4226672A (en) Process of separating asbestos fibers and product thereof
TW201029743A (en) Method for removing unburned carbon from fly ash and equipment for removing unburned carbon from fly ash
JPS59127660A (en) Treatment of coal ash and low grade coal
JP3581707B2 (en) Coal ash treatment method
JP3243568B2 (en) Processing method of coal ash
JP3505000B2 (en) Coal ash treatment method
JP2003284973A (en) Method for treating coal ash
WO1998024733A1 (en) Wet process fly ash beneficiation
CN112958275A (en) Method for flotation of coal from coal-containing casting dust
TWI499456B (en) Method for upgrading combustion ash
JP3411649B2 (en) Processing method of coal ash
JP3411651B2 (en) Processing method of coal ash
JPH06256014A (en) Production of high-purity white gypsum
JP2009091189A (en) Method and apparatus for treating gypsum board and fly ash
US3259243A (en) Silicon carbide recovery
JP4346043B1 (en) Method for producing recycled concrete material and recycled concrete material
JPH06256015A (en) Method for removing dust from gypsum slurry
JP2022056672A (en) Determination method of production condition of modified fly ash and production method
JP2010227769A (en) Device for manufacturing modified ash and method of manufacturing modified ash

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees