JP2003284973A - Method for treating coal ash - Google Patents

Method for treating coal ash

Info

Publication number
JP2003284973A
JP2003284973A JP2003016006A JP2003016006A JP2003284973A JP 2003284973 A JP2003284973 A JP 2003284973A JP 2003016006 A JP2003016006 A JP 2003016006A JP 2003016006 A JP2003016006 A JP 2003016006A JP 2003284973 A JP2003284973 A JP 2003284973A
Authority
JP
Japan
Prior art keywords
coal
coal ash
flotation
unburned
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003016006A
Other languages
Japanese (ja)
Inventor
Hideji Michihashi
秀治 道端
Masayoshi Asada
正吉 浅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003016006A priority Critical patent/JP2003284973A/en
Publication of JP2003284973A publication Critical patent/JP2003284973A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating a coal ash (fly ash) by which an unburnt coal content in the coal ash can be efficiently separated in the method for treating the coal ash used for a cement, a concrete, a raw material for a building material, and the like. <P>SOLUTION: In a treating process for the coal ash provided with a hydrophobic nature providing process in which the unburnt coal content is made hydrophobic by incorporating a collecting agent into a water slurry of the coal ash, and a flotation process in which a frothing agent is incorporated into the water slurry to cause air bubbles and the unburnt coal content is stuck on the air bubbles to float it up, a cationic collecting agent such as an amine such as of dodecylamine and octadecylamine and their derivatives, and an ammonia compound such as of hexadecyltrimethyl ammonium naphthylamine and aniline or their derivatives is used as the collecting agent. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、セメント、コン
クリートや建材の原料等に用いられる石炭灰(フライア
ッシュ)の処理方法に関するものである。 【0002】 【従来の技術】石炭灰は微粉炭焚きボイラ等から発生す
るが、この石炭灰の中には未燃炭分が含まれている。こ
の未燃炭分は、石炭灰を利用する上で次のような問題を
引き起こす。例えば、セメント混和材として石炭灰を利
用する場合、石炭灰中に未燃炭分が含まれていると、コ
ンクリート混練時に高価な空気連行剤(AE剤)が未燃
炭分に吸収されるため、多量の空気連行剤が必要にな
る。また人工軽量骨材等の原料として石炭灰を使用する
場合、原料中に多くの未燃炭分が含まれていると、骨材
等の強熱減量(Ig−Loss)が大きくなる。 【0003】そのため、未燃炭分の少ない石炭灰だけを
コンクリートの原料等に利用し、未燃炭分の多く含まれ
ている石炭灰は利用されず産業廃棄物として捨てられ
る。しかし、建材等の原料として有効な石炭灰を廃棄す
ることは不経済であり、またその廃棄処理には多くの費
用が必要となる。 【0004】そこで従来浮遊選鉱、即ち石炭灰の水スラ
リに捕集剤を添加して未燃炭分を疎水化させる疎水化工
程と、該水スラリに気泡剤を添加して気泡を発生させ、
その気泡に前記未燃炭分を付着させ浮上させる浮選工程
とを備えた石炭灰の処理工程により石炭灰から未燃炭分
を分離している。 【0005】 【発明が解決しようとする課題】従来の石炭灰の処理方
法は、捕集剤として重油を用いるものであり、大量処理
が可能であると言う長所を有するが、その反面、石炭灰
中の未燃炭分を効率よく分離できないという問題があ
る。この発明は、上記事情に鑑み石炭灰中の未燃炭分を
効率よく分離できるようにすることを目的とする。 【0006】 【課題を解決するための手段】上記目的を達成するため
に、この発明によれば、石炭灰の水スラリに捕集剤を添
加し未燃炭分を疎水化させる疎水化工程と、該水スラリ
に気泡剤を添加して気泡を発生させ、その気泡に前記未
燃炭分を付着させ浮上させる浮選工程とを備えた石炭灰
の処理方法において、捕集剤として陽イオン性捕集剤を
使用することを特徴とする。 【0007】 【発明の実施の形態】以下、この発明を詳しく説明す
る。陽イオン捕集剤としてはドデシルアミン、オクタデ
シルアミン等のアミン類とその誘導体、ヘキサデシルト
リメチルアンモニウム、ナフチルアミン、アニリン等の
アンモニウム類あるいはその誘導体が挙げられ、中でも
ドデシルアミンアセテート、オクタデシルアミンは後述
する未燃炭分の疎水化に極めて優れ、陽イオン捕集剤と
して好適に用いることができる。陽イオン捕集剤はその
内部に極性部と非極性部を有しており、この非極性部が
石炭灰の未燃炭分表面で、酸化され形成されたCOO
H,OH基等の極性基と結び付き、非極性部が表面に出
ることにより未燃炭分を疎水化ものと思われる。また、
陽イオン捕集剤の添加量としては石炭灰に対して10-5
〜10-2Wt%である。これが10-5Wt%より少ない
と疎水化効果が十分ではなく、10-2Wt%以上添加し
ても疎水化効果はあまり変わらず、経済的に不利とな
る。 【0008】この発明は、陽イオン捕集剤に加えて無極
性試薬を併用することができる。無極性試薬としてはケ
ロシン、キシレン、シクロヘキサン、デカン等が好適に
用いられが、中でもケロシン、デカンが前記陽イオン捕
集剤との相性に優れ、より好適に用いられる。陽イオン
性捕集剤と無極性試薬を併用することにより、陽イオン
捕集剤と結び付きある程度疎水化された未燃炭分表面
に、更に無極性試薬が結び付くことにより一層疎水化さ
れる。 【0009】陽イオン捕集剤と無極性試薬を混合しエマ
ルジョン化したものを捕集剤として添加することによ
り、さらに好適に未燃炭分を疎水化させることができ
る。このエマルジョン化した捕集剤は陽イオン捕集剤お
よび無極性試薬をそのまま添加したものと比較して、捕
集剤が溶媒中(水中)に細かく分散され、陽イオン捕集
剤と無極性試薬の交互作用がうまく行われることが考え
られる。陽イオン捕集剤と無極性試薬の混合比としては
10-3モル濃度の陽イオン捕集剤を基準としこの陽イオ
ン捕集剤/無極性試薬体積比を1/3以上にすることが
好ましい。ここでエマルジョン化としては、陽イオン捕
集剤と無極性試薬の混合液に超音波をかけたりする他、
攪はん、振とう等、いずれの方法を用いても良い。 【0010】この発明は、石炭灰スラリに陽イオン捕集
剤を単独で、あるいは無極性試薬と併用して捕集剤とし
て使用することで未燃炭分を疎水化させるとともに、該
水スラリに気泡剤を添加し気泡を発生させ、その気泡表
面に未燃炭分を付着させて浮上させることができる。 【0011】 【実施例】実施例1 浮選槽に水400mlと微粉炭焚きボイラ等から発生す
るIg−Loss(強熱減量)9.04Wt%の石炭灰
10gを攪伴しながら混合し、水スラリにする。このと
きのPHはPH調整を行わない自然PHで10〜11で
ある。これに陽イオン捕集剤の一種であるドデシルアミ
ンアセテート(以下DAA)をDAAモル濃度が2.
5,5.0,7.5,12.5,20.0x10-6Mに
なるように添加し、攪伴しながら3分間放置した(疎水
化工程)。これにより石炭灰中の未燃炭分を疎水化させ
る。 【0012】疎水化工程の後、前記水スラリに気泡剤と
してパイン油を16mg添加し浮選槽の底部から空気を
吹き込み気泡を発生させ、該気泡に未燃炭分を付着させ
浮上させる。この浮上した気泡をオーバーフロー分とし
て取り出す。この工程を3分間継続して行う(浮選工程
1)。次にパイン油を16mg添加し再度、前記浮選工
程1と同様の工程を3分間行った(浮選工程2)。この
時のDAA添加量と浮選槽内に残った石炭灰のIg−L
ossの関係を図1に示した。 【0013】比較例1 浮選槽に水400mlとIg−Loss9.04%の石
炭灰10gを攪伴しながら混合し水スラリとする。この
水スラリにPH調整剤として塩酸あるいは水酸化ナトリ
ウムを加えPHを2〜12に調整する。これに、捕集剤
として無極性試薬であるケロシン、キシレン20mgあ
るいは捕集剤を加えずに攪伴しながら3分間放置する。
次に気泡剤としてパインオイルを16mg加え浮選槽底
部から空気を吹き込み気泡を生成させると同時に生成し
た気泡をオーバーフロー分として取り出した(浮選工程
1)。再度、気泡剤としてパインオイルを16mg加え
前記浮選工程1を行った(浮選工程2)。前記浮選工程
は3分間行う。この時の浮選槽内部に残った石炭灰とI
g−Lossの関係を図2に示した。 【0014】図2から明らかなように、PH調整剤を添
加しない自然PH10〜11で無極性試薬を捕集剤とし
て添加して浮選処理を行ったものは、気泡剤のみで捕集
剤を添加せず処理を行ったものと変化はなく、捕集剤の
影響はないことが分かる。また図1を図2と比較するこ
とにより、自然PH10〜11で捕集剤としてDAAを
添加し処理を行ったものは、浮選槽内部に残った石炭灰
のIg−Lossが、捕集剤を添加せず処理を行ったも
のと比較して、かなり低下していることが分かる。この
ように自然PHにおいてもDAAを捕集剤として用いる
ことにより石炭灰中の未燃炭分を効果的に除去すること
ができた。 【0015】実地例2 浮選槽に水400mlと微粉炭焚きボイラ等から発生す
るIg−Loss9.04Wt%の石炭灰10gを攪伴
しながら混合し、水スラリにする。このときのPHはP
H調整を行わない自然PHで10〜11である。これに
DAAをモル濃度が5x10-6Mになるように添加し攪
伴しながら3分間放置した(疎水化工程)。この後、気
泡剤であるパインオイルを16mg添加し、浮選槽底部
から空気を吹き込み気泡を生成させる。この気泡に石炭
灰の未燃炭分を付着させ浮上させると同時に生成した気
泡をオーバーフロー分として取り出す工程を3分間行っ
た(浮選工程1)。次に無極性試薬であるケロシン20
mgおよびデカン16mgを捕集剤として添加し浮選槽
底部から空気を吹き込み、前記浮選工程1と同様な工程
を行う。以上の結果を表1に示した。この表1と図1を
比較することにより浮選槽内部に残った石炭灰のIg−
Lossが、DAAを単独で捕集剤として使用したもの
と比較して、無極性試薬を併用することにより未燃分を
効果的に除去することができた。 【0016】 【表1】 【0017】実地例3 浮選槽に水400mlと微粉炭焚きボイラ等から発生す
るIg−Loss9.04Wt%の石炭灰10gを攪伴
しながら混合し、水スラリにする。このときのPHはP
H調整を行わない自然PHで10〜11である。これに
DAA0.001M溶液と無極性試薬を2:1の体積比
で混合し、超音波をかけることによりエマルジョン化し
たものを捕集剤として0.1,0.3,0.5,1.
0,1.5ml添加し3分間放置した(疎水化工程)。
無極性試薬としてはケロシン及びデカンを使用した。疎
水化工程の後、前記水スラリに気泡剤としてパイン油を
16mg添加し浮選槽の底部から空気を吹き込み気泡を
発生させ、該気泡に未燃炭分を付着させ浮上させる。こ
の浮上した気泡をオーバーフロー分として取り出す。こ
の工程を3分間継続して行う(浮選工程1)。次にパイ
ン油を16mg添加し再度、前記浮選工程1と同様の工
程を3分間行った(浮選工程2)。この時のエマルジョ
ン添加量と浮選槽内に残った石炭灰のIg−Lossの
関係を図3に示した。 【0018】この図3から分かるようにエマルジョンの
添加量が増えるにしたがい前記Ig−Lossは大幅に
低下しており、ケロシンを使用したエマルジョン添加量
1.0mlではIg−Loss1.9Wt%まで低下し
た。 【0019】実施例4 浮選槽に水400mlと微粉炭焚きボイラ等から発生す
るIg−Loss9.04Wt%の石炭灰10gを攪伴
しながら混合し、水スラリにする。このときのPHはP
H調整を行わない自然PHで10〜11である。これに
DAAの濃度を10-6〜10-3Mに変化させた無極性試
薬と2:1の体積比で混合し、超音波をかけることによ
りエマルジョン化したものを捕集剤として1ml添加し
3分間放置した(疎水化工程)。疎水化工程の後、前記
水スラリに気泡剤としてパイン油16mgを添加し浮選
槽の底部から空気を吹き込み気泡を発生させ、該気泡に
未燃炭分を付着させ浮上させる。この浮上した気泡をオ
ーバーフロー分として取り出す。この工程を3分間継続
して行う(浮選工程1)。次にパイン油を16mg添加
し再度、前記浮選工程1と同様の工程を3分間行った
(浮選工程2)。この時のDAA濃度と石炭灰のIg−
lossの関係を図4に示した。この図4から分かるよ
うにDAAの濃度が高くなるにしたがいIg−loss
は大幅に低下した。 【0020】 【発明の効果】本発明は陽イオン捕集剤を単独、あるい
は無極性試薬と併用し捕集剤として使用しているため
に、従来例と比較して多くの未燃炭分が気泡に付着す
る。このため、石炭灰中の未燃炭分をきわめて効率よく
分離することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating coal ash (fly ash) used as a raw material for cement, concrete and building materials. [0002] Coal ash is generated from pulverized coal-fired boilers and the like, and this coal ash contains unburned coal. This unburned coal causes the following problems in utilizing coal ash. For example, when coal ash is used as a cement admixture, if unburned coal is contained in coal ash, an expensive air entraining agent (AE agent) is absorbed by the unburned coal during concrete kneading, so that a large amount of coal is not contained. Air entraining agent is required. When coal ash is used as a raw material for artificial lightweight aggregates, the ignition loss (Ig-Loss) of the aggregates and the like increases when the raw material contains a large amount of unburned coal. [0003] For this reason, only coal ash containing a small amount of unburned coal is used as a raw material for concrete, and coal ash containing a large amount of unburned coal is not used and is discarded as industrial waste. However, it is uneconomical to dispose of effective coal ash as a raw material for building materials and the like, and the disposal thereof requires a lot of cost. Therefore, conventionally, a flotation process, that is, a hydrophobizing step of adding a collector to a water slurry of coal ash to hydrophobize unburned coal, and adding a foaming agent to the water slurry to generate air bubbles,
The unburned coal content is separated from the coal ash by a coal ash treatment process including a flotation process of adhering and floating the unburned coal content to the bubbles. [0005] The conventional method for treating coal ash uses heavy oil as a trapping agent, and has the advantage that it can be processed in large quantities. There is a problem that the unburned coal content cannot be efficiently separated. The present invention has been made in view of the above circumstances, and has as its object to enable efficient separation of unburned coal in coal ash. [0006] In order to achieve the above object, according to the present invention, there is provided a hydrophobizing step of adding a collector to a water slurry of coal ash to hydrophobize unburned coal. A flotation step of adding a foaming agent to the water slurry to generate air bubbles, and adhering the unburned coal to the air bubbles, and floating the coal ash. It is characterized by using an agent. Hereinafter, the present invention will be described in detail. Examples of the cation collecting agent include amines such as dodecylamine and octadecylamine and derivatives thereof, and ammoniums and derivatives thereof such as hexadecyltrimethylammonium, naphthylamine and aniline. Of these, dodecylamine acetate and octadecylamine are described below. It is extremely excellent in making the coal content hydrophobic, and can be suitably used as a cation collector. The cation scavenger has a polar portion and a non-polar portion inside, and the non-polar portion is formed on the unburned coal surface of the coal ash by oxidizing COO.
It is considered that unburned carbon is hydrophobized by binding to polar groups such as H and OH groups and leaving nonpolar portions on the surface. Also,
The addition amount of the cation collector is 10 -5 to the coal ash.
-10 -2 Wt%. If it is less than 10 -5 Wt%, the hydrophobizing effect is not sufficient, and if it is added at 10 -2 Wt% or more, the hydrophobizing effect does not change much, and it is economically disadvantageous. According to the present invention, a nonpolar reagent can be used in addition to the cation scavenger. Kerosene, xylene, cyclohexane, decane and the like are preferably used as the non-polar reagent. Among them, kerosene and decane are more preferably used because of their excellent compatibility with the cation collecting agent. By using the cationic collector and the non-polar reagent together, the non-polar reagent is further bound to the surface of the unburned charcoal which has been bound to the cation collector and has been made hydrophobic to some extent, thereby making the surface more hydrophobic. [0009] By mixing and emulsifying a cation scavenger and a non-polar reagent and emulsifying the mixture, unburned coal can be more preferably hydrophobized. This emulsified collector is finely dispersed in a solvent (in water), compared with a cation collector and a non-polar reagent added as they are, and the cation collector and the non-polar reagent It is conceivable that the interaction of The mixing ratio of the cation-collecting agent to the non-polar reagent is preferably 10 -3 molar concentration, and the cation-collecting agent / non-polar reagent volume ratio is preferably 1/3 or more. . Here, as emulsification, in addition to applying ultrasonic waves to a mixture of a cation collector and a nonpolar reagent,
Any method such as stirring and shaking may be used. The present invention uses a cation scavenger alone or in combination with a non-polar reagent as a scavenger in a coal ash slurry to hydrophobize unburned coal and remove air bubbles from the water slurry. An agent is added to generate air bubbles, and unburned charcoal can be attached to the surface of the air bubbles to cause them to float. Example 1 In a flotation tank, 400 g of water and 10 g of 9.04 Wt% of coal ash generated from a pulverized coal-fired boiler, etc., were mixed with stirring and mixed with water. Make a slurry. The PH at this time is 10 to 11 which is a natural PH without PH adjustment. In addition, dodecylamine acetate (hereinafter referred to as DAA), which is a kind of cation collector, has a DAA molar concentration of 2.
5,5.0,7.5,12.5,20.0 × 10 −6 M, and left for 3 minutes with stirring (hydrophobicization step). Thereby, the unburned coal content in the coal ash is made hydrophobic. After the hydrophobizing step, 16 mg of pine oil is added to the water slurry as a foaming agent, and air is blown from the bottom of the flotation tank to generate air bubbles, and unburned coal is attached to the air bubbles and floated. The floating bubbles are taken out as an overflow. This step is continuously performed for 3 minutes (flotation step 1). Next, 16 mg of pine oil was added, and the same step as the flotation step 1 was performed again for 3 minutes (flotation step 2). The amount of DAA added at this time and the Ig-L of coal ash remaining in the flotation tank
FIG. 1 shows the relationship of the oss. Comparative Example 1 400 ml of water and 10 g of Ig-Loss 9.04% coal ash were mixed and stirred into a flotation tank to form a water slurry. Hydrochloric acid or sodium hydroxide is added to this water slurry as a pH adjuster to adjust the pH to 2-12. This is left for 3 minutes with stirring without adding 20 mg of non-polar reagents such as kerosene and xylene as a collecting agent or a collecting agent.
Next, 16 mg of pine oil was added as a foaming agent, and air was blown from the bottom of the flotation tank to generate bubbles, and the generated bubbles were taken out as an overflow (flotation step 1). Again, 16 mg of pine oil was added as a foaming agent, and the flotation step 1 was performed (flotation step 2). The flotation step is performed for 3 minutes. The coal ash remaining inside the flotation tank at this time and I
The g-Loss relationship is shown in FIG. As is apparent from FIG. 2, the flotation treatment was carried out by adding a non-polar reagent as a collecting agent at a natural pH of 10 to 11 without adding a pH adjusting agent. There is no change from the case where the treatment was performed without the addition, and it was found that there was no influence of the collector. In addition, by comparing FIG. 1 with FIG. 2, it was found that Ig-Loss of coal ash remaining inside the flotation tank was treated with the addition of DAA at a natural pH of 10 to 11 as a collector, It can be seen that the temperature is considerably reduced as compared with the case where the treatment was performed without adding any. Thus, even in natural PH, unburned coal in coal ash could be effectively removed by using DAA as a collector. Practical Example 2 In a flotation tank, 400 g of water and 10 g of coal ash of 9.04 Wt% of Ig-Loss generated from a pulverized coal-fired boiler are mixed with stirring to form a water slurry. PH at this time is P
It is 10 to 11 at a natural PH without H adjustment. DAA was added thereto to a molar concentration of 5 × 10 −6 M, and the mixture was allowed to stand for 3 minutes while stirring (hydrophobizing step). Thereafter, 16 mg of pine oil as a foaming agent is added, and air is blown from the bottom of the flotation tank to generate bubbles. An unburned coal content of coal ash was attached to the air bubbles to cause them to float and, at the same time, a step of taking out the generated air bubbles as an overflow was performed for 3 minutes (flotation step 1). Next, the non-polar reagent kerosene 20
mg and decane 16 mg are added as a collecting agent, and air is blown from the bottom of the flotation tank, and the same step as the flotation step 1 is performed. Table 1 shows the above results. By comparing this Table 1 with FIG. 1, the Ig- of the coal ash remaining inside the flotation tank was determined.
Loss was able to remove unburned components more effectively by using a non-polar reagent in combination with DAA alone as a collecting agent. [Table 1] Practical Example 3 In a flotation tank, 400 g of water and 10 g of coal ash of 9.04 Wt% of Ig-Loss generated from a pulverized coal-fired boiler are mixed with stirring to form a water slurry. PH at this time is P
It is 10 to 11 at a natural PH without H adjustment. A DAA 0.001M solution and a nonpolar reagent were mixed at a volume ratio of 2: 1 and emulsified by applying ultrasonic waves to obtain 0.1, 0.3, 0.5, 1..
0. 1.5 ml was added and left for 3 minutes (hydrophobizing step).
Kerosene and decane were used as nonpolar reagents. After the hydrophobizing step, 16 mg of pine oil is added to the water slurry as a foaming agent, and air is blown from the bottom of the flotation tank to generate bubbles, and unburned coal is attached to the bubbles and floated. The floating bubbles are taken out as an overflow. This step is continuously performed for 3 minutes (flotation step 1). Next, 16 mg of pine oil was added, and the same step as the flotation step 1 was performed again for 3 minutes (flotation step 2). FIG. 3 shows the relationship between the amount of emulsion added at this time and the Ig-Loss of the coal ash remaining in the flotation tank. As can be seen from FIG. 3, the Ig-Loss decreased significantly as the amount of emulsion added increased, and decreased to 1.9 Wt% Ig-Loss with 1.0 ml of emulsion using kerosene. . Example 4 400 ml of water and 10 g of Ig-Loss 9.04 Wt% coal ash generated from a pulverized coal-fired boiler are mixed in a flotation tank with stirring to form a water slurry. PH at this time is P
It is 10 to 11 at a natural PH without H adjustment. To this, 1 ml of a non-polar reagent in which the concentration of DAA was changed to 10 −6 to 10 −3 M was mixed at a volume ratio of 2: 1 and emulsified by applying ultrasonic waves as a collecting agent, and added. It was left for 3 minutes (hydrophobization step). After the hydrophobizing step, 16 mg of pine oil is added to the water slurry as a foaming agent, and air is blown from the bottom of the flotation tank to generate bubbles, and unburned coal is attached to the bubbles and floated. The floating bubbles are taken out as an overflow. This step is continuously performed for 3 minutes (flotation step 1). Next, 16 mg of pine oil was added, and the same step as the flotation step 1 was performed again for 3 minutes (flotation step 2). The DAA concentration at this time and the Ig-
FIG. 4 shows the relationship of the loss. As can be seen from FIG. 4, as the concentration of DAA increases, the Ig-loss increases.
Has dropped significantly. According to the present invention, since the cation-collecting agent is used alone or in combination with a non-polar reagent as a collecting agent, a larger amount of unburned charcoal is bubbled compared to the conventional example. Adheres to Therefore, the unburned coal in the coal ash can be separated very efficiently.

【図面の簡単な説明】 【図1】実施例1における浮選槽内に残った石炭灰のI
g−LossとDAA濃度の関係を示すグラフである。 【図2】比較例1における浮選槽内に残った石炭灰のI
g−LossとpHの関係を示すグラフである。 【図3】実施例3における浮選槽内に残った石炭灰のI
g−Lossとエマルジョンの添加量の関係を示すグラ
フである。 【図4】実施例4における浮選槽内に残った石炭灰のI
g−Lossとエマルジョン中のDAA濃度の関係を示
すグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows coal ash remaining in a flotation tank in Example 1.
It is a graph which shows the relationship between g-Loss and DAA concentration. FIG. 2 shows I of coal ash remaining in a flotation tank in Comparative Example 1.
It is a graph which shows the relationship between g-Loss and pH. FIG. 3 shows I of coal ash remaining in a flotation tank in Example 3.
It is a graph which shows the relationship between g-Loss and the addition amount of an emulsion. FIG. 4 shows coal ash remaining in a flotation tank in Example 4.
It is a graph which shows the relationship between g-Loss and DAA concentration in an emulsion.

Claims (1)

【特許請求の範囲】 【請求項1】 石炭灰の水スラリに捕集剤を添加して未
燃炭分を疎水化させる疎水化工程と、該水スラリに起泡
剤を添加して気泡を発生させ、その気泡に前記未燃炭分
を付着させ浮上させる浮選工程とを備えた石炭灰の処理
方法において、捕集剤として陽イオン捕集剤を使用する
ことを特徴とする石炭灰の処理方法。
Claims: 1. A hydrophobizing step of adding a collector to a water slurry of coal ash to hydrophobize unburned coal, and adding a foaming agent to the water slurry to generate air bubbles. And a flotation step of causing the unburned coal to adhere to the air bubbles and float the bubbles, wherein a cation scavenger is used as a scavenger. .
JP2003016006A 2003-01-24 2003-01-24 Method for treating coal ash Withdrawn JP2003284973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016006A JP2003284973A (en) 2003-01-24 2003-01-24 Method for treating coal ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016006A JP2003284973A (en) 2003-01-24 2003-01-24 Method for treating coal ash

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33909493A Division JP3411649B2 (en) 1993-11-22 1993-11-22 Processing method of coal ash

Publications (1)

Publication Number Publication Date
JP2003284973A true JP2003284973A (en) 2003-10-07

Family

ID=29244386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016006A Withdrawn JP2003284973A (en) 2003-01-24 2003-01-24 Method for treating coal ash

Country Status (1)

Country Link
JP (1) JP2003284973A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7837963B2 (en) 2006-10-24 2010-11-23 Taiheiyo Cement Corporation Method for removing lead from cement burning furnace
US7947229B2 (en) 2005-08-26 2011-05-24 Taiheiyo Cement Corporation Apparatus and method for dissolution reaction
US8282263B2 (en) 2005-10-31 2012-10-09 Taiheiyo Cement Corporation Apparatus and method for adding wet ash to cement
US8439202B2 (en) 2006-12-05 2013-05-14 Taiheiyo Cement Corporation Coal ash treatment method and apparatus
US8551223B2 (en) 2003-10-09 2013-10-08 Taiheiyo Cement Corporation Method of removing unburned carbon from fly ash
CN116441059A (en) * 2023-03-24 2023-07-18 浙江大学 Fly ash flotation method for coupling ultrasonic emulsification and ultrasonic intensified adsorption decarburization

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551223B2 (en) 2003-10-09 2013-10-08 Taiheiyo Cement Corporation Method of removing unburned carbon from fly ash
US7947229B2 (en) 2005-08-26 2011-05-24 Taiheiyo Cement Corporation Apparatus and method for dissolution reaction
US8282263B2 (en) 2005-10-31 2012-10-09 Taiheiyo Cement Corporation Apparatus and method for adding wet ash to cement
US7837963B2 (en) 2006-10-24 2010-11-23 Taiheiyo Cement Corporation Method for removing lead from cement burning furnace
US8439202B2 (en) 2006-12-05 2013-05-14 Taiheiyo Cement Corporation Coal ash treatment method and apparatus
CN116441059A (en) * 2023-03-24 2023-07-18 浙江大学 Fly ash flotation method for coupling ultrasonic emulsification and ultrasonic intensified adsorption decarburization
CN116441059B (en) * 2023-03-24 2024-02-09 浙江大学 Fly ash flotation method for coupling ultrasonic emulsification and ultrasonic intensified adsorption decarburization

Similar Documents

Publication Publication Date Title
JP3613347B1 (en) How to remove unburned carbon in fly ash
JP5326168B2 (en) A method for treating coal ash used in concrete materials.
WO2007074627A1 (en) Method for removal of unburned carbon contained in fly ash
KR101441877B1 (en) System for producing cement and production method
US7329397B2 (en) Method of removing ammonia from fly ash and fly ash composition produced thereby
JPH08501495A (en) Flotation of coal
JPH0415021B2 (en)
JP2007054773A (en) Unburned carbon removal method in coal ash
WO2007074657A1 (en) Method for removal of unburned carbon from fly ash
JPWO2007066534A1 (en) Apparatus and method for removing unburned carbon in fly ash
JPH0857351A (en) Treatment of coal ash
JP3581707B2 (en) Coal ash treatment method
JP2003284973A (en) Method for treating coal ash
JPS59127660A (en) Treatment of coal ash and low grade coal
WO2008078389A1 (en) Apparatus for removing unburned carbon in fly ash
JP3411649B2 (en) Processing method of coal ash
JP3243568B2 (en) Processing method of coal ash
JP3411651B2 (en) Processing method of coal ash
JP3505000B2 (en) Coal ash treatment method
JP2007054797A (en) Unburned carbon removal apparatus in fly ash
RU2183658C1 (en) Liquid fuel composition and method of preparation thereof
TWI499456B (en) Method for upgrading combustion ash
EP0120039A1 (en) Recovery of solids from dispersions
RU2277120C1 (en) Method of production of the water-method fuel and its composition
JP2010227769A (en) Device for manufacturing modified ash and method of manufacturing modified ash

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041207