JPH0713590B2 - Material testing machine - Google Patents

Material testing machine

Info

Publication number
JPH0713590B2
JPH0713590B2 JP61072028A JP7202886A JPH0713590B2 JP H0713590 B2 JPH0713590 B2 JP H0713590B2 JP 61072028 A JP61072028 A JP 61072028A JP 7202886 A JP7202886 A JP 7202886A JP H0713590 B2 JPH0713590 B2 JP H0713590B2
Authority
JP
Japan
Prior art keywords
load
test piece
testing machine
material testing
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61072028A
Other languages
Japanese (ja)
Other versions
JPS62228133A (en
Inventor
秀則 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61072028A priority Critical patent/JPH0713590B2/en
Publication of JPS62228133A publication Critical patent/JPS62228133A/en
Publication of JPH0713590B2 publication Critical patent/JPH0713590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、電磁力により試験片に負荷をかけて試験する
材料試験機に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a material testing machine for testing by applying a load to a test piece by electromagnetic force.

B.従来の技術 従来の材料試験機では、把持具で把持された試験片に油
圧シリンダや電動機等のアクチュエータで外部から引張
荷重や厚縮荷重を負荷している。
B. Conventional Technology In a conventional material testing machine, a tensile load or a compressive load is externally applied to a test piece held by a holding tool by an actuator such as a hydraulic cylinder or an electric motor.

C.発明が解決しようとする問題点 この従来の材料試験機は、試験片の端部を把持具で把持
して負荷する構造であり、装置が大がかりとなる。ま
た、試験片の形状,試験姿勢が制約され把持具が必須で
ある。
C. Problems to be Solved by the Invention This conventional material testing machine has a structure in which an end portion of a test piece is gripped and loaded by a gripping tool, and the device becomes large-scale. In addition, the shape of the test piece and the test posture are restricted, and a gripping tool is essential.

本発明の目的は、電磁力により試験片に負荷をかけて上
述の問題点を解消した材料試験機を提供することにあ
る。
An object of the present invention is to provide a material testing machine which solves the above problems by applying a load to a test piece by electromagnetic force.

D.問題点を解決するための手段 本発明は、荷重負荷点を挟んで磁性体の試験片自体に、
連続して互いに反対向きに巻回したそれぞれのコイルに
電流を流して、この荷重負荷点に互いに反対方向の電磁
力を発生させる負荷手段と、前記電磁力が試験片の負荷
パターンに相応するよう前記負荷手段へ電気信号を供給
する負荷パターン設定手段とを具備してなる材料試験機
である。
D. Means for Solving the Problems The present invention, the test piece itself of the magnetic body across the load point,
A load means for applying an electric current to each coil continuously wound in opposite directions to generate electromagnetic forces in opposite directions at the load point, and the electromagnetic force corresponds to the load pattern of the test piece. A material testing machine comprising: load pattern setting means for supplying an electric signal to the load means.

E.作用 負荷パターン設定手段から負荷手段に負荷パターンに相
応した電気信号が供給されると互いに反対方向の電磁力
が発生する。その電磁力により磁性体である試験片内部
に負荷がかけられる。
E. Action When the load pattern setting means supplies an electric signal corresponding to the load pattern to the load means, electromagnetic forces in opposite directions are generated. A load is applied to the inside of the test piece that is a magnetic body by the electromagnetic force.

F.実施例 第1図は本発明の一実施例を示す。1は磁性材料から成
る試験片を示し、荷重負荷点である境界面PLの上方には
第1の方向に、下方にはその方向と反対の第2の方向に
1本のコイル2が同数だけ巻回されている。コイル2は
負荷手段を構成し、その両端には電圧−電流変換用増幅
器3(以下、単に変換用増幅器)を介して負荷パターン
設定器4が接続されている。変換用増幅器3は演算増幅
器A1、抵抗R1〜R3から成る周知の増幅器である。負荷パ
ターン設定器4は交流電圧発生器または直流電圧発生器
から構成され、試験片1の負荷パターンに相応した電磁
力が得られるように電圧信号を出力する。
F. Embodiment FIG. 1 shows an embodiment of the present invention. Reference numeral 1 denotes a test piece made of a magnetic material, and the same number of one coil 2 is provided in the first direction above the boundary surface PL, which is the load application point, and in the second direction, which is the lower direction, opposite to that direction. It is wound. The coil 2 constitutes load means, and a load pattern setter 4 is connected to both ends of the coil 2 via a voltage-current conversion amplifier 3 (hereinafter, simply conversion amplifier). Conversion amplifier 3 is a known amplifier comprising an operational amplifier A1, resistors R 1 to R 3. The load pattern setting device 4 is composed of an AC voltage generator or a DC voltage generator, and outputs a voltage signal so that an electromagnetic force corresponding to the load pattern of the test piece 1 can be obtained.

ここで、コイル2の巻数をN、コイル2に流れる電流を
IOとすれば、発生する電磁力Fは、 F∝IO×N …(1) と表わせる。巻数Nは一定であり、電流IOを変化させれ
ば電磁力Fも変化する。また、負荷パターン設定器4の
出力電圧をEi、変換用増幅器3の各抵抗値をR1〜R3とす
れば、変換用増幅器3からの出力電流IOは、 となり、(1)式を F∝K×N×Ei …(3) 但し、 と表わすことができ、従って、電磁力Fは、 F∝Ei …(4) となり、負荷パターン設定器4の出力電圧Eiに比例す
る。また、負荷される力は、抵抗R3の電圧降下(EL=IO
×R3)に比例することから、容易に電気的に計測でき
る。
Here, the number of turns of the coil 2 is N, and the current flowing through the coil 2 is
If I O , the generated electromagnetic force F can be expressed as F∝I O × N (1). The number of turns N is constant, and if the current I O is changed, the electromagnetic force F also changes. If the output voltage of the load pattern setter 4 is Ei and the resistance values of the conversion amplifier 3 are R 1 to R 3 , the output current I O from the conversion amplifier 3 is Then, the formula (1) is given by F∝K × N × Ei (3) Therefore, the electromagnetic force F becomes F∝Ei (4), which is proportional to the output voltage Ei of the load pattern setter 4. Also, the force applied is the voltage drop across the resistor R 3 (E L = I O
× R 3 ), so it can be easily measured electrically.

第1図において、コイル2に交流または直流電流が通電
されると、境界面PLを境にして各領域に生ずる、電磁力
F1,F2が互いに反発し、試験片1内部にはその反発力に
相応した負荷が作用する。そこで、負荷パターン設定器
4から所望の負荷パターンに相応した電圧を出力すれ
ば、その負荷パターンに応じた負荷を試験片1にかける
ことができる。第1図のように両端をフリーとすれば引
張荷重を負荷できる。また、試験片1の両端を固定すれ
ば圧縮荷重を負荷できる。
In FIG. 1, when an alternating current or a direct current is applied to the coil 2, an electromagnetic force is generated in each region with the boundary surface PL as a boundary.
F 1 and F 2 repel each other, and a load corresponding to the repulsive force acts on the inside of the test piece 1. Therefore, if a voltage corresponding to a desired load pattern is output from the load pattern setter 4, a load according to the load pattern can be applied to the test piece 1. If both ends are free as shown in Fig. 1, a tensile load can be applied. Further, if both ends of the test piece 1 are fixed, a compressive load can be applied.

更にまた、第3図(a),(b)に示すように、試験片
21における境界面PLの左側には第1の方向に、その右側
にはそれとは逆の第2の方向に1本のコイル22を巻回せ
ば、境界面PLを荷重負荷点として引張荷重を負荷でき
る。、第3図(b)のような三角形状に閉じた試験片31
でも同様にコイル32を巻回して引張試験ができる。
Furthermore, as shown in FIGS. 3 (a) and 3 (b), the test piece
If a coil 22 is wound on the left side of the boundary surface PL in 21 in the first direction and on the right side in the opposite second direction, a tensile load is applied with the boundary surface PL as the load application point. it can. , A test piece 31 closed in a triangular shape as shown in FIG. 3 (b).
However, similarly, the coil 32 can be wound to perform a tensile test.

G.発明の効果 本発明は以上のように構成したから、電磁力により試験
片に負荷でき小型化された新規な材料試験機を提供でき
る。また、磁性材料の試験片にコイルを巻回して負荷を
かけるようにすれば把持具が不要となり、また、コイル
を巻回しできる形状ならば種々の形状の試験片を試験で
きる。更に、試験片の試験姿勢の制限が少なく、超高速
繰り返し疲労試験が可能となる。
G. Effect of the Invention Since the present invention is configured as described above, it is possible to provide a novel material testing machine that can be loaded on a test piece by an electromagnetic force and is downsized. Further, if a coil is wound around a test piece of a magnetic material and a load is applied, a grasping tool is not required, and if the coil can be wound, various kinds of test pieces can be tested. Further, there are few restrictions on the test posture of the test piece, and an ultra-high speed repeated fatigue test becomes possible.

なお、第2図は磁性体のホルダで非磁性体材料の試験編
を把持した試験の態様を、第4図は磁性体の芯棒で試験
片を把持した曲げ試験の態様を、第5図(a)(b)は
磁性体の芯棒で試験編を把持した捩り試験の態様を示
す。
Note that FIG. 2 shows a test mode in which a magnetic material holder holds a test piece of a non-magnetic material, and FIG. 4 shows a bending test mode in which a test piece is held by a magnetic core bar. (A) and (b) show modes of a torsion test in which a test piece is held by a magnetic core rod.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す回路図、第2は他の実
施例の要部を示す図、第3図(a),(b)は本発明に
より試験可能な試験片の他の形状を示す図、第4図は本
発明を曲げ試験に適用した一実施例を示す概念図、第5
図(a),(b)は本発明を捩り試験に適用する場合の
概念図であり、(a)は正面図、(b)は(a)のb−
b線断面図である。 1,11,21,31,41,51:試験片 2,12,22,32,42,52:コイル 3:電圧−電流変換用増幅器 4:負荷パターン設定器
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a view showing the main part of another embodiment, and FIGS. 3 (a) and 3 (b) are other test pieces that can be tested by the present invention. FIG. 4 is a conceptual diagram showing an example in which the present invention is applied to a bending test, and FIG.
(A), (b) is a conceptual diagram when applying this invention to a torsion test, (a) is a front view, (b) is b- of (a).
It is a b line sectional view. 1,11,21,31,41,51: Test piece 2,12,22,32,42,52: Coil 3: Voltage-current conversion amplifier 4: Load pattern setter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】荷重負荷点を挟んで磁性体の試験片自体
に、連続して互いに反対向きに巻回したそれぞれのコイ
ルに電流を流して、この荷重負荷点に互いに反対方向の
電磁力を発生させる負荷手段と、前記電磁力が試験片の
負荷パターンに相応するよう前記負荷手段へ電気信号を
供給する負荷パターン設定手段とを具備してなる材料試
験機。
1. An electric current is caused to flow through respective coils continuously wound in opposite directions on a magnetic test piece itself across a load point, and electromagnetic forces in opposite directions are applied to the load point. A material testing machine comprising: load means for generating; and load pattern setting means for supplying an electric signal to the load means so that the electromagnetic force corresponds to the load pattern of a test piece.
JP61072028A 1986-03-28 1986-03-28 Material testing machine Expired - Lifetime JPH0713590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072028A JPH0713590B2 (en) 1986-03-28 1986-03-28 Material testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072028A JPH0713590B2 (en) 1986-03-28 1986-03-28 Material testing machine

Publications (2)

Publication Number Publication Date
JPS62228133A JPS62228133A (en) 1987-10-07
JPH0713590B2 true JPH0713590B2 (en) 1995-02-15

Family

ID=13477546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072028A Expired - Lifetime JPH0713590B2 (en) 1986-03-28 1986-03-28 Material testing machine

Country Status (1)

Country Link
JP (1) JPH0713590B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS607595Y2 (en) * 1976-08-23 1985-03-14 日本電気ホームエレクトロニクス株式会社 magnetic recording and reproducing device

Also Published As

Publication number Publication date
JPS62228133A (en) 1987-10-07

Similar Documents

Publication Publication Date Title
JP3824329B2 (en) Mobile actuator
JPH076901B2 (en) Material testing machine
JPH0713590B2 (en) Material testing machine
EP0967022B1 (en) Vibration generating mechanism
EP1530707B1 (en) Method for measuring stress/strain using barkhausen noises
JPS61134601A (en) Magnetic type displacement sensor
US387310A (en) Electro-mechanical movement
Wickenden et al. Development of miniature magnetometers
US4359765A (en) Magnetizing system
Sánchez et al. Circumferential permeability in nonmagnetostrictive amorphous wires
Brauer et al. Coupled nonlinear electromagnetic and structural finite element analysis of an actuator excited by an electric circuit
JP6473546B1 (en) Electromagnet, magnetic field application system
Jing et al. Towards functional mobile magnetic microrobots
Banerjee et al. Analysis, design, fabrication and testing of three actuators based electromagnetic levitation system for vehicle applications
JP2010514389A (en) System and method for magnetically driven reciprocating motion
Dreishing et al. Experimental and Analytical Analysis of a Compact Ironless Perma-nent-Magnet Tubular Linear Motor (PM-TLSM)
Zhang et al. Primary analysis of frequency characteristics in a miniature self-propelling device using Fe-Ga alloys (Galfenol)
JP2000258288A (en) Electrokinetic vibration generator
WO1994029733A1 (en) Process for contactlessly determining electrical measurements
SU824391A1 (en) Method of exciting electromotive force in ferromagnetic wire
de Beauregard et al. Comment on Mikhailov’s article
US842413A (en) Electromagnetic power-generator.
Obata et al. Development of functional force solenoid actuator
RU2120693C1 (en) Magnetic-to-mechanical converter and method for control of magnetic-to-mechanical converter
JPS57139604A (en) Displacement detector of magnetic substance