JP2002022253A - Desiccant air conditioning system - Google Patents

Desiccant air conditioning system

Info

Publication number
JP2002022253A
JP2002022253A JP2000201954A JP2000201954A JP2002022253A JP 2002022253 A JP2002022253 A JP 2002022253A JP 2000201954 A JP2000201954 A JP 2000201954A JP 2000201954 A JP2000201954 A JP 2000201954A JP 2002022253 A JP2002022253 A JP 2002022253A
Authority
JP
Japan
Prior art keywords
water
air
heat exchanger
desiccant
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000201954A
Other languages
Japanese (ja)
Other versions
JP4642189B2 (en
Inventor
Koichi Nishimura
浩一 西村
Futoshi Mihashi
太 三橋
Tatsunori Bano
達徳 万尾
Atsushi Takahashi
惇 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2000201954A priority Critical patent/JP4642189B2/en
Publication of JP2002022253A publication Critical patent/JP2002022253A/en
Application granted granted Critical
Publication of JP4642189B2 publication Critical patent/JP4642189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)

Abstract

PROBLEM TO BE SOLVED: To drastically improve the dehumidifying capacity of a desiccant air conditioner in a system comprising the combination of a gas turbine for the generation of electricity used by a cogeneration and the desiccant air conditioner. SOLUTION: High temperature exhaust gas EX from a gas turbine 1 for the generation of electricity is mixed with outer air OA and introduced into the regenerative part 12b of the dehumidifying rotor 12 of a desiccant air conditioner 1. The low humidity and high temperature air, which passes, through the dehumidifying part 12b of the dehumidifying rotor 12, is cooled by a cooling coil 16 and then, used for the cooling load of a room R. Water warmed by the cooling coil 16 is heat exchanged by a water to water heat exchanger with the raw water of a hot-water supply. With this, the warmed raw water is used for the hot-water supply.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,デシカント空調シ
ステムに係り,発電用に使用するガスタービンからの排
熱を有効に利用したデシカント空調システムに関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desiccant air-conditioning system, and more particularly to a desiccant air-conditioning system that effectively utilizes exhaust heat from a gas turbine used for power generation.

【0002】[0002]

【従来の技術】従来からコージェネレーションシステム
においては,発電用のガスタービンから生じた高温の熱
を回収して,他の用途,例えば空調用に使用することが
行われている。またその場合,フロンを使用せず地球環
境にとって好ましいデシカント空調機を使用すること
が,特開平11−351638号公報において開示され
ている。
2. Description of the Related Art Conventionally, in a cogeneration system, high-temperature heat generated from a gas turbine for power generation has been recovered and used for other purposes, for example, for air conditioning. In that case, Japanese Patent Application Laid-Open No. 11-351638 discloses that a desiccant air conditioner preferable for the global environment without using Freon is used.

【0003】この公報に開示されている技術は,発電用
のガスエンジンからの排熱温水をデシカント空調機に供
給し,昼間時は該デシカント空調機で冷房しようとする
ものであり,発電用のガスエンジンからの排ガスの熱を
一旦温水に変換して回収し,この排熱温水を再生用温水
コイルに通水させ,空調対象室からの還気をこの再生用
温水コイルで加熱してデシカントロータに供給し,もっ
てデシカントロータ内の水分を蒸発させて再生するよう
にしていた。
The technology disclosed in this publication is to supply hot water discharged from a gas engine for power generation to a desiccant air conditioner and to cool the desiccant air conditioner during the daytime. The heat of the exhaust gas from the gas engine is once converted to hot water and collected, and the exhaust hot water is passed through a regeneration hot water coil, and the return air from the room to be air-conditioned is heated by the regeneration hot water coil, and the desiccant rotor is heated. And regenerate by evaporating the water in the desiccant rotor.

【0004】[0004]

【発明が解決しようとする課題】しかしながら前記従来
技術のように排熱を一旦温水で回収して,これを再生用
温水コイルに通水して,さらに空調対象室からの還気と
この再生用温水コイルとの間で熱交換することで加熱し
てデシカントロータに供給するのでは,デシカント空調
機おける再生能力に限界があり,その結果デシカントロ
ータ自体の減湿能力を向上させるにも自ずと限界があっ
た。すなわち,再生用温水コイルに通水される温水の温
度はせいぜい85℃〜90℃程度であるため,この温水
を通水させる再生用温水コイルによる加熱再生では,デ
シカントロータの再生にも限度があったのである。
However, as in the prior art described above, the exhaust heat is once recovered with hot water, passed through a hot water coil for regeneration, and then returned to the air-conditioned room and returned to the air conditioner. If heat is supplied to the desiccant rotor by exchanging heat between the hot water coil and the desiccant rotor, the regeneration capacity of the desiccant air conditioner is limited. As a result, there is naturally a limit in improving the dehumidification capacity of the desiccant rotor itself. there were. That is, since the temperature of the hot water passed through the hot water coil for regeneration is at most about 85 ° C. to 90 ° C., there is a limit to the regeneration of the desiccant rotor in the heat regeneration using the hot water coil for regeneration that allows hot water to flow. It was.

【0005】本発明はかかる点に鑑みてなされたもので
あり,コージェネレーションシステムで使用される発電
用ガスタービンとデシカント空調機とを組み合わせたシ
ステムにおいて,デシカント空調機の減湿能力を従来よ
りも飛躍的に高めて,従来不可能であった低湿度にまで
減湿することが可能なデシカント空調システムを提供し
て,前記問題の解決を図ることをその目的としている。
The present invention has been made in view of the above points, and in a system in which a gas turbine for power generation and a desiccant air conditioner used in a cogeneration system are combined, the dehumidifying capacity of the desiccant air conditioner is reduced as compared with the conventional one. It is an object of the present invention to provide a desiccant air-conditioning system capable of dramatically increasing the humidity and reducing the humidity to a low humidity which has been impossible in the past, and to solve the above-mentioned problem.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め,請求項1によれば,発電用ガスタービンと,乾燥剤
を有する減湿ロータを備えたデシカント空調機とを有
し,前記発電用ガスタービンの排気を前記デシカント空
調機の減湿ロータの再生部に導入するようにしたことを
特徴とする,デシカント空調システムが提供される。
According to a first aspect of the present invention, there is provided a power generating gas turbine having a desiccant air conditioner having a dehumidifying rotor having a desiccant. A desiccant air conditioning system is provided, wherein exhaust gas from a gas turbine is introduced into a regeneration section of a dehumidifying rotor of the desiccant air conditioner.

【0007】このように本発明では,発電用ガスタービ
ンからの排気を直接前記デシカント空調機の減湿ロータ
の再生部に導入するようにしたので,従来のように一旦
温水に変えその後再び温水コイルと空気を接触させて加
熱した後,再生に用いる方法と比較すると,減湿ロータ
の再生部に対する再生能力が向上し,その結果減湿ロー
タの減湿能力を大きく向上させることが可能である。ま
た温水の配管や温水コイル周りの配管を省略でき,また
温水の配管と比べると排気の配管の方が口径が小さくて
すみ,スペースの点でも好ましい。
As described above, according to the present invention, the exhaust gas from the gas turbine for power generation is directly introduced into the regeneration section of the dehumidifying rotor of the desiccant air conditioner. After heating by contacting the air and the air, the regenerative ability of the dehumidifying rotor with respect to the regenerating part is improved, and as a result, the dehumidifying ability of the dehumidifying rotor can be greatly improved. Also, the piping around the hot water and the piping around the hot water coil can be omitted, and the exhaust piping is smaller in diameter than the hot water piping, and is preferable in terms of space.

【0008】なお本発明はそのように発電用ガスタービ
ンの排気を直接減湿ロータの再生部に導入するようにし
ているので,使用する発電用ガスタービンとしては,い
わゆるマイクロガスタービンと呼ばれる比較的小型のガ
スタービンが適している。発電用ガスタービンからの排
気の温度は,小型のものであればその分大型のものと比
較して低温であり,扱いやすいからである。しかも小型
のガスタービンは排気中に含まれる不純物も少なくその
点でも好ましい。
In the present invention, since the exhaust gas of the power generation gas turbine is directly introduced into the regeneration section of the dehumidifying rotor, the power generation gas turbine used is a so-called micro gas turbine. Small gas turbines are suitable. This is because the temperature of the exhaust gas from the gas turbine for power generation is lower in the case of a small gas turbine than in the case of a large gas turbine and is easy to handle. In addition, a small gas turbine is preferable in that it contains few impurities in the exhaust gas.

【0009】したがって,使用する排気の温度は300
℃前後のものが適しているが,ガスタービンの種類によ
って排気される排気の温度は異なっており,また減湿ロ
ータで使用されている乾燥剤の種類によって,再生空気
の温度の適正値がある程度定まっている。例えばゼオラ
イトの場合は約200℃である。かかる場合には,請求
項2のように,外気と混合して適正な温度に降温させて
使用すればよい。
Therefore, the temperature of the exhaust gas used is 300
Although the temperature around ℃ is suitable, the temperature of the exhaust gas varies depending on the type of gas turbine, and the appropriate value of the temperature of the regeneration air depends on the type of drying agent used in the dehumidifying rotor. It is fixed. For example, the temperature is about 200 ° C. for zeolite. In such a case, it may be used by mixing with the outside air and lowering the temperature to an appropriate temperature.

【0010】例えば市販の発電用ガスタービンで比較的
小型(発電出力が28kW)のものでは,排気の温度は
280℃程度である。したがって,この排気をゼオライ
ト使用の減湿ロータの再生部に導入する場合には,外気
と混合させて200℃程度にまで降温させて使用するの
がよい。
For example, in the case of a commercially available gas turbine for power generation which is relatively small (power generation output is 28 kW), the temperature of the exhaust gas is about 280 ° C. Therefore, when introducing this exhaust gas into the regeneration section of the dehumidifying rotor using zeolite, it is preferable to mix it with the outside air and lower the temperature to about 200 ° C. before use.

【0011】また再生風量については,減湿ロータの能
力が最適になるように,再生風量と処理風量の比を決定
すればよい。例えば,再生風量:処理風量=1:2に設
定するようにしてもよい。かかる処置が可能になるの
も,再生用の空気を減湿給排気系統とは別の他の系統に
ある,発電用ガスタービンの排気から採っているためで
あり,従来のように再生用の空気を空調対象室からの還
気に求めて,再生風量と処理風量とを同一にしていたの
ではこのような対処は難しい。
Regarding the regeneration air volume, the ratio between the regeneration air volume and the processing air volume may be determined so that the performance of the dehumidifying rotor is optimized. For example, it is possible to set the reproduction air volume: the processing air volume = 1: 2. This measure is possible because the regeneration air is taken from the exhaust of the power generation gas turbine in another system separate from the dehumidification supply and exhaust system. Such measures are difficult if air is used for returning air from the room to be air-conditioned and the regenerative air volume and the processing air volume are the same.

【0012】またそのように降温用に使用する外気は,
格別専用に取り入れなくても,請求項3のように,デシ
カント空調機の減湿ロータの減湿部で処理するために導
入した外気の一部を用いれば,システム構成が簡素化さ
れる。すなわち,減湿ロータの減湿部に導入するために
ダクト等を通じて取り入れた外気を分岐ダクトなどによ
って分岐させ,ガスタービンから再生部への排気の導入
経路を構成するダクトに接続,合流させるだけで済む。
[0012] The outside air used for temperature reduction is as follows.
Even if it is not specially adopted, if a part of the outside air introduced for processing in the dehumidifying section of the dehumidifying rotor of the desiccant air conditioner is used, the system configuration can be simplified. In other words, the outside air taken in through a duct or the like to be introduced into the dehumidifying section of the dehumidifying rotor is branched by a branch duct, etc., and connected to and joined to the duct that constitutes the exhaust gas introduction path from the gas turbine to the regeneration section. I'm done.

【0013】前記したようにして減湿ロータの再生部に
高温の排気を供給して再生すると,減湿部を通過して減
湿処理された後の空気の温度も高温となっている。した
がって,このままではその後に蒸発冷却処理しても,冷
房用には使用しづらい。そこで請求項4のように,さら
に水−空気熱交換器を付加して,当該水−空気熱交換器
で前記減湿ロータの減湿部を通過した空気と,水との間
で熱交換を行って降温させれば,当該熱交換後の空気を
加湿して,すなわち蒸発冷却させて冷房等の空調用に使
用することができる。この場合,請求項5のように,加
湿せずに空調用に使用すれば,低湿度雰囲気が要求され
る工場等に適した給気を供給することができる。
When regeneration is performed by supplying high-temperature exhaust gas to the regeneration section of the dehumidification rotor as described above, the temperature of the air after passing through the dehumidification section and being subjected to the dehumidification process also becomes high. Therefore, it is difficult to use it for cooling even if the evaporative cooling process is performed as it is. Therefore, a water-air heat exchanger is further added, and heat exchange is performed between the air passing through the dehumidifying portion of the dehumidifying rotor and water by the water-air heat exchanger. If the temperature is lowered by performing the process, the air after the heat exchange can be humidified, that is, evaporated and cooled, and used for air conditioning such as cooling. In this case, when used for air conditioning without humidification, it is possible to supply air supply suitable for a factory or the like that requires a low humidity atmosphere.

【0014】一方前記水−空気熱交換器での熱交換によ
って昇温した水は,請求項6のように,給湯用に使用す
ることで,システム全体としてエネルギを有効に利用す
ることができ,総合効率の低下を防止できる。
On the other hand, the water whose temperature has been raised by the heat exchange in the water-air heat exchanger is used for hot water supply as described in claim 6, so that energy can be effectively used as a whole system. A reduction in overall efficiency can be prevented.

【0015】水−空気熱交換器によって前記減湿ロータ
の減湿部を通過した空気と,水との間で熱交換を行って
降温させる場合,請求項7のように,さらに水−水熱交
換器と冷却塔とを備え,前記水−空気熱交換器に使用す
る水は冷却塔によって冷却された後の冷却水を使用し,
前記水−空気熱交換器での熱交換されて昇温した冷却水
を,前記水−水熱交換器に送って給湯用の原水との間で
熱交換を行い,前記水−水熱交換器での熱交換後の冷却
水は冷却塔に戻して冷却するようにし,前記水−水熱交
換器での熱交換後の原水を給湯用に使用するようにして
もよい。このように冷却塔からの冷却水を用いること
で,冷房負荷により適したシステムとして構築できる。
In the case where the temperature of the air passing through the dehumidifying portion of the dehumidifying rotor and the water is reduced by performing the heat exchange with the water by the water-air heat exchanger, the water-water heat exchanger is further provided. An exchange and a cooling tower, wherein the water used in the water-air heat exchanger uses cooling water cooled by the cooling tower,
The cooling water heated by the heat exchange in the water-air heat exchanger and heated is sent to the water-water heat exchanger to exchange heat with raw water for hot water supply. The cooling water after the heat exchange in the above may be returned to the cooling tower for cooling, and the raw water after the heat exchange in the water-water heat exchanger may be used for hot water supply. By using the cooling water from the cooling tower in this way, a system more suitable for the cooling load can be constructed.

【0016】冷却塔からの冷却水を用いる場合として
は,請求項8のように,前記水−空気熱交換器の後段側
に配置される他の水−空気熱交換器と冷却塔とを備え,
当該他の水−空気熱交換器に通水される水は前記冷却塔
によって冷却された後の冷却水とし,前記水−空気熱交
換器で熱交換された空気を直ちに空調用には使用せず
に,さらに後段に配置される当該他の水−空気熱交換器
で前記冷却水と熱交換を行うようにし,この後段側の当
該他の水−空気熱交換器での熱交換後の空気を空調用に
使用するようにし,当該後段側の他の水−空気熱交換器
での熱交換後の冷却水は冷却塔に戻して冷却するように
構築しても良い。このようにいわば水−熱交換器を二段
に用い,前段側で熱交換して降温した空気をさらに後段
側の水−熱交換器で冷却塔からの冷却水と熱交換して降
温することで,コイル列数を小さくできるメリットがあ
り,システム自体も構築しやすい。
In the case where the cooling water from the cooling tower is used, the cooling tower is provided with another water-air heat exchanger disposed downstream of the water-air heat exchanger. ,
The water passed through the other water-air heat exchanger is cooling water after being cooled by the cooling tower, and the air heat-exchanged by the water-air heat exchanger is immediately used for air conditioning. Instead, the heat exchange with the cooling water is performed by the other water-air heat exchanger disposed further downstream, and the air after the heat exchange by the other water-air heat exchanger downstream is May be used for air conditioning, and the cooling water after the heat exchange in the other water-air heat exchanger on the subsequent stage may be returned to the cooling tower for cooling. In this way, using a water-heat exchanger in two stages, the air that has been cooled down by heat exchange in the first stage is further heat-exchanged with the cooling water from the cooling tower in the second stage water-heat exchanger to be cooled. Therefore, there is an advantage that the number of coil rows can be reduced, and the system itself can be easily constructed.

【0017】[0017]

【発明の実施の形態】以下,図面に基づいて本発明の好
ましい実施の形態にかかるデシカント空調システムを説
明する。図1は,第1の実施の形態にかかるデシカント
空調システムの系統を示しており,発電用ガスタービン
1は,発電機2を駆動する圧縮機3,燃焼室4,タービ
ン5を有しており,フィルタ6を介して導入した空気を
燃焼室4に圧縮して導入して,燃料のガスGを燃焼室4
に供給して燃焼させ,これによって発電機2を駆動させ
て発電する構成を有している。そして燃焼ガスは排気E
Xとして,タービン5によって発電用ガスタービン1の
外に排出されるようになっている。発生した電力は,室
Rのある建物Bにおける機械室MRの変電,配電設備や
蓄電池等,対応する電気設備を有する配電部7に送られ
るようになっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a desiccant air conditioning system according to a preferred embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a system of a desiccant air-conditioning system according to a first embodiment. A gas turbine for power generation 1 has a compressor 3 for driving a generator 2, a combustion chamber 4, and a turbine 5. The air introduced through the filter 6 is compressed and introduced into the combustion chamber 4 so that the fuel gas G is supplied to the combustion chamber 4.
And burns it, thereby driving the generator 2 to generate power. The combustion gas is exhaust E
As X, the gas is discharged out of the power generating gas turbine 1 by the turbine 5. The generated electric power is transmitted to a power distribution unit 7 having corresponding electric facilities such as a substation of a machine room MR in a building B having a room R, power distribution facilities and storage batteries.

【0018】デシカント空調機11は,乾燥剤として例
えばゼオライトを収納した回転駆動される減湿ロータ1
2を備えている。この減湿ロータ12は,少なくとも減
湿区域である減湿部12aと再生区域である再生部12
bとを有し,必要に応じパージ区域を有するものであ
り,例えば特開平11−523号公報に開示された公知
の構造のものを使用できる。減湿ロータ12の減湿部1
2aには,フィルタ13を介して送風機14によって取
り入れられた外気OAの一部がダクト等を介して導入さ
れるようになっている。また外気OAの残りの一部は,
前記発電用ガスタービン1からの高温の排気EXと混合
されて,減湿ロータ12の再生部12bにダクト等を介
して導入されるようになっている。再生部12bを通過
した空気は,送風機15によってダクト等を介して外部
へ排気EAとして排出される。
The desiccant air conditioner 11 is a rotatably driven dehumidifying rotor 1 containing, for example, zeolite as a desiccant.
2 is provided. The dehumidification rotor 12 has at least a dehumidification section 12a which is a dehumidification area and a regeneration section 12 which is a regeneration area.
b, and a purge area if necessary. For example, a known structure disclosed in JP-A-11-523 can be used. Dehumidifying part 1 of dehumidifying rotor 12
A part of the outside air OA taken in by the blower 14 through the filter 13 is introduced into 2a through a duct or the like. The rest of the outside air OA is
The mixture is mixed with the high-temperature exhaust EX from the power generation gas turbine 1 and introduced into the regeneration section 12b of the dehumidification rotor 12 via a duct or the like. The air that has passed through the regeneration unit 12b is discharged to the outside by the blower 15 through a duct or the like as exhaust EA.

【0019】減湿ロータ12の減湿部12aを通過して
減湿された空気は,水−空気熱交換器としての冷却コイ
ル16によって冷却された後,蒸発冷却器17において
蒸発冷却処理された後,給気SAとして室Rに供給され
るようになっている。蒸発冷却器17は,所定空間内に
ミスト等を散水して加湿するタイプだけではなく,所定
空間内に設置した充填物に水を滴下して加湿するタイプ
のものも使用できる。
The dehumidified air passing through the dehumidifying section 12a of the dehumidifying rotor 12 is cooled by a cooling coil 16 as a water-air heat exchanger, and then subjected to an evaporative cooling process in an evaporative cooler 17. Thereafter, the air is supplied to the chamber R as the air supply SA. As the evaporative cooler 17, not only a type in which mist or the like is sprinkled in a predetermined space to humidify, but also a type in which water is dropped into a filler installed in the predetermined space and humidified can be used.

【0020】前記冷却コイル16には,冷却塔21によ
って例えば32℃程度に冷却された冷却水がポンプ22
によって送られ,前記減湿ロータ12の減湿部12aを
通過して減湿された空気と熱交換されて例えば85℃に
まで昇温した後,水−水熱交換器23へと送られる。そ
して当該水−水熱交換器23において,給湯用の原水,
例えば給湯タンクに貯留されている40℃の水(温水器
の場合には,底部に位置している40℃程度の水)と熱
交換された後,再び冷却塔21へと戻され,冷却処理に
付される。給湯用の原水として水道水を使用する場合に
は,予め40℃程度に加熱しておくことが好ましい。ま
た冷却塔21からの冷却水を使用することで,冷房負荷
に対しても本システムを好適に適用させることができ
る。
Cooling water cooled to, for example, about 32 ° C. by the cooling tower 21 is supplied to the cooling coil 16 by a pump 22.
After passing through the dehumidifying section 12 a of the dehumidifying rotor 12, the heat is exchanged with the dehumidified air, the temperature is increased to, for example, 85 ° C., and then sent to the water-water heat exchanger 23. Then, in the water-water heat exchanger 23, raw water for hot water supply,
For example, after heat exchange with 40 ° C. water stored in the hot water tank (in the case of a water heater, water at about 40 ° C. located at the bottom), the heat is returned to the cooling tower 21 again to perform the cooling process. Attached to When tap water is used as raw water for hot water supply, it is preferable that the tap water is heated to about 40 ° C. in advance. Further, by using the cooling water from the cooling tower 21, the present system can be suitably applied to a cooling load.

【0021】一方,水−水熱交換器23において前記昇
温した冷却水と熱交換された水は例えば75℃まで昇温
され,給湯用の温水として,ポンプ24によって建物B
の機械室MRに設置されている給湯設備としての例えば
温水器25へと送られるようになっている。
On the other hand, in the water-water heat exchanger 23, the heat exchanged with the above-mentioned heated cooling water is heated to, for example, 75.degree.
Is sent to, for example, a water heater 25 as hot water supply equipment installed in the machine room MR.

【0022】第1の実施の形態にかかるデシカント空調
システムは,以上の構成を有しており,いま例えば外気
OAの条件を温度が32℃,絶対湿度が20.6g/k
g(DA)とした場合の運転例について説明すると,ま
ず発電運転のために発電用ガスタービン1において発生
した高温,例えば280℃の排気EXは,減湿用に取り
入れられた前記外気OAの一部と混合されて例えば20
0℃にまで降温された後,減湿ロータ12の再生部12
bへと送られて,乾燥剤の再生に供される。このように
200℃という,従来の温水よりもはるかに高温の空気
によって前記乾燥剤が再生されるため,減湿ロータ12
の減湿能力は従来よりも大幅に向上している。そして再
生に用いられて例えば65℃程度にまで降温された空気
は,送風機15によって排気EAとして外部に排出され
る。
The desiccant air-conditioning system according to the first embodiment has the above configuration. For example, the conditions of the outside air OA are now set to a temperature of 32 ° C. and an absolute humidity of 20.6 g / k.
An operation example in the case of g (DA) will be described. First, a high temperature exhaust gas EX generated in the power generation gas turbine 1 for power generation operation, for example, 280 ° C., is one of the outside air OA introduced for dehumidification. 20 parts mixed with
After the temperature is reduced to 0 ° C., the regeneration unit 12 of the dehumidification rotor 12
b to be used for regeneration of the desiccant. Since the desiccant is regenerated by air at 200 ° C., which is much higher than conventional hot water, the dehumidifying rotor 12
The dehumidifying ability of the is much improved than before. The air used for the regeneration and cooled down to, for example, about 65 ° C. is exhausted to the outside by the blower 15 as exhaust EA.

【0023】一方前記外気OAの他の一部は,減湿ロー
タ12の減湿部12aにおいて減湿されるが,前記した
ように約200℃の空気によって再生されているため,
減湿後の空気は90℃以上の高温となっているが,冷却
コイル16と熱交換することで,例えば37℃まで降温
される。また絶対湿度は3g/kg(DA)程度になっ
ている。そしてその程度にまで減湿,降温された後,蒸
発冷却器17を通過して蒸発冷却処理され,給気SAと
して室Rに供給されるのである。以上の運転例における
空気の状態を図2の空気線図上に示した。図2における
符号(a)〜(e)は,各々図1のシステム系統上にお
ける同一符号で示される地点での空気を示している。
On the other hand, the other part of the outside air OA is dehumidified in the dehumidifying section 12a of the dehumidifying rotor 12, but is regenerated by the air at about 200 ° C. as described above.
Although the temperature of the dehumidified air is 90 ° C. or higher, the temperature is reduced to, for example, 37 ° C. by exchanging heat with the cooling coil 16. The absolute humidity is about 3 g / kg (DA). Then, after being dehumidified and cooled down to that extent, it passes through the evaporative cooler 17 and is subjected to evaporative cooling processing, and is supplied to the chamber R as air supply SA. The state of air in the above operation example is shown on the psychrometric chart of FIG. Reference numerals (a) to (e) in FIG. 2 respectively indicate air at points indicated by the same reference numerals on the system system in FIG.

【0024】一方,前記冷却コイル16において熱交換
されて昇温した冷却水は,水−水熱交換器23において
給湯用の原水と熱交換され,降温された後,再び冷却塔
21へと戻されて冷却処理に付される。また水−水熱交
換器23において熱交換された給湯用の原水は,既述の
ように給排水設備25へと送られて,建物Bの給湯用に
使用されるのである。
On the other hand, the cooling water which has been heated by the heat exchange in the cooling coil 16 is heat-exchanged with the raw water for hot water supply in the water-water heat exchanger 23, cooled down, and returned to the cooling tower 21 again. And subjected to a cooling process. The raw water for hot water exchanged in the water-water heat exchanger 23 is sent to the water supply / drainage facility 25 as described above, and is used for hot water supply to the building B.

【0025】したがって,前記実施の形態にかかるデシ
カント空調システムでは高い温度の排熱を利用し,かつ
減湿量が多く取れるため,減湿後の空気が高温になって
いるが,当該高温の空気からの排熱を冷却コイル16,
水−水熱交換器23で回収することで,給湯などに用い
る温水として利用でき,コージェネレーションとしての
総合効率は確保されている。
Therefore, in the desiccant air-conditioning system according to the above-described embodiment, since the high-temperature exhaust heat is used and the amount of dehumidification can be increased, the temperature of the dehumidified air is high. Heat from the cooling coil 16,
By recovering with the water-water heat exchanger 23, it can be used as hot water for hot water supply and the like, and the overall efficiency as cogeneration is secured.

【0026】発明者らの知見では,前記システムにおけ
るCOP(成績係数)は0.5程度と試算され,冷房の
COPとしては少し低い値となる。しかし,処理空気が
90℃以上になっているため,冷却水が85℃以上の温
水となり,この温水から水−水熱交換器23を介して熱
回収することで,給湯に用いる水,前記したように例え
ば40℃の水を75℃程度まで昇温させることが可能と
なっている。給湯に用いることの出来る熱量は排気EX
として出てきた熱量の半分程度の熱量となる。すなわち
発電用ガスタービン1で発電を行い,そのときの発電効
率は約25%となる。またそのとき高温の排気EXが,
入力(燃料ガス熱量)の50%程度が出てくる。一方減
湿後の外気OAは前記したように高温になっているため
冷却塔21からの冷却水で冷却しており,冷却分だけ冷
房となる。一方冷却水の冷却の一部が給湯負荷に用いら
れている。
According to the knowledge of the inventors, the COP (coefficient of performance) in the system is estimated to be about 0.5, which is a slightly lower value as the COP for cooling. However, since the temperature of the treated air is 90 ° C. or higher, the cooling water becomes hot water of 85 ° C. or higher, and heat is recovered from the hot water through the water-water heat exchanger 23, so that the water used for hot water supply is used. Thus, for example, water at 40 ° C. can be heated to about 75 ° C. The amount of heat that can be used for hot water supply is exhaust EX
It is about half the amount of heat that came out. That is, power is generated by the power generation gas turbine 1, and the power generation efficiency at that time is about 25%. At that time, the high temperature exhaust EX
About 50% of the input (fuel gas calorie) comes out. On the other hand, since the outside air OA after the dehumidification has a high temperature as described above, it is cooled by the cooling water from the cooling tower 21 and is cooled by the cooling amount. On the other hand, part of the cooling water is used for hot water supply load.

【0027】したがって,冷房,給湯それぞれ,排気E
Xの熱量の50%ずつ程度の熱回収となっている。すな
わち冷房負荷として入力の25%,給湯負荷として25
%の効率となっている。そして全体としては,入力に対
して,電力25%,冷房25%,給湯25%となる。冷
房に関していえば,前記したように,外気を3g/kg
(DA)程度まで減湿でき,給湯に関していえば,40
℃の水を75℃程度まで上昇させることができる。
Therefore, each of the cooling air and the hot water
The heat recovery is about 50% of the heat quantity of X. That is, the cooling load is 25% of the input, and the hot water supply load is 25%.
% Efficiency. As a whole, the power is 25%, the cooling is 25%, and the hot water is 25% of the input. As for cooling, as mentioned above, the outside air is 3 g / kg.
(DA) can be dehumidified to about, and when it comes to hot water supply, 40
C. water can be raised to about 75.degree.

【0028】以上のように,本実施の形態では,排気E
Xからではなく減湿後の空気から熱回収することで温水
を作り給湯に用いるようにしているので,総合効率とし
ては従来とほとんど変わらず,しかもかなり低いレベル
まで外気を減湿することができる。このようなレベルの
減湿は,従来のデシカント空調機としては不可能な値で
ある。
As described above, in the present embodiment, the exhaust E
Since hot water is made and used for hot water supply by recovering heat from the dehumidified air instead of from the X, the overall efficiency is almost the same as before, and the outside air can be dehumidified to a considerably lower level. . Such a level of dehumidification is an impossible value for a conventional desiccant air conditioner.

【0029】次に第2の実施の形態について図3に基づ
いて説明する。この第2の実施の形態は,第1の実施の
形態におけるデシカント空調機11の構成を変えたもの
である。なお第1の実施の形態にかかるデシカント空調
システムにおける同一の装置等については同一の符号を
用いることで詳細な説明は省略する。
Next, a second embodiment will be described with reference to FIG. In the second embodiment, the configuration of the desiccant air conditioner 11 in the first embodiment is changed. Note that the same devices and the like in the desiccant air-conditioning system according to the first embodiment are denoted by the same reference numerals, and detailed description is omitted.

【0030】この第2の実施の形態にかかるデシカント
空調システムで採用したデシカント空調機31において
は,減湿ロータ12の減湿部12aによって減湿された
後の空気が,第1の水−熱交換器としての温水コイル3
2において給湯用の原水(例えば40℃)と熱交換され
た後,さらに第2の水−熱交換器としての冷却コイル3
3において冷却塔21からポンプ34によって送られて
くる冷却水と熱交換された後,給気SAとして室Rに供
給されるようになっている。
In the desiccant air conditioner 31 employed in the desiccant air conditioning system according to the second embodiment, the air that has been dehumidified by the dehumidifying section 12a of the dehumidifying rotor 12 is supplied with the first water-heat. Hot water coil 3 as exchanger
2, after heat exchange with raw water for hot water supply (for example, 40 ° C.), a cooling coil 3 as a second water-heat exchanger
In 3, the heat is exchanged with the cooling water sent from the cooling tower 21 by the pump 34, and then supplied to the chamber R as air supply SA.

【0031】すなわち温水コイル32においては,40
℃の原水と熱交換され,減湿処理された空気は降温し,
その後さらに冷却コイル33によってさらに降温した
後,給気SAとして室Rにそのまま供給されるようにな
っている。
That is, in the hot water coil 32, 40
℃, heat exchange with raw water, dehumidified air cooled,
After that, the temperature is further decreased by the cooling coil 33, and then supplied to the chamber R as the air supply SA as it is.

【0032】一方温水コイル32において降温の減湿後
の空気と熱交換されて昇温した原水は,ポンプ35によ
って建物Bの機械室MRに設置されている温水器25へ
と送られる。また冷却コイル33において高温の空気と
熱交換されて昇温した冷却水は,冷却塔21へと戻さ
れ,冷却処理に付されるようになっている。
On the other hand, the raw water heated and exchanged with the dehumidified air in the hot water coil 32 to increase the temperature is sent by the pump 35 to the water heater 25 installed in the machine room MR of the building B. The cooling water that has been heated by the heat exchange with the high-temperature air in the cooling coil 33 is returned to the cooling tower 21 and subjected to a cooling process.

【0033】前記第2の実施の形態にかかるデシカント
空調システムの主要部は以上のように構成されており,
前記第1の実施の形態と同様,発電用ガスタービン1の
高い温度の排気を直接利用して,減湿ロータ12におけ
る再生能力を向上させ,もって低湿度の給気SAを室R
に供給することができる。また高温の空気からの排熱
は,温水コイル32で回収して給湯に使用しているの
で,コージェネレーションとしての総合効率は確保され
ている。
The main part of the desiccant air-conditioning system according to the second embodiment is configured as described above.
As in the first embodiment, the high-temperature exhaust gas of the power generation gas turbine 1 is directly used to improve the regeneration capability of the dehumidification rotor 12, and the low-humidity air supply SA is stored in the chamber R.
Can be supplied to Further, since the exhaust heat from the high-temperature air is recovered by the hot water coil 32 and used for hot water supply, the overall efficiency as cogeneration is secured.

【0034】またこの第2の実施の形態では,前記第1
の実施の形態のように蒸発冷却せずにそのまま室Rに供
給するようにしている。したがって,室Rでは極めて低
湿度の空調空気を供給することができ,フィルタ製造や
食品工場など,低湿度雰囲気を必要とする室Rの空調用
に適している。なお人が活動する区域に給気SAを供給
する場合には,第1の実施の形態と同様,一旦加湿冷却
処理してから室Rに供給すればよい。
Further, in the second embodiment, the first
In this embodiment, the water is supplied to the chamber R as it is without evaporative cooling. Therefore, the room R can supply conditioned air with extremely low humidity, and is suitable for air conditioning of the room R requiring a low humidity atmosphere, such as a filter manufacturing or a food factory. When air supply SA is supplied to an area where a person is active, the air supply SA may be supplied to the room R after humidification and cooling processing, as in the first embodiment.

【0035】さらに第2の実施の形態にかかるデシカン
ト空調システムにおいては,温水コイル32と,冷却コ
イル33とを二段にして使用しているので,コイル列数
を小さくすることが可能である。
Further, in the desiccant air-conditioning system according to the second embodiment, since the hot water coil 32 and the cooling coil 33 are used in two stages, the number of coil rows can be reduced.

【0036】[0036]

【発明の効果】本発明によれば,発電用ガスタービンと
デシカント空調機とを組み合わせた従来のシステムとを
比較すると,デシカント空調機の減湿能力が飛躍的に向
上し,より低湿度の空気を得ることができる。またガス
タービンからの排気の温度が高温すぎる場合にも,外気
と混合することで適切な再生温度にまで降温させること
ができるので,各種の発電用ガスタービンを使用でき
る。またそのように降温用に使用する外気をデシカント
空調機の減湿ロータの減湿部で処理するために導入した
外気の一部を用いることで,ダクト配管やシステム全体
が簡素化される。
According to the present invention, when compared with a conventional system in which a gas turbine for power generation and a desiccant air conditioner are combined, the dehumidifying ability of the desiccant air conditioner is dramatically improved, and air of lower humidity is provided. Can be obtained. Even when the temperature of the exhaust gas from the gas turbine is too high, the temperature can be lowered to an appropriate regeneration temperature by mixing with the outside air, so that various types of gas turbines for power generation can be used. In addition, by using a part of the outside air introduced for processing the outside air used for cooling in the dehumidifying section of the dehumidifying rotor of the desiccant air conditioner, the duct piping and the entire system are simplified.

【0037】前記減湿ロータの減湿部を通過した空気と
水とを水−空気熱交換器で熱交換することで,その後の
空調用負荷に対しても適切に対処することができる。ま
た前記水−空気熱交換器での熱交換によって昇温した水
を給湯に使用することで,システム全体としてエネルギ
を有効に利用することができ,総合効率としては従来と
ほとんど変わらないシステムを構築することが可能であ
る。
By exchanging heat between the air and water passing through the dehumidifying section of the dehumidifying rotor by the water-air heat exchanger, it is possible to appropriately cope with a subsequent air conditioning load. In addition, by using the water heated by the heat exchange in the water-air heat exchanger for hot water supply, energy can be used effectively as a whole system and a system with almost the same overall efficiency as the conventional system can be constructed. It is possible to

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態にかかるデシカント
空調システムの構成の概略を示す説明図である。
FIG. 1 is an explanatory diagram schematically showing a configuration of a desiccant air-conditioning system according to a first embodiment of the present invention.

【図2】本発明の実施の形態にかかるデシカント空調シ
ステムの運転例における空気状態の変化を示す空気線図
である。
FIG. 2 is an air line diagram showing a change in air state in an operation example of the desiccant air conditioning system according to the embodiment of the present invention.

【図3】本発明の第2の実施の形態にかかるデシカント
空調システムの構成の概略を示す説明図である。
FIG. 3 is an explanatory diagram schematically showing a configuration of a desiccant air conditioning system according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 発電用ガスタービン 11 デシカント空調機 12 減湿ロータ 12a 減湿部 12b 再生部 16 冷却コイル 17 蒸発冷却器 21 冷却塔 23 水−水熱交換器 B 建物 R 室 OA 外気 SA 給気 EA 排気 EX 排気 DESCRIPTION OF SYMBOLS 1 Power generation gas turbine 11 Desiccant air conditioner 12 Dehumidification rotor 12a Dehumidification part 12b Regeneration part 16 Cooling coil 17 Evaporative cooler 21 Cooling tower 23 Water-water heat exchanger B Building R Room OA Outside air SA Supply EA Exhaust EX Exhaust

フロントページの続き Fターム(参考) 3L053 BC03 BC09 3L055 AA10 BA00 Continued on the front page F term (reference) 3L053 BC03 BC09 3L055 AA10 BA00

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 発電用ガスタービンと,乾燥剤を有する
減湿ロータを備えたデシカント空調機とを有し,前記発
電用ガスタービンの排気を前記デシカント空調機の減湿
ロータの再生部に導入するようにしたことを特徴とす
る,デシカント空調システム。
1. A desiccant air conditioner having a power generating gas turbine and a dehumidifying rotor having a desiccant, and introducing exhaust gas of the power generating gas turbine into a regeneration unit of the dehumidifying rotor of the desiccant air conditioner. A desiccant air-conditioning system, characterized in that:
【請求項2】 前記発電用ガスタービンの排気を前記デ
シカント空調機の減湿ロータの再生部に導入するにあた
り,外気と混合して導入するようにしたことを特徴とす
る,請求項1に記載のデシカント空調システム。
2. The method according to claim 1, wherein the exhaust gas from the power generation gas turbine is introduced into the regeneration section of the dehumidifying rotor of the desiccant air conditioner by being mixed with outside air. Desiccant air conditioning system.
【請求項3】 外気と混合して導入する際の当該外気
は,前記デシカント空調機の減湿ロータの減湿部で処理
するために取り入れた外気の一部であることを特徴とす
る,請求項2に記載のデシカント空調システム。
3. The outside air mixed with the outside air and introduced is a part of the outside air introduced for processing in the dehumidifying section of the dehumidifying rotor of the desiccant air conditioner. Item 3. Desiccant air conditioning system according to item 2.
【請求項4】 さらに水−空気熱交換器を備え,当該水
−空気熱交換器によって前記減湿ロータの減湿部を通過
した空気と,水との間で熱交換を行い,当該熱交換後の
空気を加湿して空調用に使用するようにしたことをこと
を特徴とする,請求項1,2又は3のいずれかに記載の
デシカント空調システム。
4. A heat-exchanger further comprising a water-air heat exchanger, wherein the water-air heat exchanger exchanges heat between air passing through the dehumidifying section of the dehumidifying rotor and water. 4. The desiccant air conditioning system according to claim 1, wherein the air after humidification is used for air conditioning.
【請求項5】 さらに水−空気熱交換器を備え,当該水
−空気熱交換器によって前記減湿ロータの減湿部を通過
した空気と,水との間で熱交換を行い,当該熱交換後の
空気を加湿せずに空調用に使用するようにしたことをこ
とを特徴とする,請求項1,2又は3のいずれかに記載
のデシカント空調システム。
5. A water-air heat exchanger, wherein the water-air heat exchanger performs heat exchange between air passing through the dehumidifying section of the dehumidifying rotor and water, and the heat exchange The desiccant air-conditioning system according to any one of claims 1, 2, and 3, wherein the subsequent air is used for air-conditioning without humidification.
【請求項6】 前記水−空気熱交換器での熱交換によっ
て昇温した水は,給湯用に使用するようにしたことを特
徴とする,請求項4又は5に記載のデシカント空調シス
テム。
6. The desiccant air conditioning system according to claim 4, wherein the water heated by the heat exchange in the water-air heat exchanger is used for hot water supply.
【請求項7】 さらに水−水熱交換器と冷却塔とを備
え,前記水−空気熱交換器に通水される水は冷却塔によ
って冷却された後の冷却水であり,前記水−空気熱交換
器での熱交換された後の冷却水を,前記水−水熱交換器
に送って給湯用の原水との間で熱交換を行い,前記水−
水熱交換器での熱交換後の冷却水は冷却塔に戻して冷却
するようにし,前記水−水熱交換器での熱交換後の原水
は給湯用に使用するようにしたことを特徴とする,請求
項4又は5に記載のデシカント空調システム。
7. A water-water heat exchanger and a cooling tower, wherein the water passed through the water-air heat exchanger is cooling water cooled by the cooling tower. The cooling water after the heat exchange in the heat exchanger is sent to the water-water heat exchanger to exchange heat with the raw water for hot water supply, and
The cooling water after the heat exchange in the water heat exchanger is returned to the cooling tower for cooling, and the raw water after the heat exchange in the water-water heat exchanger is used for hot water supply. The desiccant air conditioning system according to claim 4 or 5, wherein
【請求項8】 さらに前記水−空気熱交換器の後段側に
配置される他の水−空気熱交換器と冷却塔とを備え,当
該他の水−空気熱交換器に通水される水は前記冷却塔に
よって冷却された後の冷却水であり,前記水−空気熱交
換器で熱交換された空気を直ちに空調用には使用せずさ
らに当該他の水−空気熱交換器で前記冷却水と熱交換を
行い,当該他の水−空気熱交換器での熱交換後の空気を
空調用に使用するようにし,当該他の水−空気熱交換器
での熱交換後の冷却水は冷却塔に戻して冷却するように
したことを特徴とする,請求項6に記載のデシカント空
調システム。
8. The water-to-air heat exchanger further comprising another water-to-air heat exchanger and a cooling tower disposed downstream of the water-to-air heat exchanger. Is cooling water cooled by the cooling tower, and the air heat exchanged by the water-air heat exchanger is not immediately used for air conditioning, and is further cooled by the other water-air heat exchanger. After the heat exchange with water, the air after heat exchange in the other water-air heat exchanger is used for air conditioning, and the cooling water after heat exchange in the other water-air heat exchanger is 7. The desiccant air-conditioning system according to claim 6, wherein cooling is performed by returning to a cooling tower.
JP2000201954A 2000-07-04 2000-07-04 Desiccant air conditioning system Expired - Lifetime JP4642189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000201954A JP4642189B2 (en) 2000-07-04 2000-07-04 Desiccant air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000201954A JP4642189B2 (en) 2000-07-04 2000-07-04 Desiccant air conditioning system

Publications (2)

Publication Number Publication Date
JP2002022253A true JP2002022253A (en) 2002-01-23
JP4642189B2 JP4642189B2 (en) 2011-03-02

Family

ID=18699550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000201954A Expired - Lifetime JP4642189B2 (en) 2000-07-04 2000-07-04 Desiccant air conditioning system

Country Status (1)

Country Link
JP (1) JP4642189B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925683A (en) * 2014-04-01 2014-07-16 北京工业大学 Thermosiphon hot water system used for recovering exhaust energy of domestic air conditioner
CN103925651A (en) * 2014-04-03 2014-07-16 西安富康空气净化设备工程有限公司 Laboratory air purifier and air purifying method based on same
CN106471315A (en) * 2014-02-16 2017-03-01 Be电力技术股份有限公司 Liquid drier regenerative system, its operational approach and the system comprising it
CN108006911A (en) * 2017-11-29 2018-05-08 广东美的暖通设备有限公司 Humidifying controlling method, system, air conditioner, computing device and storage medium
CN112303755A (en) * 2020-11-02 2021-02-02 广东申菱环境系统股份有限公司 Rotary wheel dehumidification system and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914033A (en) * 2012-11-22 2013-02-06 苏州启山电器技术开发事务所(普通合伙) Fresh air-conditioning system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118311U (en) * 1980-02-12 1981-09-09
JPS5840438A (en) * 1981-09-04 1983-03-09 Sato Kogyo Kk Method and device for air conditioning utilizing solar heat
JPH05301014A (en) * 1992-04-23 1993-11-16 Osaka Gas Co Ltd Open adsorption type air conditioner
JPH06221618A (en) * 1993-01-21 1994-08-12 Shimizu Corp Dehumidifying type air conditioning device
JPH07243336A (en) * 1994-03-03 1995-09-19 Taikisha Ltd Intake air cooling device of gas turbine
JPH11132593A (en) * 1997-10-29 1999-05-21 Daikin Ind Ltd Air conditioner
JP2002004813A (en) * 2000-06-21 2002-01-09 Osaka Gas Co Ltd Combined-cycle generating device utilizing cryogenic lng

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56118311U (en) * 1980-02-12 1981-09-09
JPS5840438A (en) * 1981-09-04 1983-03-09 Sato Kogyo Kk Method and device for air conditioning utilizing solar heat
JPH05301014A (en) * 1992-04-23 1993-11-16 Osaka Gas Co Ltd Open adsorption type air conditioner
JPH06221618A (en) * 1993-01-21 1994-08-12 Shimizu Corp Dehumidifying type air conditioning device
JPH07243336A (en) * 1994-03-03 1995-09-19 Taikisha Ltd Intake air cooling device of gas turbine
JPH11132593A (en) * 1997-10-29 1999-05-21 Daikin Ind Ltd Air conditioner
JP2002004813A (en) * 2000-06-21 2002-01-09 Osaka Gas Co Ltd Combined-cycle generating device utilizing cryogenic lng

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106471315A (en) * 2014-02-16 2017-03-01 Be电力技术股份有限公司 Liquid drier regenerative system, its operational approach and the system comprising it
CN103925683A (en) * 2014-04-01 2014-07-16 北京工业大学 Thermosiphon hot water system used for recovering exhaust energy of domestic air conditioner
CN103925651A (en) * 2014-04-03 2014-07-16 西安富康空气净化设备工程有限公司 Laboratory air purifier and air purifying method based on same
CN103925651B (en) * 2014-04-03 2016-08-17 西安富康空气净化设备工程有限公司 A kind of Laboratory air clearing machine and air purification method based on this clearing machine
CN108006911A (en) * 2017-11-29 2018-05-08 广东美的暖通设备有限公司 Humidifying controlling method, system, air conditioner, computing device and storage medium
CN108006911B (en) * 2017-11-29 2020-03-27 广东美的暖通设备有限公司 Humidification control method and system, air conditioner, computing equipment and storage medium
CN112303755A (en) * 2020-11-02 2021-02-02 广东申菱环境系统股份有限公司 Rotary wheel dehumidification system and control method thereof

Also Published As

Publication number Publication date
JP4642189B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
CN100443829C (en) Cogeneration system
JP3425088B2 (en) Desiccant air conditioning system
JP3131813B2 (en) Dehumidification type air conditioner
KR101985671B1 (en) Desiccant Air-Conditioning Apparatus and Tri-Generation System and Operation Method thereof
JP2007298192A (en) Gas turbine cogeneration system and its using method
JP3821031B2 (en) Desiccant air conditioning system
JP4642189B2 (en) Desiccant air conditioning system
JP2003279070A (en) Hybrid type desciccant air-conditioning system
JPH08158814A (en) Intake air cooling system for combined cycle plant
JP2007278594A (en) Desiccant air conditioning system
JP3435531B2 (en) Air conditioner using dehumidifying cooler
KR101420595B1 (en) Desiccant air conditioner
JPH05301014A (en) Open adsorption type air conditioner
JP2007322032A (en) Desiccant air conditioning system
JP2002013759A (en) Desiccant air-conditioning method
US6758048B1 (en) Microturbine-driven integrated air-conditioning system
JP4011724B2 (en) Desiccant air conditioning method
JP4255056B2 (en) Interconnection system of combined heat source system and air conditioning system
JP3324861B2 (en) Gas turbine intake cooling system
JPH10141706A (en) Air conditioner
JP2002130737A (en) Energy-saving air-conditioner
JP2002310452A (en) Heat and electric power parallel supply system having prime mover generator and desiccant air conditioner
JP2002130738A (en) Air conditioner
JP3327543B1 (en) Gas turbine cogeneration air conditioner
JP3300780B1 (en) Internal combustion engine cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

EXPY Cancellation because of completion of term