JPH07135010A - Heat removing device for fuel cell power plant - Google Patents

Heat removing device for fuel cell power plant

Info

Publication number
JPH07135010A
JPH07135010A JP5282523A JP28252393A JPH07135010A JP H07135010 A JPH07135010 A JP H07135010A JP 5282523 A JP5282523 A JP 5282523A JP 28252393 A JP28252393 A JP 28252393A JP H07135010 A JPH07135010 A JP H07135010A
Authority
JP
Japan
Prior art keywords
exhaust
heat
equipment
plant
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5282523A
Other languages
Japanese (ja)
Inventor
Kenji Watanabe
健次 渡辺
Hideo Sato
穎生 佐藤
Yoshiaki Murase
善朗 村瀬
Masahiro Akiyoshi
正寛 秋吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP5282523A priority Critical patent/JPH07135010A/en
Publication of JPH07135010A publication Critical patent/JPH07135010A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To reduce the volume and space of equipment by utilizing exhaust of a ventilating equipment for cooling air of an air cooler, and integrating the ventilating equipment and a cooling tower to concurrently serves as a fan. CONSTITUTION:The outside air is taken in by a suction fan 8 and partly supplied through a damper 15 into a building 9 receiving a fuel cell power plant 1, and heat generated from the plant 1 is taken to an exhaust fan 10 by air to the with the outside air bypassing the building 9 by the suction fan 8. This exhaust is fed into an exhaust tower 13 through an exhaust silencer 11 and discharged to the atmosphere through a heat transfer element 14 of an air cooler. Here is utilized the exhaust as air cooler cooling air, to perform a heat exchange with exhaust heat water 2 supplied from the plant 1, and the water is returned to the plant 1 as cooling water 4. Thus by utilizing exhaust of a ventilating equipment for cooling air of the air cooler, the ventilating equipment and a cooling tower can be integrated, and the exhaust fan can be used as an equipment concurrently serving in common for the ventilating equipment and the air cooler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池発電プラントに
おいて、特に屋内に設置あるいはエンクロージャ内に収
容した燃料電池発電プラントの除熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power plant, and more particularly to a heat removal apparatus for a fuel cell power plant installed indoors or housed in an enclosure.

【0002】[0002]

【従来の技術】一般に燃料電池発電プラントは、燃料の
水素と空気中の酸素との電気化学反応により電気と熱を
発生させるものである。この燃料電池発電プラントから
発生する熱は蒸気あるいは温水の形で取出され、空調用
あるいは給湯用として有効利用されることが多い。しか
し、熱需要がない場合もあり得ることを想定すると、プ
ラントとしては排熱を大気、河川、海水等に放散する設
備が必要となる。
2. Description of the Related Art Generally, a fuel cell power generation plant generates electricity and heat by an electrochemical reaction between hydrogen as a fuel and oxygen in the air. The heat generated from this fuel cell power plant is extracted in the form of steam or hot water, and is often effectively used for air conditioning or hot water supply. However, assuming that there may be cases where there is no heat demand, the plant needs equipment that dissipates the exhaust heat into the atmosphere, rivers, seawater, and the like.

【0003】通常は立地条件の制約を受けない設備とし
て冷却水を冷却塔で放熱する方法が採られる。また、プ
ラントから発生する熱量としては蒸気あるいは温水の状
態での排熱以外に機器、配管の表面から放出される熱が
ある。この発熱に関しては、屋外設置のプラントの場合
は大気に放出されるので問題ないが、屋内設置あるいは
エンクロージャ内に収容する場合は、プラント雰囲気温
度の上昇を抑えるために換気設備が必要になる。
Usually, a method of radiating cooling water in a cooling tower is adopted as equipment that is not restricted by site conditions. In addition to the exhaust heat in the state of steam or hot water, the amount of heat generated from the plant includes heat released from the surfaces of equipment and pipes. With respect to this heat generation, there is no problem because it is released to the atmosphere in the case of a plant installed outdoors, but when it is installed indoors or is housed in an enclosure, ventilation equipment is required to suppress an increase in the ambient temperature of the plant.

【0004】従って、燃料電池発電設備を屋内あるいは
エンクロージャ内に収容する場合は、排熱放散設備に加
え、換気設備が必要となる。図3は燃料電池発電プラン
トを屋内に設置、あるいはエンクロージャ内に収容する
場合の排熱放散設備と換気設備の系統構成を示すもので
ある。
Therefore, when the fuel cell power generation equipment is housed indoors or in an enclosure, ventilation equipment is required in addition to the exhaust heat dissipation equipment. FIG. 3 shows a system configuration of a waste heat dissipation facility and a ventilation facility when the fuel cell power plant is installed indoors or accommodated in an enclosure.

【0005】図3において、プラント1から冷却塔3に
排熱水2が導かれ、この冷却塔3で放熱された後、冷却
水4としてプラント1へ循環供給される。この場合、冷
却水4の温度は冷却塔3の台数調整により一定の温度以
下に制御される。
In FIG. 3, the waste heat water 2 is introduced from the plant 1 to the cooling tower 3, is radiated by the cooling tower 3, and is circulated and supplied to the plant 1 as cooling water 4. In this case, the temperature of the cooling water 4 is controlled below a certain temperature by adjusting the number of cooling towers 3.

【0006】一方、機器、配管からの発熱に関しては、
以下に説明する換気設備で処理される。即ち、吸気ガラ
リ5から取入れられた外気は、吸気フィルタ6、吸気サ
イレンサ7を通り、吸気ファン8によりプラント1を収
容する建屋9に供給される。建屋9内に供給された外気
は、プラント1から発生する熱により温度上昇し、排気
ファン10により排気サイレンサ11を通り、排気ガラ
リ12から放出される。この場合、建屋9の出口温度は
吸気ファン8及び排気ファン10の台数調整により一定
の温度以下に制御される。
On the other hand, regarding heat generation from equipment and piping,
It is processed by the ventilation equipment described below. That is, the outside air taken in from the intake gallery 5 passes through the intake filter 6 and the intake silencer 7, and is supplied to the building 9 housing the plant 1 by the intake fan 8. The outside air supplied into the building 9 rises in temperature due to the heat generated from the plant 1, passes through the exhaust silencer 11 by the exhaust fan 10, and is discharged from the exhaust gallery 12. In this case, the outlet temperature of the building 9 is controlled below a certain temperature by adjusting the number of intake fans 8 and exhaust fans 10.

【0007】[0007]

【発明が解決しようとする課題】このように燃料電池発
電プラントを屋内に設置,あるいはエンクロージャ内に
収容する場合、排熱放散用の冷却塔に加え、換気設備が
必要となり、設備数量、スペースが膨大となり、屋外に
設置する設備の数量も大きくなる。
When the fuel cell power plant is installed indoors or housed in an enclosure in this way, a ventilation tower is required in addition to a cooling tower for exhaust heat dissipation, and the equipment quantity and space are reduced. It will become huge and the number of facilities installed outdoors will also increase.

【0008】特に、換気設備自体は建屋内の機器の保
護、作業者の環境性の維持の点から室内を比較的低温度
に保つ必要があり、発熱量に比べて換気風量が比較的多
くなり、設備の容量、スペースが大きくなる。また、屋
外に設置する設備の数量が多いため、設備各々に騒音対
策を施す必要があり、その設備規模、スペースも大きく
なる。
In particular, the ventilation equipment itself needs to be kept at a relatively low temperature in order to protect the equipment inside the building and maintain the environment of the worker, and the ventilation air volume becomes relatively large compared to the heat generation amount. , The capacity of the equipment and the space will increase. In addition, since the number of facilities installed outdoors is large, it is necessary to take noise countermeasures for each facility, which increases the facility scale and space.

【0009】本発明は、排熱放散用の冷却塔と換気設備
を統合して設備容量、スペースを削減すると共に、屋外
に設置する設備の数量を削減し、さらに排気塔のガラリ
部にエアクーラの伝熱エレメントを設置することにより
エアクーラの設置スペースを低減することができる燃料
電池発電プラントの除熱装置を提供することを目的とす
る。
The present invention integrates a cooling tower for exhaust heat dissipation and ventilation equipment to reduce equipment capacity and space, reduce the number of equipment installed outdoors, and further reduce the air cooler in the louver section of the exhaust tower. An object of the present invention is to provide a heat removal apparatus for a fuel cell power plant that can reduce the installation space of an air cooler by installing a heat transfer element.

【0010】[0010]

【課題を解決するための手段】本発明は上記の目的を達
成するため、建屋内に設置、あるいはエンクロージャに
設置した燃料電池発電プラントにおいて、プラントとの
間で循環系が構成されプラントからの排熱水を放熱作用
により冷却する放熱用クーラと、前記プラント機器、配
管から発生する熱により温度上昇した前記建屋あるいは
エンクロージャ内からの排気を放熱処理する換気設備と
を前記排気が前記放熱用クーラを通して放散されるよう
に統合させて構成したものである.また、上記構成にお
いて、換気設備の排気塔のガラリ部にエアクーラの伝熱
エレメントを設置したものである。
In order to achieve the above object, the present invention is directed to a fuel cell power plant installed in a building or in an enclosure, in which a circulation system is constructed between the plant and the exhaust gas from the plant. A heat dissipation cooler for cooling hot water by heat dissipation, and a ventilation facility for heat dissipation treatment of exhaust gas from the building or enclosure whose temperature has risen due to heat generated from the plant equipment and piping, the exhaust gas passing through the heat dissipation cooler. In addition, the heat transfer element of the air cooler is installed in the louver part of the exhaust tower of the ventilation equipment in the above structure.

【0011】[0011]

【作用】このような構成の燃料電池発電プラントの除熱
装置にあっては、換気設備の排気をエアクーラの冷却用
空気に利用して換気設備と冷却塔を統合するようにした
ので、ファンを兼用することができる。また、排気塔の
ガラリ部にエアクーラの伝熱エレメントを設置すること
により、エアクーラの伝熱エレメントが換気設備の排気
塔を兼ねるので、エアクーラの設置スペースを低減する
ことができる。
In the heat removal apparatus of the fuel cell power plant having such a configuration, the exhaust of the ventilation equipment is used as the cooling air of the air cooler so that the ventilation equipment and the cooling tower are integrated. Can be combined. Further, by installing the heat transfer element of the air cooler in the louver portion of the exhaust tower, the heat transfer element of the air cooler also serves as the exhaust tower of the ventilation equipment, so that the installation space of the air cooler can be reduced.

【0012】[0012]

【実施例】以下本発明の一実施例を図面を参照して説明
する。図1は本発明による燃料電池発電プラントの除熱
装置の構成例を示すもので、図3と同一部分には同一符
号を付して説明する。図1において、吸気ガラリ5から
取入れた外気は吸気フィルタ6、吸気サイレンサ7を通
して吸気ファン8に吸引され、その一部がダンパ15を
通して燃料電池発電プラント1を収容した建屋9内に供
給される。建屋9内に供給された外気はプラント1から
発生する熱により温度上昇し、その排気は吸気ファン8
より建屋9をバイパスさせた外気と合流して排気ファン
10に吸引される。この排気ファン10に吸引された排
気は排気サイレンサ11を通して排気塔13に送込ま
れ、排気塔13の外周のガラリ部に設置されたエアクー
ラの伝熱エレメント14を通って大気に排出される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of the structure of a heat removal apparatus for a fuel cell power plant according to the present invention. The same parts as those in FIG. In FIG. 1, the outside air taken in from the intake gallery 5 is sucked into the intake fan 8 through the intake filter 6 and the intake silencer 7, and a part of the outside air is supplied through the damper 15 into the building 9 housing the fuel cell power generation plant 1. The temperature of the outside air supplied to the building 9 rises due to the heat generated from the plant 1, and the exhaust air is exhausted by the intake fan 8
Further, the building 9 is merged with the outside air bypassed and is sucked by the exhaust fan 10. The exhaust gas sucked by the exhaust fan 10 is sent to the exhaust tower 13 through the exhaust silencer 11, and is exhausted to the atmosphere through the heat transfer element 14 of the air cooler installed in the gallery on the outer periphery of the exhaust tower 13.

【0013】この排気塔13は、伝熱エレメント14を
通って大気に排出される排気をエアクーラの冷却用空気
として利用し、プラント1から供給される排熱水2と熱
交換して冷却水4としてプラント1に戻すようにしたも
のである。
The exhaust tower 13 uses the exhaust gas discharged to the atmosphere through the heat transfer element 14 as cooling air for the air cooler, and exchanges heat with the exhaust heat water 2 supplied from the plant 1 to cool the water 4. Is returned to the plant 1.

【0014】図2はかかる排気塔13の外観を示す図で
あり、プラントの排熱により温度の上昇した排気は排気
ファン10により排気塔13内を上昇し、排気サイレン
サ11を通り、排気塔13の外周のガラリ部に設置され
る伝熱エレメント14を通って大気に放出されるように
なっている。
FIG. 2 is a view showing the appearance of the exhaust tower 13. The exhaust gas whose temperature has risen due to the exhaust heat of the plant rises in the exhaust tower 13 by the exhaust fan 10 and passes through the exhaust silencer 11 to reach the exhaust tower 13. It is designed to be released to the atmosphere through the heat transfer element 14 installed in the gallery on the outer periphery of the.

【0015】このような構成の燃料電池発電プラントの
除熱装置とすれば、換気設備の排気をエアクーラの冷却
用空気に利用することにより、換気設備と冷却塔とを統
合することが可能となり、排気ファンを換気設備とエア
クーラに共通の兼用設備とすることができる。
In the heat removal apparatus of the fuel cell power plant having such a structure, it becomes possible to integrate the ventilation equipment and the cooling tower by utilizing the exhaust air of the ventilation equipment for the cooling air of the air cooler, The exhaust fan can be combined with the ventilation equipment and the air cooler.

【0016】また、換気設備自体は建屋内の機器の耐温
性の制約及び作業者の環境性の維持の点から比較的低温
度に保つ必要があり、従って換気の排気温度も比較的低
温度であるため、エアクーラの冷却用空気に利用するこ
とは十分可能であると同時に、換気用空気の有効利用、
トータルの除熱風量の低減につながる。
Further, the ventilation equipment itself needs to be kept at a relatively low temperature in view of the restriction of the temperature resistance of the equipment in the building and the maintenance of the environment of the worker. Therefore, the exhaust gas temperature of the ventilation is also kept at a relatively low temperature. Therefore, it is possible to use it for the cooling air of the air cooler, and at the same time, to effectively use the ventilation air,
This leads to a reduction in the total heat removal air volume.

【0017】さらに、排気塔13のガラリ部にエアクー
ラの伝熱エレメント14を設置することにより、エアク
ーラの伝熱エレメントが排気塔のガラリを兼ねることが
できる。
Further, by installing the heat transfer element 14 of the air cooler in the louver portion of the exhaust tower 13, the heat transfer element of the air cooler can also serve as the gallery of the exhaust tower.

【0018】このように上記実施例によれば、換気設備
と冷却塔を統合するようにしたので、排気ファンを換気
設備とエアクーラに共通の兼用設備にすることができ、
設備数量、スペースの低減を図ることができる。また、
換気の排気温度が比較的低温度であることから、換気用
空気の有効利用、トータルの除熱風量の低減につなが
り、設備容量、スペースの低減につながる。さらに、換
気設備と冷却塔を統合することにより、屋外に設置する
設備あるいは屋外へのアクセスが必要な設備の数量が低
減し、敷地条件の点で有利となり、騒音対策を施す必要
のある設備の数量も低減することから、騒音対策設備の
規模、スペースも小さくなる。またさらに、プラントの
配管機器からの発熱量の見込値に対して実績値に若干の
変動があってもダンパで風量を調整すれば対応可能であ
り、換気専用設備とした場合の換気風量の過不足の問題
もなくなる。
As described above, according to the above-mentioned embodiment, since the ventilation equipment and the cooling tower are integrated, the exhaust fan can be a common equipment for both the ventilation equipment and the air cooler.
The equipment quantity and space can be reduced. Also,
Since the exhaust gas temperature of ventilation is relatively low, it leads to effective use of ventilation air, reduction of total heat removal air volume, and reduction of equipment capacity and space. Furthermore, by integrating the ventilation equipment and the cooling tower, the number of equipment that is installed outdoors or that requires access to the outdoors is reduced, which is advantageous in terms of site conditions and equipment that requires noise countermeasures. Since the quantity is also reduced, the scale and space of noise control equipment will be reduced. Furthermore, even if there is a slight change in the actual value with respect to the expected value of the amount of heat generated from the piping equipment of the plant, it can be dealt with by adjusting the air volume with a damper. The shortage problem disappears.

【0019】一方、排気塔のガラリ部にエアクーラの伝
熱エレメントを設置することにより、エアクーラの伝熱
エレメントが換気設備の排気塔のガラリを兼ねることが
可能となり、エアクーラの設置スペースを削減できる。
ちなみに、エアクーラの伝熱エレメントの面積は11M
W級の燃料電池の場合、130〜180m2 とかなり大
きなものとなる。
On the other hand, by installing the heat transfer element of the air cooler in the louver portion of the exhaust tower, the heat transfer element of the air cooler can also serve as the gallery of the exhaust tower of the ventilation equipment, and the installation space of the air cooler can be reduced.
By the way, the area of the heat transfer element of the air cooler is 11M.
In the case of a W-class fuel cell, it is considerably large, 130 to 180 m 2 .

【0020】また、エアクーラの伝熱エレメントが換気
設備の排気塔のガラリを兼ねているため、ガラリが不要
となる。上記実施例では、燃料電池発電プラントとし
て、機器、配管からの発熱量より蒸気、温水の状態で取
出される排熱量の方が遥かに大きく、空気の熱交換温度
が換気設備よりも冷却塔の方が大きいことを考慮して
も、風量としては換気設備よりも冷却塔の方が大きいこ
とから換気側をバイパスしたが、風量が等量の場合はバ
イパスをなくし、逆に換気風量が多くなる場合にはエア
クーラ側をバイパスすればよい。
Further, since the heat transfer element of the air cooler also serves as the louver of the exhaust tower of the ventilation equipment, the louver is unnecessary. In the above-mentioned embodiment, as the fuel cell power plant, the exhaust heat quantity taken out in the state of steam and hot water is much larger than the calorific value from the equipment and piping, and the heat exchange temperature of the air in the cooling tower is higher than that in the ventilation equipment. Considering that it is larger, the ventilation side was bypassed because the cooling tower is larger than the ventilation equipment in terms of air volume, but when the air volume is equal, bypass is eliminated, and conversely the ventilation air volume increases. In this case, bypass the air cooler side.

【0021】また、上記実施例による除熱装置と排熱放
散用冷却塔を併用して排熱の一部を除熱装置で除熱する
場合にも上記と同様に実施できる。さらに、上記実施例
では燃料電池発電プラントに限定されず、ガスタービン
等、冷却水排熱と、機器、配管からの排熱を有するあら
ゆるプラントの除熱装置に利用できる。
Further, when the heat removal apparatus according to the above-mentioned embodiment and the cooling tower for exhaust heat dissipation are used together and a part of the exhaust heat is removed by the heat removal apparatus, the same operation can be performed. Further, the above embodiment is not limited to the fuel cell power generation plant, and can be used as a heat removal device for any plant that has exhaust heat of cooling water and exhaust heat from equipment and piping, such as a gas turbine.

【0022】[0022]

【発明の効果】以上述べたように本発明によれば、排熱
放散用の冷却塔と換気設備を統合することにより設備容
量、スペースを削減すると共に、屋外に設置する設備の
数量を削減し、さらに排気塔のガラリ部にエアクーラの
伝熱エレメントを設置することによりエアクーラの設置
スペースを低減することができる燃料電池発電プラント
の除熱装置を提供できる。
As described above, according to the present invention, the equipment capacity and space can be reduced by integrating the cooling tower for exhaust heat dissipation and the ventilation equipment, and the quantity of equipment installed outdoors can be reduced. Further, it is possible to provide a heat removal apparatus for a fuel cell power plant that can reduce the installation space of the air cooler by installing the heat transfer element of the air cooler in the louver portion of the exhaust tower.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1の本発明による燃料電池発電プラントの除
熱装置の一実施例を示す系統構成図。
FIG. 1 is a system configuration diagram showing an embodiment of a heat removal apparatus for a fuel cell power plant according to the present invention in FIG.

【図2】同実施例における排気塔を模式的に示す斜視
図。
FIG. 2 is a perspective view schematically showing an exhaust tower in the same embodiment.

【図3】従来の燃料電池発電プラントの除熱装置を示す
系統構成図。
FIG. 3 is a system configuration diagram showing a conventional heat removal apparatus for a fuel cell power plant.

【符号の説明】[Explanation of symbols]

1…燃料電池発電プラント、2…排熱水、3…冷却塔、
4…冷却水、5…吸気ガラリ、6…吸気フィルタ、7…
吸気サイレンサ、8…吸気ファン、9…建屋、10…排
気ファン、11…排気サイレンサ、12…排気ガラリ、
13…排気塔、14…伝熱エレメント、15…ダンパ。
1 ... Fuel cell power plant, 2 ... Waste heat water, 3 ... Cooling tower,
4 ... Cooling water, 5 ... Intake gallery, 6 ... Intake filter, 7 ...
Intake silencer, 8 ... Intake fan, 9 ... Building, 10 ... Exhaust fan, 11 ... Exhaust silencer, 12 ... Exhaust gallery,
13 ... Exhaust tower, 14 ... Heat transfer element, 15 ... Damper.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村瀬 善朗 東京都千代田区神田神保町二丁目2番30号 東京電力株式会社開発研究所内 (72)発明者 秋吉 正寛 東京都港区芝浦一丁目1番1号 株式会社 東芝本社事務所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshiro Murase 2-30, Kanda Jinbocho, Chiyoda-ku, Tokyo Tokyo Electric Power Co., Inc. Research Laboratory (72) Inventor Masahiro Akiyoshi 1-1-1, Shibaura, Minato-ku, Tokyo No. within Toshiba Head Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 建屋内に設置、あるいはエンクロージャ
に設置した燃料電池発電プラントにおいて、プラントと
の間で循環系が構成されプラントからの排熱水を放熱作
用により冷却する放熱用クーラと、前記プラント機器、
配管から発生する熱により温度上昇した前記建屋あるい
はエンクロージャ内からの排気を放熱処理する換気設備
とを前記排気が前記放熱用クーラを通して放散されるよ
うに統合させて構成したことを特徴とする燃料電池発電
プラントの除熱装置。
1. A fuel cell power plant installed in a building or in an enclosure, wherein a circulation system is formed between the plant and a heat dissipation cooler for cooling exhaust heat water from the plant by a heat dissipation effect, and the plant. machine,
A fuel cell, characterized in that the exhaust gas from the building or enclosure whose temperature has risen due to the heat generated from the pipes is integrated with a ventilation facility for radiating the exhaust gas so that the exhaust gas is dissipated through the radiating cooler. Heat removal equipment for power plants.
【請求項2】 請求項1に記載の燃料電池発電プラント
の除熱装置において、換気設備の排気塔のガラリ部にエ
アクーラの伝熱エレメントを設置したことを特徴とする
燃料電池発電プラントの除熱装置。
2. The heat removal apparatus for a fuel cell power plant according to claim 1, wherein a heat transfer element of an air cooler is installed in the louver portion of the exhaust tower of the ventilation equipment. apparatus.
JP5282523A 1993-11-11 1993-11-11 Heat removing device for fuel cell power plant Pending JPH07135010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5282523A JPH07135010A (en) 1993-11-11 1993-11-11 Heat removing device for fuel cell power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5282523A JPH07135010A (en) 1993-11-11 1993-11-11 Heat removing device for fuel cell power plant

Publications (1)

Publication Number Publication Date
JPH07135010A true JPH07135010A (en) 1995-05-23

Family

ID=17653567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5282523A Pending JPH07135010A (en) 1993-11-11 1993-11-11 Heat removing device for fuel cell power plant

Country Status (1)

Country Link
JP (1) JPH07135010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004011A3 (en) * 1996-07-19 1998-04-23 Ztek Corp Fuel cell system for electric generation, heating, cooling and ventilation
EP1158590A2 (en) * 2000-05-20 2001-11-28 XCELLSIS GmbH Fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998004011A3 (en) * 1996-07-19 1998-04-23 Ztek Corp Fuel cell system for electric generation, heating, cooling and ventilation
EP1158590A2 (en) * 2000-05-20 2001-11-28 XCELLSIS GmbH Fuel cell system
EP1158590A3 (en) * 2000-05-20 2005-02-16 Ballard Power Systems AG Fuel cell system

Similar Documents

Publication Publication Date Title
JP5826172B2 (en) Integrated building-based air treatment equipment for server farm cooling systems
JP4961681B2 (en) Fuel cell power generator
CN217035772U (en) Liquid cooling energy storage battery heat management device with environment dehumidification function
Isazadeh et al. Thermal management in legacy air-cooled data centers: An overview and perspectives
KR101308969B1 (en) Cooling controlling apparatus and its method of internet data center
JP3187112B2 (en) Nuclear power plant
JPH07135010A (en) Heat removing device for fuel cell power plant
US20200348045A1 (en) Methods systems and devices for controlling temperature and humidity using excess energy from a combined heat and power system
JP2007187027A (en) Cogeneration system
JPH0983167A (en) Outdoor electronic apparatus enclosure
JP2020181649A (en) Fuel cell system and operational method thereof
CN101082761A (en) Electronic device
JPH06267575A (en) Fuel cell generating power plant
US6007942A (en) Battery compartment comprising a raised floor ribbed structure for electronic equipment enclosures
JP2002022253A (en) Desiccant air conditioning system
CN218787165U (en) Cooling structure for integrated compressor, integrated compressor and air conditioning system
JP2003194373A (en) Heating equipment and ventilation structure for the same
JPH062569A (en) Multipurpose cooling method for gas turbine generating equipment
US20240027080A1 (en) System and method for making a building carbon neutral
US20210356170A1 (en) Methods systems and devices for controlling temperature and humidity using excess energy from a combined heat and power system
JP2573385B2 (en) Air supply for ventilation equipment
JP2001193458A (en) Internal cooling ventilation cogeneration package
CN208996879U (en) A kind of tower frame for wind generating set system of heat radiation efficiency
Stahl et al. Life cycle cost comparison-traditional cooling systems vs. natural convection based systems
JP2959211B2 (en) Air conditioner for portable exchange