JPH0713563B2 - Inspection method for soldered parts of leaded parts - Google Patents

Inspection method for soldered parts of leaded parts

Info

Publication number
JPH0713563B2
JPH0713563B2 JP2167850A JP16785090A JPH0713563B2 JP H0713563 B2 JPH0713563 B2 JP H0713563B2 JP 2167850 A JP2167850 A JP 2167850A JP 16785090 A JP16785090 A JP 16785090A JP H0713563 B2 JPH0713563 B2 JP H0713563B2
Authority
JP
Japan
Prior art keywords
soldering
height
inspection
lead
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2167850A
Other languages
Japanese (ja)
Other versions
JPH0455709A (en
Inventor
長生 濱田
一成 吉村
紳二 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2167850A priority Critical patent/JPH0713563B2/en
Publication of JPH0455709A publication Critical patent/JPH0455709A/en
Publication of JPH0713563B2 publication Critical patent/JPH0713563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Image Analysis (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は三次元立体画像を用いて印刷配線基板上に実装
半田付けされたリード付き部品の半田付け部を検査する
検査方法に関するものである。
The present invention relates to an inspection method for inspecting a soldered portion of a leaded component mounted and soldered on a printed wiring board using a three-dimensional stereoscopic image. .

[従来の技術] 特開昭57−208404号のように印刷配線基板上に実装半田
付けされたリード付き部品の半田付け部の検査は、従来
TVカメラによる輝度画像、或はライン光を投光してある
角度を持った位置から撮像する光切断法により検査を行
っていた。
[Prior Art] Inspection of the soldering portion of a leaded component mounted and soldered on a printed wiring board as in Japanese Patent Laid-Open No. 57-208404 has been performed conventionally.
The inspection was performed by a brightness image from a TV camera or a light-section method in which line light is projected from a position with an angle.

[発明が解決しようとする課題] ところがこれら従来の方法では実際の半田量の測定、ク
リンチされたリード半田付け部の精度の良い検査、測定
位置の位置ずれの影響が少ない半田付け部の検査等がで
きないという欠点があった。
[Problems to be Solved by the Invention] However, in these conventional methods, the actual amount of solder is measured, the clinched lead soldering portion is accurately inspected, and the inspection of the soldering portion which is less affected by the displacement of the measurement position is performed. There was a drawback that you couldn't.

本発明は上述の問題点に鑑みてなされたもので、その目
的とするところは印刷配線基板上に実装半田付けされた
リード付き部品の半田付け部を三次元計測することによ
り、半田付け状態の正確な良否判定が行えるようにした
リード付き部品の半田付け部の検査方法を提供するにあ
る。
The present invention has been made in view of the above problems, and its object is to measure the soldered state of a soldered state by three-dimensionally measuring the soldered portion of a leaded component mounted and soldered on a printed wiring board. It is another object of the present invention to provide a method for inspecting a soldered portion of a leaded component that enables accurate quality determination.

[課題を解決するための手段] 上記目的を達成するために、請求項1記載の発明では、
印刷配線基板上に実装半田付けされたリード付き部品の
リード半田付け部を三次元計測して得られた立体画像に
対して、高さ方向に複数の断面像を得るための高さを設
定し、この設定した複数の高さ位置の断面像より断面積
を求め、この求めた断面積の内相隣接せる高さ位置の断
面積間の差を夫々求め、この求めた断面積間の差と高さ
位置のレベル差とより半田ぬれ角度を求め、この求めた
半田ぬれ角度から半田付け形状の良否を判定するのであ
る。
[Means for Solving the Problems] In order to achieve the above-mentioned object, in the invention according to claim 1,
Set the height to obtain multiple cross-sectional images in the height direction for the three-dimensional image obtained by three-dimensionally measuring the lead soldering part of the leaded component mounted and soldered on the printed wiring board. , The cross-sectional area is obtained from the cross-sectional images at the set height positions, and the difference between the cross-sectional areas at the height positions where the inner phases of the obtained cross-sectional areas are adjacent to each other is obtained. The solder wetting angle is obtained from the level difference between the height positions, and the quality of the soldering shape is determined from the obtained solder wetting angle.

また更に、請求項2記載の発明では印刷配線基板上に実
装半田付けされたリード付き部品のリード半田付け部を
三次元計測して得られた立体画像に対して、高さ方向に
複数の断面像を得るための高さを設定し、この設定した
複数の高さ位置の断面像を求め、この求めた各断面像の
位置からリードの曲がり方向を求めた後、半田付け検査
過程での検査位置を決定するのである。
Further, in the invention according to claim 2, a plurality of cross-sections in the height direction are obtained with respect to a stereoscopic image obtained by three-dimensionally measuring the lead soldering portion of the leaded component mounted and soldered on the printed wiring board. After setting the height for obtaining the image, obtaining cross-sectional images at the multiple height positions that have been set, obtaining the bending direction of the lead from the obtained positions of each cross-sectional image, and then performing the inspection in the soldering inspection process. The position is decided.

請求項3記載の発明では、印刷配線基板上に実装半田付
けされたリード付き部品のリード半田付け部を三次元計
測して得られた立体画像に対して、予め分かっているリ
ードき部品実装の位置と、リード付き部品の半田付け領
域内の最大高さを示す部分の位置よりリードの曲がり方
向を求めた後、半田付け検査過程における検査位置を決
定するのである。
According to the third aspect of the invention, it is possible to mount a lead component which is known in advance on a stereoscopic image obtained by three-dimensionally measuring the lead soldering portion of the lead component mounted and soldered on the printed wiring board. After the bending direction of the lead is obtained from the position and the position of the portion showing the maximum height in the soldering area of the leaded component, the inspection position in the soldering inspection process is determined.

請求項4記載の発明では、請求項2又は3記載の発明に
おいて、リードの曲がり方向と逆方向に検査ラインを設
定し、検査ライン上の高さ位置の差分値より半田付け形
状の良否を判定する半田付け検査過程を持つものであ
る。
In the invention according to claim 4, in the invention according to claim 2 or 3, the inspection line is set in the direction opposite to the bending direction of the lead, and the quality of the soldering shape is determined from the difference value of the height positions on the inspection line. It has a soldering inspection process.

請求項5記載の発明では、請求項2又は3記載の発明に
おいて、リードの曲がり方向と逆方向に検査ラインを設
定し、検査ライン上の高さ位置より半田付け形状の曲率
を求めて半田付け形状の良否を判定する半田付け検査過
程を持つのである。
In the invention according to claim 5, in the invention according to claim 2 or 3, the inspection line is set in the direction opposite to the bending direction of the lead, and the curvature of the soldering shape is obtained from the height position on the inspection line for soldering. It has a soldering inspection process for judging the quality of the shape.

[作用] 本発明は、三次元計測により得られた立体画像を用いる
ため、半田付け部の良否判定が精度良く行えるのであ
る。
[Operation] Since the present invention uses the stereoscopic image obtained by three-dimensional measurement, the quality of the soldered portion can be accurately determined.

特に請求項1記載の発明によれば、三次元計測して得ら
れた立体画像に対して、高さ方向に複数の断面像を得る
ための高さを設定し、この設定した複数の高さ位置の断
面像より断面積を求め、この求めた断面積の内相隣接せ
る高さ位置の断面積間の差を夫々求め、この求めた断面
積間の差と高さ位置のレベル差とより半田ぬれ角度を求
め、この求めた半田ぬれ角度から半田付け形状の良否を
判定するから、良好な半田付けのぬれ角度の半田付け形
状を判定することができる。
In particular, according to the invention described in claim 1, the height for obtaining a plurality of cross-sectional images in the height direction is set for the three-dimensional image obtained by three-dimensional measurement, and the set plurality of heights are set. The cross-sectional area is obtained from the cross-sectional image of the position, the difference between the cross-sectional areas of the height positions where the inner phase of the obtained cross-sectional area is adjacent to each other is obtained, and the difference between the obtained cross-sectional areas and the level difference of the height position are Since the solder wetting angle is obtained and the quality of the soldering shape is determined from the obtained solder wetting angle, it is possible to determine the soldering shape having a good soldering wetting angle.

請求項2記載の発明によれば、三次元計測して得られた
立体画像に対して、高さ方向に複数の断面像を得るため
の高さを設定し、この設定した複数の高さ位置の断面像
を求め、この求めた各断面像の位置からリードの曲がり
方向を求めた後、半田付け検査過程の検査位置を決定す
るので、検査対象の位置決め精度をあまり必要としな
い。
According to the invention described in claim 2, the height for obtaining a plurality of cross-sectional images in the height direction is set for the stereoscopic image obtained by three-dimensional measurement, and the set height positions are set. After obtaining the cross-sectional images and obtaining the bending direction of the leads from the obtained positions of the respective cross-sectional images, the inspection position in the soldering inspection process is determined, so that the positioning accuracy of the inspection object is not required so much.

請求項3記載の発明によれば、三次元計測して得られた
立体画像に対して、予め分かっているリード付き部品実
装の位置と、リード付き部品の半田付け領域内の最大高
さを示す部分の位置よりリードの曲がり方向を求めた
後、半田付け検査過程における検査位置を決定するの
で、請求項4記載の発明と同様に検査対象の位置決め精
度をあまり必要としない。
According to the third aspect of the present invention, the position of mounting the leaded component, which is known in advance, and the maximum height in the soldering area of the leaded component are shown with respect to the stereoscopic image obtained by three-dimensional measurement. Since the inspection position in the soldering inspection process is determined after the bending direction of the lead is obtained from the position of the portion, the positioning accuracy of the inspection object is not so required as in the invention according to claim 4.

請求項4記載の発明によれば、リードの曲がり方向と逆
方向に検査ラインを設定し、検査ライン上の高さ位置の
差分値より半田付け形状の良否を判定する半田付け検査
過程を持つものであるから、位置決め精度をあまり要求
されることなく、良好な半田付け形状の判定が行える。
According to the invention as set forth in claim 4, there is provided a soldering inspection process in which the inspection line is set in a direction opposite to the bending direction of the lead and the quality of the soldering shape is judged from the difference value of the height position on the inspection line. Therefore, a good soldering shape can be determined without requiring much positioning accuracy.

請求項5記載の発明によれば、リードの曲がり方向と逆
方向に検査ラインを設定し、検査ライン上の高さ位置よ
り半田付け形状の曲率を求めて半田付け形状の良否を判
定する半田付け検査過程を持つものであるから、請求項
3記載の発明と同様に位置決め精度をあまり要求される
ことなく、良好な半田付け形状の判定が行える。
According to the invention of claim 5, the inspection line is set in the direction opposite to the bending direction of the lead, and the curvature of the soldered shape is obtained from the height position on the inspection line to judge the quality of the soldered shape. Since it has an inspection process, a good soldering shape can be determined without requiring much positioning accuracy as in the third aspect of the invention.

[実施例] 以下本発明を実施例により説明する。[Examples] The present invention will be described below with reference to Examples.

第1図は本発明方法を採用した検査システムの構成を示
しており、三次元画像検出装置1は印刷配線基板上に実
装半田付けされたリード付き部品のリード半田付け部を
三次元計測するための装置であり、検査対象となる印刷
配線基板上のリード付部品のリード半田付け部の高さを
計測し、移動機構2により印刷配線基板を移動させて計
測箇所を変えることにより三次元データを求めるように
なっている。この三次元データは画像メモリ3に格納
し、画像処理部4で検査判定を行うのである。尚制御部
5は移動機構2の制御を行うものであり、全体制御部6
は三次元画像検出装置1、画像メモリ3、画像処理部
4、制御部5などシステム全体を制御するものである。
FIG. 1 shows the configuration of an inspection system adopting the method of the present invention. The three-dimensional image detection apparatus 1 is for three-dimensionally measuring the lead soldering part of the leaded component mounted and soldered on the printed wiring board. This is a device for measuring three-dimensional data by measuring the height of the lead soldering part of the leaded component on the printed wiring board to be inspected and moving the printed wiring board by the moving mechanism 2 to change the measurement location. I am asking for it. This three-dimensional data is stored in the image memory 3, and the image processing unit 4 makes an inspection decision. The control unit 5 controls the moving mechanism 2, and the overall control unit 6
Is for controlling the entire system such as the three-dimensional image detection device 1, the image memory 3, the image processing unit 4, and the control unit 5.

次に上記システムを使用した本発明方法の実施例1を第
2図のフローチャートに基づいて説明する。
Next, a first embodiment of the method of the present invention using the above system will be described with reference to the flowchart of FIG.

この実施例1ではステップで処理を開始し、ステップ
では予め教示された検査領域データに基づき、検査領
域を設定し、ステップでは基板高さ検出ポイントの高
さを計測して基板高さH0を測定する。
In the first embodiment, the processing is started in step, the inspection area is set based on the inspection area data taught in advance in step, and the height of the board height detection point is measured in step to determine the board height H 0 . taking measurement.

次いでステップでは予め設定されている断面積を求め
るためのオフセット高さdiを上記基板高さH0に加算し、
断面積を求めるレベルhi(但しi=0〜n)を決定す
る。
Next, in step, the offset height di for obtaining the preset cross-sectional area is added to the substrate height H0,
The level hi (where i = 0 to n) for obtaining the cross-sectional area is determined.

次のステップでは上記基板高さH0よりαだけ引いレベ
ルhdを決定する。このような決定後、ステップでは第
3図に示すように下位レベルhkでの断面積Skを求め、ス
テップで断面積Skと、半田無し不良を判別する第4図
(a)に示す良品に対応した規格の断面積とを比較し、
規格値より断面積Skが第4図(b)に示すように小さけ
れば半田無しと判定する。
In the next step, the level hd is determined by subtracting α from the substrate height H0. After such determination, in step, the cross-sectional area Sk at the lower level hk is obtained as shown in FIG. 3, and in step, the cross-sectional area Sk and the non-defective product shown in FIG. Compared with the cross-sectional area of the standard,
If the cross-sectional area Sk is smaller than the standard value as shown in FIG. 4 (b), it is determined that there is no solder.

次にステップにおいて上記レベルhdでの穴の断面積Sd
を求める。このレベルhdは基板高さH0より低いため、良
好な半田付けが為されている場合、断面積Sdは0となる
が、穴が空いている場合には断面積Sdの値を予め設定し
ている規格値と比較することにより穴あき不良を判定す
ることができる。ステップはこの穴あき不良の判定ス
テップである。
Next, in the step, the cross-sectional area Sd of the hole at the above level hd
Ask for. Since this level hd is lower than the board height H0, the cross-sectional area Sd becomes 0 when good soldering is done, but when the hole is open, the value of the cross-sectional area Sd is preset. It is possible to judge the perforated defect by comparing it with the standard value. The step is a step of judging the perforated defect.

ステップ〜の間では各高さhiの断面積Si(但しi=
0〜n)を求め、夫々の半田不足、不良を判定するため
の規格値(断面積)と比較し、測定した断面積が規格値
より小さければ、半田不足と判定し、次に夫々の半田過
剰を判別する規格値(断面積)と比較し規格値より大き
ければ、半田過剰と判定する。
The cross-sectional area Si at each height hi (where i =
0-n) is calculated, and compared with the standard value (cross-sectional area) for judging the lack of solder and defects, if the measured cross-sectional area is smaller than the standard value, it is determined that there is insufficient solder, and then each solder If it is larger than the standard value by comparing with the standard value (cross-sectional area) for determining excess, it is judged that the solder is excessive.

次のステップでは断面積間の差dsiを求める。The next step is to find the difference dsi between the cross-sectional areas.

dsi=(Si+1−Si)/Si ステップでは良好な半田付け形状のdsiとの比較を求
め、その率が(100−ε)%〜(100−ε)%(但し
ε1>0)の間になければ半田付け形状不良と判定
する。
dsi = (Si +1 −Si) / Si In step, comparison with dsi of good soldering shape was obtained, and the ratio was (100−ε 1 )% to (100−ε 2 )% (however, ε 1 , ε If it is not between 2 > 0), it is determined that the soldering shape is defective.

ステップでSi1/2を、ステップでSi+1 1/2を夫々求め
る。ここで第5図に示すように、良好な半田付け状態な
らば各断面形状はほぼ円形になっているため、断面積Si
+1とSiを求めた夫々のレベルHiとHi+1の間には次のよう
な関係式が成立しiとi+1との間の半田ぬれ角度θi
は θi=tan-1{π1/2(Hi−Hi+1) /(Si1/2−Si+1 1/2)} となる。
Si 1/2 is obtained in the step and Si +1 1/2 is obtained in the step. Here, as shown in FIG. 5, each cross-sectional shape is substantially circular if the soldering condition is good, so the cross-sectional area Si
The following relational expression is established between the respective levels Hi and Hi +1 for which +1 and Si are obtained, and the solder wetting angle θi between i and i + 1
Is θi = tan −11/2 (Hi−Hi +1 ) / (Si 1/2 −Si +1 1/2 )}.

ステップではステップで求めたθi(但しi=0〜
n)を良好な半田付けのぬれ角度範囲と比較し、半田付
け形状の良否を判定する。そしてステップでi=0と
判定されるまでステップ〜までの処理を繰り返して
行い、ステップでi=nと判定されると、検査過程が
終了する。
In step, θi obtained in step (where i = 0 to 0
n) is compared with the wetting angle range of good soldering to determine whether the soldering shape is good or bad. Then, the processes from step to are repeatedly performed until i = 0 is determined in step, and when i = n is determined in step, the inspection process ends.

実施例2 上記実施例1ではリード半田付け部の断面積を利用して
半田量の良否や、半田付け形状の良否を判定していた
が、本実施例はリードの曲がり方向を利用したものであ
る。
Second Embodiment In the first embodiment, the quality of the solder amount and the quality of the soldering shape are determined by using the cross-sectional area of the lead soldering portion, but this embodiment uses the bending direction of the lead. is there.

第6図は本実施例のフローチャートを示しており、以下
実施例をこのフローチャートに沿って説明する。
FIG. 6 shows a flowchart of this embodiment, and the embodiment will be described below with reference to this flowchart.

まずステップで処理を開始し、ステップで予め教示
された検査領域データに基づき検査領域を設定し、ステ
ップで第7図に示す基板高さ検出ポイントAの高さを
計測し、基板高さH0を測定する。
First, the process is started in step, the inspection area is set based on the inspection area data taught in advance in step, and the height of the board height detection point A shown in FIG. 7 is measured in step to determine the board height H0. taking measurement.

ステップで基板高さH0に予め設定されている断面像を
求めるためのオフセット高さdiを加算し、断面像を求め
るレベルhiを決定する。但i=0〜1とする。
In step, the offset height di for obtaining the sectional image preset to the substrate height H 0 is added, and the level hi for obtaining the sectional image is determined. However, i = 0 to 1.

ステップ〜ステップの間で各レベルhiでの断面積を
求め、ステップで各断面像の重心座標(Xgi,Ygi)
[第4図において+マークで表示]の直線近似を行いリ
ードが曲がっている方向Bを決定する。
The cross-sectional area at each level hi is calculated between steps, and the barycentric coordinates (Xgi, Ygi) of each cross-sectional image are calculated in step.
A linear approximation of [indicated by + mark in FIG. 4] is performed to determine the direction B in which the lead is bent.

次にステップで最上位hjの断面のリードの曲がり方向
Bに対して第7図に示すように180゜の方向にある周上
の点pを求める。また、ステップで最下位haの断面の
リードの曲がり方向Bに対して180゜の方向にある点q
を求める。
Next, in a step, a point p on the circumference in the direction of 180 ° with respect to the bending direction B of the lead in the cross section of the uppermost hj is obtained as shown in FIG. In addition, the point q in the direction of 180 ° with respect to the bending direction B of the lead in the cross section of the lowest ha in the step
Ask for.

次のステップでは点pと点qを結ぶ肩の検査ラインを
決定する。
In the next step, a shoulder inspection line connecting the points p and q is determined.

ステップではこの検査ライン上の画素の高さを測定
し、ステップでは点pから点qへ向かって各画素を高
さを良好な半田付け形状の高さを比較して半田付け形状
の良否を判定する。
In the step, the height of the pixel on this inspection line is measured, and in the step, the height of each pixel is compared from the point p to the point q and the height of the good soldering shape is compared to judge the quality of the soldering shape. To do.

次にこの判定が良好な場合にはステップで、第11図又
は第13図のフローチャートに示すリード付き部品の半田
付け形状検査過程を経て検査を終了する。
If this determination is good, then in step, the inspection is completed after the soldering shape inspection process of the leaded component shown in the flowchart of FIG. 11 or 13.

実施例3 実施例2では複数断面を用いてリードの曲がり方向の決
定を行うものであるが、本実施例は最大高さによってリ
ードの曲がり方向を決定するものである。
Third Embodiment In the second embodiment, the bending direction of the lead is determined using a plurality of cross sections, but in the present embodiment, the bending direction of the lead is determined by the maximum height.

以下第8図のフローチャートに基づいて本実施例を説明
する。
This embodiment will be described below with reference to the flowchart of FIG.

まず実施例2と同様にステップで処理を開始し、ステ
ップで予め教示された検査領域データに基づき検査領
域を設定し、ステップで第9図に示す検査領域内の最
大高さを示す位置Cを求める。ここでリード足が挿入に
される孔の位置Dは検査領域に対する相対座標として予
め分かっているため、点Cと点Dとの位置関係によりス
テップで第9図に示すリード曲がり方向Bを決定す
る。
First, similar to the second embodiment, the processing is started in steps, the inspection area is set on the basis of the inspection area data taught in advance in the step, and the position C indicating the maximum height in the inspection area shown in FIG. 9 is set in the step. Ask. Here, since the position D of the hole into which the lead leg is inserted is known in advance as relative coordinates with respect to the inspection region, the lead bending direction B shown in FIG. 9 is determined in steps by the positional relationship between the points C and D. .

次にステップでリード足挿入位置D上にある点pを求
める。またステップで点pよりリード曲がり方向Bと
逆方向に延長した直線と検査領域との交点qを求める。
Next, in step, a point p on the lead foot insertion position D is obtained. Further, in a step, an intersection q between the straight line extending from the point p in the direction opposite to the lead bending direction B and the inspection area is obtained.

ステップで肩の検査ラインを点pとqとを結ぶ線で決
定する。
In step, the shoulder inspection line is determined by the line connecting points p and q.

ステップではこの検査ライン上の画素の高さを測定
し、ステップでは点pから点qへ向かって各画素の高
さを良好な半田付け形状の高さと比較して半田付け形状
の良否を判定する。
In the step, the height of the pixel on this inspection line is measured, and in the step, the height of each pixel is compared from the point p to the point q with the height of the good soldering shape to judge the quality of the soldering shape. .

この判定が良好な場合にはステップで、第1図又は第
13図のフローチャートに示すリード付き部品の半田付け
形状検査過程を経て検査を終了する。
If this judgment is good, step 1 or FIG.
After the soldering shape inspection process of the leaded component shown in the flowchart of FIG. 13, the inspection is completed.

次に上記実施例2又は実施例3に採用する半田付け形状
検査過程に採用した検査方法を説明する。
Next, the inspection method adopted in the soldering shape inspection process used in the above-mentioned second or third embodiment will be described.

第10図はその検査方法の一例の原理を示し、第11図はそ
のフローチャートを示している。
FIG. 10 shows the principle of an example of the inspection method, and FIG. 11 shows its flowchart.

第10図のイ曲線は点pと点qとを結ぶ検査ラインの半田
付けのぬれ上がり状態を示しており、同図の曲線ロは点
pから点qへ向けての2点間の差分値を示しており、こ
の図から明らかなように半田付けの濡れ上がり不十分な
場合、差分値が負の値から正の値を示す部分があり、良
好な半田付け形状の場合にはなだらかに下降しているた
め、負の値から0になる。つまり差分値が正の場合には
不良となるのである。
The curve a in FIG. 10 shows the soldering up state of the inspection line connecting the point p and the point q, and the curve b in the figure shows the difference value between the two points from the point p to the point q. As is clear from this figure, when soldering is insufficiently wet, there is a part where the difference value shows from a negative value to a positive value, and in the case of a good soldering shape, it falls gently. Therefore, the negative value becomes 0. That is, when the difference value is positive, it becomes defective.

この検査方法を第11図のフローチャートに基づいて説明
すると、ステップで検査過程を開始し、ステップで
検査ラインの点piの高さhpiを求め、次のステップで
点piより下降した点pi+1の高さを求め、ステップで両
方の高さの差分値hpi+1−hpiを求め、ステップで差分
値の正負を判定し、正ならば不良と判定する。ステップ
で良と判定されると、ステップの判定がq=pi+1
なければ、ステップに戻り、上記の過程を繰り返し、
ステップでの判定がq=pi+1であればステップで検
査過程が終了となる。
This inspection method will be described with reference to the flowchart of FIG. 11. The inspection process is started in steps, the height hpi of the point pi of the inspection line is determined in steps, and the point pi +1 which is lower than the point pi in the next step is calculated. , The difference value hpi +1 −hpi of both heights is determined in step, and the positive or negative of the difference value is determined in step. If positive, it is determined to be defective. If it is judged as good in the step, if the judgment in the step is not q = pi + 1 , the process returns to the step and the above process is repeated.
If the determination in step is q = pi + 1 , the inspection process ends in step.

第13図は第12図に示す点pと点qとを結ぶ検査ラインの
曲率を求めることによって半田付け形状の不良判定を求
める検査方法のフローチャートを示しており、この場合
にはステップで処理を開始し、ステップでp点と、
q点を結ぶ検査ライン上の高さデータより曲率を求め、
ステップで良好な半田付け形状の曲率と比較して半田
付け形状の良否を判定し、ステップで終了する。
FIG. 13 shows a flowchart of an inspection method for determining a defect in the soldering shape by obtaining the curvature of the inspection line connecting the point p and the point q shown in FIG. Start and p points in steps,
The curvature is calculated from the height data on the inspection line connecting the q points,
In step, the quality of the soldering shape is judged by comparing with the curvature of the good soldering shape, and the process ends in step.

[発明の効果] 本発明は、三次元計測により得られた立体画像を用いる
ため、半田付け部の良否判定が精度良く行える効果があ
る。
EFFECTS OF THE INVENTION Since the present invention uses a stereoscopic image obtained by three-dimensional measurement, there is an effect that the quality of the soldered portion can be accurately determined.

特に請求項1記載の発明は、三次元計測して得られた立
体画像に対して、高さ方向に複数の断面像を得るための
高さを設定し、この設定した複数の高さ位置の断面像よ
り断面積を求め、この求めた断面積の内相隣接せる高さ
位置の断面積間の差を夫々求め、この求めた断面積間の
差と高さ位置のレベル差とより半田ぬれ角度を求め、こ
の求めた半田ぬれ角度から半田付け形状の良否を判定す
るから、良好な半田付けのぬれ角度の半田付け形状を判
定することができるという効果がある。
In particular, the invention according to claim 1 sets a height for obtaining a plurality of cross-sectional images in the height direction with respect to a stereoscopic image obtained by three-dimensional measurement, and sets the height of the set plurality of height positions. The cross-sectional area is obtained from the cross-sectional image, and the difference between the cross-sectional areas of the height positions where the obtained cross-sectional areas are adjacent to each other is calculated. Since the angle is obtained and the quality of the soldering shape is determined from the obtained solder wetting angle, it is possible to determine the soldering shape having a good wetting angle for soldering.

請求項2記載の発明は、三次元計測して得られた立体画
像に対して、高さ方向に複数の断面像を得るための高さ
を設定し、この設定した複数の高さ位置の断面像を求
め、この求めた各断面像の位置からリードの曲がり方向
を求めた後、半田付け検査過程の検査位置を決定するの
で、検査対象の位置決め精度をあまり必要としないとい
う効果がある。
The invention according to claim 2 sets a height for obtaining a plurality of cross-sectional images in the height direction with respect to a stereoscopic image obtained by three-dimensional measurement, and the cross-sections at the set height positions. After the image is obtained and the bending direction of the lead is obtained from the obtained position of each cross-sectional image, the inspection position in the soldering inspection process is determined, so that the positioning accuracy of the inspection object is not required so much.

請求項3記載の発明は、三次元計測して得られた立体画
像に対して、予め分かっているリード付き部品実装の位
置と、リード付き部品の半田付け領域内の最大高さを示
す部分の位置よりリードの曲がり方向を求めた後、半田
付け検査過程における検査位置を決定するので、請求項
2記載の発明と同様に検査対象の位置決め精度をあまり
必要としないという効果がある。
According to a third aspect of the present invention, with respect to a three-dimensional image obtained by three-dimensional measurement, a known position of mounting the lead-equipped component and a portion indicating the maximum height in the soldering area of the lead-equipped component are displayed. Since the inspection position in the soldering inspection process is determined after the lead bending direction is obtained from the position, there is an effect that the positioning accuracy of the inspection object is not so much required as in the invention according to claim 2.

請求項4記載の発明は、リードの曲がり方向と逆方向に
検査ラインを設定し、検査ライン上の高さ位置の差分値
より半田付け形状の良否を判定する半田付け検査過程を
持つものであるから、位置決め精度をあまり要求される
ことなく、良好な半田付け形状の判定が行えるという効
果がある。
The invention according to claim 4 has a soldering inspection process in which an inspection line is set in a direction opposite to the bending direction of the leads, and the quality of the soldering shape is judged from the difference value of the height positions on the inspection line. Therefore, there is an effect that a good soldering shape can be determined without requiring much positioning accuracy.

請求項5記載の発明は、リードの曲がり方向と逆方向に
検査ラインを設定し、検査ライン上の高さ位置より半田
付け形状の曲率を求めて半田付け形状の良否を判定する
半田付け検査過程を持つものであるから、請求項6記載
の発明と同様に位置決め精度をあまり要求されることな
く、良好な半田付け形状の判定が行えるという効果があ
る。
A fifth aspect of the present invention is a soldering inspection process in which an inspection line is set in a direction opposite to a bending direction of leads, and a curvature of the soldering shape is obtained from a height position on the inspection line to determine whether the soldering shape is good or bad. Therefore, similar to the invention described in claim 6, there is an effect that a good soldering shape can be determined without requiring much positioning accuracy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に用いる検査システムの構成図、第2図
は本発明の実施例1のフローチャート、第3図は同上の
半田不足検査の説明図、第4図(a)は同上で良品と判
定される場合の断面図、第4図(b)は同上で不良品と
判定される場合の断面図、第5図は同上の半田ぬれ検査
の説明図、第6図は本発明の実施例2のフローチャー
ト、第7図は同上の説明図、第8図は本発明の実施例3
のフローチャート、第9図は同上の説明図、第10図は実
施例2又は実施例3に用いる形状検査方法の一例の原理
説明図、第11図は同上のフローチャート、第12図は実施
例2又は実施例3に用いる形状検査方法の他の例の原理
説明図、第13図は同上のフローチャートである。 1は三次元画像検出装置、2は移動機構、3は画像メモ
リ、4は画像処理部、5は制御部、6は全体制御部であ
る。
FIG. 1 is a block diagram of an inspection system used in the present invention, FIG. 2 is a flowchart of Embodiment 1 of the present invention, FIG. 3 is an explanatory diagram of the solder shortage inspection of the above, and FIG. FIG. 4 (b) is a sectional view when it is determined to be a defective product, FIG. 5 is an explanatory diagram of the solder wetness inspection above, and FIG. 6 is an embodiment of the present invention. Flowchart of Example 2, FIG. 7 is an explanatory diagram of the same as above, and FIG. 8 is Embodiment 3 of the present invention.
Of FIG. 9, FIG. 9 is an explanatory view of the same as above, FIG. 10 is an explanatory view of the principle of an example of the shape inspection method used in the second or third embodiment, FIG. 11 is a flowchart of the same as above, and FIG. Alternatively, FIG. 13 is a flowchart illustrating the principle of another example of the shape inspection method used in the third embodiment, and FIG. 1 is a three-dimensional image detection device, 2 is a moving mechanism, 3 is an image memory, 4 is an image processing unit, 5 is a control unit, and 6 is an overall control unit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】印刷配線基板上に実装半田付けされたリー
ド付き部品のリード半田付け部を三次元計測して得られ
た立体画像に対して、高さ方向に複数の断面像を得るた
めの高さを設定し、この設定した複数の高さ位置の断面
像より断面積を求め、この求めた断面積の内相隣接せる
高さ位置の断面積間の差を夫々求め、この求めた断面積
間の差と高さ位置のレベル差とより半田ぬれ角度を求
め、この求めた半田ぬれ角度から半田付け形状の良否を
判定することを特徴としたリード付き部品の半田付け部
の検査方法。
1. A three-dimensional image obtained by three-dimensionally measuring a lead soldering portion of a leaded component mounted and soldered on a printed wiring board to obtain a plurality of sectional images in a height direction. The height is set, the cross-sectional area is obtained from the cross-sectional images at the set height positions, and the difference between the cross-sectional areas of the height positions at which the inner phases of the obtained cross-sectional areas are adjacent to each other is obtained, and the obtained disconnection is obtained. A method for inspecting a soldered portion of a leaded component, comprising determining a solder wetting angle from a difference between areas and a level difference of a height position, and determining whether the soldering shape is good or bad from the obtained solder wetting angle.
【請求項2】印刷配線基板上に実装半田付けされたリー
ド付き部品のリード半田付け部を三次元計測して得られ
た立体画像に対して、高さ方向に複数の断面像を得るた
めの高さを設定し、この設定した複数の高さ位置の断面
像を求め、この求めた各断面像の位置からリードの曲が
り方向を求めた後、半田付け検査過程の検査位置を決定
することを特徴とするリード付き部品の半田付け部の検
査方法。
2. A three-dimensional image obtained by three-dimensionally measuring a lead soldering part of a leaded component mounted and soldered on a printed wiring board to obtain a plurality of cross-sectional images in a height direction. After setting the height, obtaining cross-sectional images at the multiple height positions that have been set, determining the bending direction of the lead from the positions of the obtained cross-sectional images, and then determining the inspection position in the soldering inspection process. A method for inspecting the soldered part of a featured leaded part.
【請求項3】印刷配線基板上に実装半田付けされたリー
ド付き部品のリード半田付け部を三次元計測して得られ
た立体画像に対して、予め分かっているリード付き部品
実装の位置と、リード付き部品の半田付け領域内の最大
高さを示す部分の位置よりリードの曲がり方向を求めた
後、半田付け検査過程における検査位置を決定すること
を特徴とするリード付き部品の半田付け部の検査方法。
3. A mounting position of a lead-equipped component which is known in advance with respect to a three-dimensional image obtained by three-dimensionally measuring a lead soldering portion of the lead-equipped component mounted and soldered on a printed wiring board. After determining the bending direction of the lead from the position of the portion showing the maximum height in the soldering area of the leaded component, the inspection position in the soldering inspection process is determined. Inspection method.
【請求項4】リードの曲がり方向と逆方向に検査ライン
を設定し、検査ライン上の高さ位置の差分値より半田付
け形状の良否を判定する半田付け検査過程を持つことを
特徴とする請求項2又は3記載のリード付き部品の半田
付け部の検査方法。
4. An inspection line is set in a direction opposite to the bending direction of the lead, and a soldering inspection process is provided to judge the quality of the soldering shape from the difference value of the height positions on the inspection line. Item 4. A method for inspecting a soldered part of a component with leads according to item 2 or 3.
【請求項5】リードの曲がり方向と逆方向に検査ライン
を設定し、検査ライン上の高さ位置より半田付け形状の
曲率を求めて半田付け形状の良否を判定する半田付け検
査過程を持つことを特徴とする請求項2又は3記載のリ
ード付き部品の半田付け部の検査方法。
5. A soldering inspection process in which an inspection line is set in the direction opposite to the bending direction of the lead, and the curvature of the soldering shape is obtained from the height position on the inspection line to judge the quality of the soldering shape. The method for inspecting a soldered portion of a component with leads according to claim 2 or 3.
JP2167850A 1990-06-26 1990-06-26 Inspection method for soldered parts of leaded parts Expired - Lifetime JPH0713563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2167850A JPH0713563B2 (en) 1990-06-26 1990-06-26 Inspection method for soldered parts of leaded parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2167850A JPH0713563B2 (en) 1990-06-26 1990-06-26 Inspection method for soldered parts of leaded parts

Publications (2)

Publication Number Publication Date
JPH0455709A JPH0455709A (en) 1992-02-24
JPH0713563B2 true JPH0713563B2 (en) 1995-02-15

Family

ID=15857249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2167850A Expired - Lifetime JPH0713563B2 (en) 1990-06-26 1990-06-26 Inspection method for soldered parts of leaded parts

Country Status (1)

Country Link
JP (1) JPH0713563B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522877B1 (en) * 2012-11-06 2015-05-26 주식회사 고영테크놀러지 Board inspection apparatus system and board inspection method
CN107087388B (en) 2012-11-06 2020-02-28 株式会社高永科技 Substrate inspection apparatus system and substrate inspection method
CN105007693B (en) * 2015-07-22 2017-09-29 卢靓 The tin pin flatness detection and adjusting apparatus of SMT patch products

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608707A (en) * 1983-06-29 1985-01-17 Matsushita Electric Works Ltd Method for detecting outward appearance of soldering
JPS6468606A (en) * 1987-09-10 1989-03-14 Fujitsu Ltd Solder shape detecting device

Also Published As

Publication number Publication date
JPH0455709A (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JP2751435B2 (en) Inspection method for soldering condition of electronic components
JP4103921B2 (en) Method of setting inspection reference data for fillet inspection, and substrate visual inspection apparatus using this method
JPH04120403A (en) Soldered joint locator
KR20010040998A (en) Automatic inspection system with stereovision
KR101144749B1 (en) Method for inspecting joint error of an element formed on a printed circuit board
JP2004172464A (en) Feature amount calculating device for soldering inspection
KR101633139B1 (en) A method and means for measuring positions of contact elements of an electronic components
JPH1054709A (en) Three-dimensional image recognizing device with microscope
JPH0713563B2 (en) Inspection method for soldered parts of leaded parts
JP3553652B2 (en) Shape measuring device, inspection device, and product manufacturing method
JP2002286427A (en) Solder printing inspection apparatus
JP2620992B2 (en) Inspection method for soldered parts of electronic components
JP6900261B2 (en) Processing equipment, substrate inspection equipment, processing method and substrate inspection method
JPH0611321A (en) Method for inspecting solder printing
JP2002098513A (en) Lens frame form measuring device
JP4158489B2 (en) Soldering inspection device
JP2793947B2 (en) Appearance inspection method of soldering condition
JP3013255B2 (en) Shape measurement method
JPH0739997B2 (en) Appearance inspection method for soldered parts
JPH11198343A (en) Inspecting method of cream solder printing
JP2946647B2 (en) Inspection method for integrated circuits
JP2545570B2 (en) Inclination inspection method for connecting lines by image processing
JPH028705A (en) Inspection of soldered part of mounted component
JP2008157749A (en) Inspection device
JP2708776B2 (en) Method of detecting lead pin vertical bending of surface mounted parts

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16