JPH07131722A - Solid-state image pickup device - Google Patents

Solid-state image pickup device

Info

Publication number
JPH07131722A
JPH07131722A JP5276278A JP27627893A JPH07131722A JP H07131722 A JPH07131722 A JP H07131722A JP 5276278 A JP5276278 A JP 5276278A JP 27627893 A JP27627893 A JP 27627893A JP H07131722 A JPH07131722 A JP H07131722A
Authority
JP
Japan
Prior art keywords
pyroelectric body
solid
photodetection
cooling
electronic cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5276278A
Other languages
Japanese (ja)
Inventor
Nobuyuki Kajiwara
信之 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP5276278A priority Critical patent/JPH07131722A/en
Publication of JPH07131722A publication Critical patent/JPH07131722A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To suppress heat storage of a pyroelectric body so as to keep a stable operation and also to eliminate the need for a shutter function switching an optical incidence. CONSTITUTION:A cooling means individually cooling each pyroelectric body 3 is provided and each pyroelectric body 3 is cooled for a photodetection pause period for a photo detector 12. The cooling means is an electronic cooler 5 employing the Peltier effect and a conduction current through the electronic cooler 5 varies with a level of a photo detection signal before the current conduction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、画素を構成する光検出
素子に焦電体を有して、各光検出素子が光検出を周期的
に行う固体撮像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device in which a photodetector element constituting a pixel has a pyroelectric body and each photodetector element periodically performs photodetection.

【0002】近年の赤外線を検出する固体撮像装置は、
多画素化や高感度化などの高性能化の要求とともに、低
価格が強く要求されている。このため、非冷却型の撮像
装置が要求されて、焦電体を用いた固体撮像装置の開発
が進められているが、焦電体での赤外線検出は、焦電体
の温度変化によって変化する自発分極を検出するため
に、焦電体に赤外線を照射しない時間帯を設けて焦電体
の温度を下げる必要がある。
Recent solid-state image pickup devices for detecting infrared rays are
Along with the demand for higher performance such as higher pixel count and higher sensitivity, there is a strong demand for low prices. For this reason, a non-cooling type image pickup device is required, and a solid-state image pickup device using a pyroelectric body is being developed. However, infrared detection by the pyroelectric body changes depending on the temperature change of the pyroelectric body. In order to detect the spontaneous polarization, it is necessary to provide the pyroelectric body with a time period during which infrared rays are not irradiated to lower the temperature of the pyroelectric body.

【0003】[0003]

【従来の技術】図5は、焦電体を用いた固体撮像装置の
従来例の斜視図(a)とその光検出素子の斜視図(b)
である。この従来例は、(b)に示す光検出素子11が
画素を構成して二次元のマトリクス配置に並び、その下
に、シリコンなどの半導体チップに組み込んだ信号読み
出し回路21が配置されており、光検出素子11の前面
に入射光を開閉する図示省略のシャッター機構が設けら
れている。
2. Description of the Related Art FIG. 5 is a perspective view (a) of a conventional example of a solid-state image pickup device using a pyroelectric body and a perspective view (b) of a photodetector thereof.
Is. In this conventional example, the photo-detecting elements 11 shown in (b) form a pixel and are arranged in a two-dimensional matrix arrangement, and a signal reading circuit 21 incorporated in a semiconductor chip such as silicon is arranged below that. A shutter mechanism (not shown) that opens and closes incident light is provided on the front surface of the light detection element 11.

【0004】光検出素子11は、画素としての大きさが
例えば50〜100μm 程度であり、赤外線Lの入射側
から、赤外線を吸収する吸収層1、接地される共通電極
2、焦電体3、焦電体3の電荷を検出する信号読み出し
電極4が順次に積層された構造をなし、赤外線Lの入射
に伴い焦電体3が温度上昇する。また、焦電体3の温度
上昇が伝熱によって小さくなるのを防ぐため、信号読み
出し電極4と信号読み出し回路22との間には空洞また
は断熱スペーサが設けられている。
The photo-detecting element 11 has a pixel size of, for example, about 50 to 100 μm, and absorbs infrared rays from the incident side of the infrared rays L, a common electrode 2 grounded, a pyroelectric body 3, The reading electrode 4 for detecting the electric charge of the pyroelectric body 3 is sequentially laminated, and the temperature of the pyroelectric body 3 rises with the incidence of the infrared rays L. Further, in order to prevent the temperature rise of the pyroelectric body 3 from being reduced by heat transfer, a cavity or a heat insulating spacer is provided between the signal reading electrode 4 and the signal reading circuit 22.

【0005】図6は従来例の光検出素子の動作説明図で
ある。焦電体3は自発分極により一定量の分極をしてい
るが、定常状態では大気中のイオンにより表面電荷が中
和されている。そして、赤外線Lの入射は上記シャッタ
ー機構により周期的に行われる。赤外線Lが入射する
と、焦電体3の微小な温度上昇(図中のΔT)により焦
電体3の自発分極が変化し、電極2と4の間に電圧が発
生する。この電圧を信号読み出し回路21で検出し画像
化する。次に赤外線Lの入射が休止すると、焦電体3の
熱が電極2,4などを通して信号読み出し回路21側に
放散し、焦電体3の温度が下がる。この冷却により次の
赤外線L入射の際に前回と同様に画像化できる。赤外線
Lの入射期間と入射休止期間は例えば10msと20m
s程度である。
FIG. 6 is a diagram for explaining the operation of the conventional photodetector. The pyroelectric body 3 has a certain amount of polarization due to spontaneous polarization, but in the steady state, surface charges are neutralized by ions in the atmosphere. Then, the incidence of the infrared rays L is periodically performed by the shutter mechanism. When the infrared ray L enters, the spontaneous polarization of the pyroelectric body 3 changes due to a slight temperature rise (ΔT in the figure) of the pyroelectric body 3, and a voltage is generated between the electrodes 2 and 4. This voltage is detected by the signal reading circuit 21 and imaged. Next, when the incidence of the infrared rays L is stopped, the heat of the pyroelectric body 3 is dissipated to the signal reading circuit 21 side through the electrodes 2 and 4 and the temperature of the pyroelectric body 3 is lowered. By this cooling, the next infrared ray L can be imaged similarly to the previous time. The incident period and the incident stop period of the infrared ray L are, for example, 10 ms and 20 m.
It is about s.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、赤外線
Lの入射休止期間内に焦電体3の温度が十分に下がらな
いで、焦電体3に蓄熱が生じる場合がある。図6のΔT
0 はその蓄熱による焦電体3の温度上昇である。そのよ
うな場合には、強い赤外線Lの入射があると焦電体3の
温度が上昇してダイナミックレンジが低下し、最悪では
焦電体3の温度がキュウリー点まで上昇して撮像が不能
になっていた。
However, there is a case where the pyroelectric body 3 accumulates heat because the temperature of the pyroelectric body 3 is not sufficiently lowered during the infrared light L incident pause period. ΔT in FIG.
0 is the temperature rise of the pyroelectric body 3 due to the heat storage. In such a case, when the strong infrared ray L is incident, the temperature of the pyroelectric body 3 rises and the dynamic range decreases, and in the worst case, the temperature of the pyroelectric body 3 rises to the Cucumber point and imaging becomes impossible. Was becoming.

【0007】本発明は、画素を構成する光検出素子に焦
電体を有して、各光検出素子が光検出を周期的に行う固
体撮像装置に関し、安定動作を維持できるように焦電体
の蓄熱を抑え、更には、光入射を開閉するシャッター機
能を不要にさせることが可能な固体撮像装置の提供を目
的とする。
The present invention relates to a solid-state image pickup device in which a photo-detecting element forming a pixel has a pyroelectric body, and each photo-detecting element periodically performs photo-detection. It is an object of the present invention to provide a solid-state imaging device capable of suppressing the heat storage of the above and further eliminating the shutter function for opening and closing the light incidence.

【0008】[0008]

【課題を解決するための手段】図1は本発明の原理説明
図で、(a)は光検出素子の斜視図、(b)は動作説明
図であり、図中、先に述べた図5と同一符号は同一対象
物を示し、5は電子冷却器、6は絶縁体、12は光検出
素子、を示す。
FIG. 1 is a diagram for explaining the principle of the present invention, FIG. 1A is a perspective view of a photodetector, and FIG. 1B is a diagram for explaining the operation. In FIG. The same reference numeral indicates the same object, 5 indicates an electronic cooler, 6 indicates an insulator, and 12 indicates a photodetector.

【0009】上記目的を達成するために、図1を参照し
て、本発明による固体撮像装置は、画素を構成する光検
出素子に焦電体3を有して、各光検出素子12が光検出
を周期的に行う固体撮像装置であって、各焦電体3を個
別に冷却する冷却手段を有して、焦電体3の冷却が当該
光検出素子12の光検出休止期間に行われることを特徴
としている。
In order to achieve the above object, referring to FIG. 1, the solid-state image pickup device according to the present invention has a pyroelectric body 3 as a photo-detecting element constituting a pixel, and each photo-detecting element 12 emits light. A solid-state imaging device that periodically performs detection, has a cooling unit that individually cools each pyroelectric body 3, and cools the pyroelectric body 3 during a light detection pause period of the photodetection element 12. It is characterized by that.

【0010】そして、上記冷却手段は、ペルチェ効果を
用いた電子冷却器5であり、電子冷却器5の通電電流
は、その通電前の光検出信号の大きさに応じて可変でき
ることを特徴としている。
The cooling means is an electronic cooler 5 using the Peltier effect, and the energizing current of the electronic cooler 5 can be varied according to the magnitude of the photodetection signal before the energizing. .

【0011】[0011]

【作用】本発明の固体撮像装置は、図1(b)のよう
に、焦電体3から信号電荷を読み出した後の、焦電体3
を放熱により冷却する光検出休止期間に、上記冷却手段
により焦電体3を強制的に冷却することができる。従っ
て、従来例でダイナミックレンジが低下したり撮像が不
能になったりする不安定動作の原因である焦電体3の蓄
熱を抑えることが可能である。即ち、焦電体3の蓄熱に
よる温度上昇ΔT0をほぼ0にすることができる。然
も、焦電体3の冷却を強制的に行うことから、光入射が
中断なしに継続されても上記蓄熱を同様に抑えることが
できるので、光入射を開閉するシャッター機構を不要に
させることが可能である。シャッター機構が不要になれ
ば当該撮像装置の小型化が容易になる。
In the solid-state image pickup device of the present invention, as shown in FIG. 1 (b), the pyroelectric body 3 after the signal charge is read out from the pyroelectric body 3.
The pyroelectric body 3 can be forcibly cooled by the cooling means during the light detection pause period in which the heat is cooled by heat radiation. Therefore, it is possible to suppress the heat accumulation of the pyroelectric body 3, which is the cause of the unstable operation in which the dynamic range is reduced and the imaging becomes impossible in the conventional example. That is, the temperature rise ΔT 0 due to the heat storage of the pyroelectric body 3 can be made almost zero. However, since the pyroelectric body 3 is forcibly cooled, the above heat storage can be suppressed in the same manner even if the light incidence is continued without interruption, so that the shutter mechanism for opening and closing the light incidence is unnecessary. Is possible. If the shutter mechanism is not needed, it is easy to downsize the imaging device.

【0012】そして、上記冷却手段を電子冷却器5にす
れば、それを焦電体3の背後に位置させることが容易で
あり、光検出素子12の配列を従来例と同様にすること
ができて好都合である。また、焦電体3からの信号がそ
の焦電体3の温度上昇(先に述べたΔT)と比例するの
で、電子冷却器5の通電電流で上記の可変ができれば、
光検出素子12相互間で冷却後における焦電体3の温度
を一定に揃えることが容易である。
If the cooling means is the electronic cooler 5, it is easy to position it behind the pyroelectric body 3, and the photodetector elements 12 can be arranged in the same manner as in the conventional example. It is convenient. Further, since the signal from the pyroelectric body 3 is proportional to the temperature rise of the pyroelectric body 3 (ΔT described above), if the above-mentioned change can be made by the energizing current of the electronic cooler 5,
It is easy to make the temperature of the pyroelectric body 3 constant after cooling between the photodetecting elements 12.

【0013】[0013]

【実施例】以下本発明の実施例について図2〜図4を用
いて説明する。図2は実施例1の斜視図(a)とその光
検出素子の斜視図(b)、図3は実施例2の光検出素子
の斜視図、図4は実施例3の電子冷却器制御の回路図、
であり、全図を通し同一符号は同一対象物を示す。
Embodiments of the present invention will be described below with reference to FIGS. 2 is a perspective view (a) of the first embodiment and a perspective view (b) of the photodetector element thereof, FIG. 3 is a perspective view of the photodetector element of the second embodiment, and FIG. 4 is a control diagram of the electronic cooler of the third embodiment. circuit diagram,
Therefore, the same reference numerals denote the same objects throughout the drawings.

【0014】図2において、この実施例1は、(b)に
示す光検出素子12A(先に述べた光検出素子12に該
当)が画素を構成して二次元のマトリクス配置に並び、
その下に、シリコンなどの半導体チップに組み込んだ信
号読み出し回路22が配置されている。従来例で説明し
たシャッター機構は設けていない。
In FIG. 2, in Example 1, the photo-detecting elements 12A (corresponding to the photo-detecting elements 12 described above) shown in (b) constitute pixels and are arranged in a two-dimensional matrix arrangement.
A signal reading circuit 22 incorporated in a semiconductor chip made of silicon or the like is arranged below it. The shutter mechanism described in the conventional example is not provided.

【0015】光検出素子12Aは、画素としての大きさ
が従来例の光検出素子11と同じであり、上から(赤外
線Lの入射側から)、吸収層1、共通電極2、焦電体
3、信号読み出し電極4が順次に積層されたその下に、
即ち従来例で空洞を設けた部分に、ペルチェ効果で冷却
する電子冷却器5A(先に述べた電子冷却器5に該当)
を設けた構造をなしている。電子冷却器5Aは、ペルチ
ェ素子が1個であり、冷却側電極に信号読み出し電極4
を共用している。5bは放熱側電極である。上記電極の
共用により、焦電体3に対する冷却の効率化と光検出素
子12の簡素化を図っている。このペルチェ素子は、ペ
ルチェ効果の材料をBi2 Te3 やSb2Te3 にし
て、通常の半導体プロセスで用いる成膜技術やホトリソ
グラフィ技術を利用して形成できる。
The photodetector 12A has the same size as the pixel as the photodetector 11 of the conventional example, and the absorption layer 1, the common electrode 2, and the pyroelectric body 3 are arranged from above (from the incident side of the infrared ray L). , Under which the signal readout electrodes 4 are sequentially laminated,
That is, the electronic cooler 5A that cools by the Peltier effect in the portion provided with the cavity in the conventional example (corresponds to the electronic cooler 5 described above).
It has a structure with. The electronic cooler 5A has one Peltier element, and the signal readout electrode 4 is provided on the cooling side electrode.
Are shared. 5b is a heat dissipation side electrode. By sharing the electrodes, the efficiency of cooling the pyroelectric body 3 and the simplification of the photodetection element 12 are improved. This Peltier element can be formed by using a Peltier effect material as Bi 2 Te 3 or Sb 2 Te 3 and using a film forming technique or a photolithography technique used in a normal semiconductor process.

【0016】信号読み出し回路22は、従来例の場合の
光検出と同様に焦電体3から信号電荷を読み出す回路
と、電子冷却器5Aを駆動する回路を有する。そして、
光検出の周期を構成する光検出期間(例えば10ms程
度)と光検出休止期間(例えば20ms程度)を設定
し、光検出期間に焦電体3から信号電荷を読み出して画
像化し、光検出休止期間に電子冷却器5Aへ通電して焦
電体3を所定温度に冷却する。上記シャッター機構が無
いので赤外線Lの照射が継続されて光検出休止期間中も
焦電体3に熱エネルギーが供給されるが、電子冷却器5
Aによる熱エネルギー排除の方が大きいので、上記冷却
は十分に実行できる。
The signal readout circuit 22 has a circuit for reading out signal charges from the pyroelectric body 3 and a circuit for driving the electronic cooler 5A, similarly to the photodetection in the conventional example. And
A photodetection period (for example, about 10 ms) and a photodetection pause period (for example, about 20 ms) that configure a photodetection cycle are set, and signal charges are read out from the pyroelectric body 3 and imaged during the photodetection period, and the photodetection pause period is set. Then, the electronic cooler 5A is energized to cool the pyroelectric body 3 to a predetermined temperature. Since the shutter mechanism is not provided, the infrared energy L is continuously emitted, and thermal energy is supplied to the pyroelectric body 3 even during the light detection pause period.
Since the removal of heat energy by A is larger, the above cooling can be sufficiently performed.

【0017】そして、実施例1は上記シャッター機構が
無いので従来例より小型になっている。この実施例1に
おいて、従来例と同様に上記シャッター機構を設けても
良い。その場合は、大きさが従来例と同じに大きくなる
が、電子冷却器5Aによる熱エネルギー排除の負担が少
なくなる利点がある。
Since the first embodiment does not have the shutter mechanism, it is smaller than the conventional example. In the first embodiment, the shutter mechanism may be provided as in the conventional example. In that case, the size is as large as that of the conventional example, but there is an advantage that the burden of removing the thermal energy by the electronic cooler 5A is reduced.

【0018】図3において、この実施例2は、実施例1
の光検出素子12Aを光検出素子12Bに変更して実施
例1と同様の構成にしたものである。光検出素子12A
は、ペルチェ素子を1個にした電子冷却器5Aを用い
て、その冷却側電極に信号読み出し電極4を共用してい
るが、光検出素子12Bは、ペルチェ素子を2個にして
直列接続した電子冷却器5Bを用いており、その冷却側
電極は5aであり信号読み出し電極4との間に絶縁体6
を介在させてある。実施例1と比較すると、絶縁体6の
介在により焦電体3に対する冷却の効率が多少劣るが、
電子冷却器5Bの通電電流が少なくて良い利点がある。
In FIG. 3, the second embodiment is the same as the first embodiment.
The photo-detecting element 12A is changed to the photo-detecting element 12B to have the same configuration as that of the first embodiment. Photodetector 12A
Uses the electronic cooler 5A with one Peltier element and shares the signal readout electrode 4 with its cooling side electrode. However, the photodetector element 12B has two Peltier elements connected in series. The cooler 5B is used, the cooling side electrode is 5a, and the insulator 6 is provided between the cooler 5B and the signal reading electrode 4.
Is intervened. Compared with Example 1, the efficiency of cooling the pyroelectric body 3 is slightly inferior due to the inclusion of the insulator 6,
There is an advantage that the energizing current of the electronic cooler 5B is small.

【0019】ところで、このような撮像装置では、二次
元に並ぶ光検出素子の相互間で入射する赤外線Lの強度
が一様でなく、また、個々の光検出素子に着目してもそ
の強度が経時的に変化する。このため、光検出素子に焦
電体3を用いた固体撮像装置では、光検出素子に入射し
た光強度に応じて焦電体3の冷却を加減する必要があ
る。
By the way, in such an image pickup device, the intensity of the infrared rays L which are incident between the two-dimensionally arranged photo-detecting elements is not uniform, and even if the individual photo-detecting elements are focused on, the intensity is not uniform. It changes over time. Therefore, in the solid-state imaging device using the pyroelectric body 3 as the photodetection element, it is necessary to adjust the cooling of the pyroelectric body 3 according to the intensity of the light incident on the photodetection element.

【0020】この冷却の加減をとるため、実施例1で
は、電子冷却器5Aの通電電流を大きめに設定し、焦電
体3が所定温度に達したところで上記電流を小さくして
所定温度が維持されるようにしている。しかしその制御
は各光検出素子12A毎に行う必要があるので制御回路
が可なり複雑である。但し、前述のシャッター機構を設
けた場合には、上記所定温度維持のための通電を省略す
ることができる。実施例2においても同様である。
In order to control this cooling, in the first embodiment, the energizing current of the electronic cooler 5A is set to a large value, and when the pyroelectric body 3 reaches the predetermined temperature, the current is reduced to maintain the predetermined temperature. I am trying to do it. However, since the control needs to be performed for each photodetector 12A, a control circuit is possible and complicated. However, when the shutter mechanism described above is provided, the energization for maintaining the predetermined temperature can be omitted. The same applies to the second embodiment.

【0021】実施例3は、上記冷却の加減を簡便な制御
回路で行い得るようにしたものである。そこでは、焦電
体3から得られる光検出信号がその焦電体3の温度上昇
(先に述べたΔT)と比例していることに着目して、例
えば、光検出素子12Aでは電子冷却器5Aの通電電流
がその通電前の光検出信号の大きさに応じて大きくなる
ようにしている。これにより、光検出休止期間が終わる
時点に焦電体3が所定温度となるようにすることが可能
になり、通電電流の切り換えが不要となる。そのことに
より、各光検出素子12A毎の制御は図4の回路図に示
すようにシフトレジスタを用いた回路で済ませている。
The third embodiment is such that the cooling can be controlled by a simple control circuit. Here, focusing on the fact that the photodetection signal obtained from the pyroelectric body 3 is proportional to the temperature rise of the pyroelectric body 3 (ΔT described above), for example, in the photodetection element 12A, an electronic cooler is used. The energizing current of 5 A is increased according to the magnitude of the photodetection signal before energizing. As a result, the pyroelectric body 3 can be brought to the predetermined temperature at the end of the light detection pause period, and the switching of the energization current is unnecessary. As a result, the control for each photodetecting element 12A is completed by a circuit using a shift register as shown in the circuit diagram of FIG.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、画
素を構成する光検出素子に焦電体を有して、各光検出素
子が光検出を周期的に行う固体撮像装置に関し、焦電体
の蓄熱を抑え、更には、光入射を開閉するシャッター機
能を不要にさせることが可能な固体撮像装置が提供され
て、焦電体の蓄熱によって生じるダイナミックレンジ低
下や撮像不能を防止して安定動作の維持を可能にさせ、
また、当該撮像装置の小型化を可能にさせる効果があ
る。
As described above, according to the present invention, there is provided a solid-state imaging device in which a photodetector element forming a pixel has a pyroelectric body and each photodetector element periodically performs photodetection. Provided is a solid-state imaging device capable of suppressing the heat storage of the electric body and further eliminating the shutter function for opening and closing the light incident, thereby preventing a decrease in the dynamic range and the inability to take an image caused by the heat storage of the pyroelectric body. Allows stable operation to be maintained,
Further, there is an effect that the size of the imaging device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の原理説明図FIG. 1 is an explanatory view of the principle of the present invention.

【図2】 実施例1の斜視図(a)とその光検出素子の
斜視図(b)
FIG. 2 is a perspective view of the first embodiment (a) and a perspective view of a photodetector element thereof (b).

【図3】 実施例2の光検出素子の斜視図FIG. 3 is a perspective view of the photodetector of Example 2.

【図4】 実施例3の電子冷却器制御の回路図FIG. 4 is a circuit diagram of a thermoelectric cooler control according to a third embodiment.

【図5】 従来例の斜視図(a)とその光検出素子の斜
視図(b)
FIG. 5 is a perspective view of a conventional example (a) and a perspective view of a photodetector element thereof (b).

【図6】 従来例の光検出素子の動作説明図FIG. 6 is an operation explanatory diagram of a conventional photodetector.

【符号の説明】[Explanation of symbols]

1 吸収層 2 共通電極 3 焦電体 4 信号読み出し電極 5,5A,5B 電子冷却器 5a 冷却側電極 5b 放熱側電極 6 絶縁体 11,12,12A,12B 光検出素子 21,22 信号読み出し回路 L 赤外線 ΔT 焦電体の光入射による温度上昇 ΔT0 焦電体の蓄熱による温度上昇1 Absorption Layer 2 Common Electrode 3 Pyroelectric Material 4 Signal Readout Electrode 5, 5A, 5B Electronic Cooler 5a Cooling Side Electrode 5b Heat Dissipation Side Electrode 6 Insulators 11, 12, 12A, 12B Photodetector 21, 22 Signal Readout Circuit L Infrared ΔT Temperature rise due to incident light on pyroelectric body ΔT 0 Temperature rise due to heat accumulation on pyroelectric body

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 画素を構成する光検出素子(12)に焦
電体(3)を有して、各光検出素子(12)が光検出を
周期的に行う固体撮像装置であって、 各焦電体(3)を個別に冷却する冷却手段を有して、焦
電体(3)の冷却が当該光検出素子(12)の光検出休
止期間に行われることを特徴とする固体撮像装置。
1. A solid-state image pickup device comprising a pyroelectric body (3) in a photodetecting element (12) constituting a pixel, wherein each photodetecting element (12) periodically performs photodetection. A solid-state imaging device having a cooling unit for individually cooling the pyroelectric body (3), wherein the pyroelectric body (3) is cooled during a photodetection pause period of the photodetection element (12). .
【請求項2】 上記冷却手段は、ペルチェ効果を用いた
電子冷却器(5)であり、該電子冷却器(5)の通電電
流は、その通電前の光検出信号の大きさに応じて可変で
きることを特徴とする請求項2記載の固体撮像装置。
2. The cooling means is an electronic cooler (5) using the Peltier effect, and the energization current of the electronic cooler (5) is variable according to the magnitude of the photodetection signal before the energization. The solid-state imaging device according to claim 2, wherein the solid-state imaging device can.
JP5276278A 1993-11-05 1993-11-05 Solid-state image pickup device Withdrawn JPH07131722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5276278A JPH07131722A (en) 1993-11-05 1993-11-05 Solid-state image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5276278A JPH07131722A (en) 1993-11-05 1993-11-05 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
JPH07131722A true JPH07131722A (en) 1995-05-19

Family

ID=17567222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5276278A Withdrawn JPH07131722A (en) 1993-11-05 1993-11-05 Solid-state image pickup device

Country Status (1)

Country Link
JP (1) JPH07131722A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140069932A (en) * 2012-11-30 2014-06-10 삼성전자주식회사 Image sensor for performing thermal reset, method thereof, and devices including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140069932A (en) * 2012-11-30 2014-06-10 삼성전자주식회사 Image sensor for performing thermal reset, method thereof, and devices including the same

Similar Documents

Publication Publication Date Title
KR100265672B1 (en) Readout sustem and process for ir detector arrays
EP0534769B1 (en) Readout system and process for IR detector arrays
US5512748A (en) Thermal imaging system with a monolithic focal plane array and method
US4072863A (en) Pyroelectric infrared detection system
JP3866069B2 (en) Infrared solid-state imaging device
JP4441578B2 (en) Electronic device and control method thereof
JP6172522B2 (en) Infrared detector, detection method thereof, and electronic device
JP2006081204A (en) Camera for generating video output signal, and infrared detection device having infrared focal plane array package for such camera
US20100084556A1 (en) Optical-infrared composite sensor and method of fabricating the same
EP1045233A2 (en) Thermal functional device capable of high-speed response and a method of driving the device
US20060180758A1 (en) Apparatus and method for providing thermal conductance in thermally responsive photonic imaging devices
JPH07131722A (en) Solid-state image pickup device
JP3655760B2 (en) Infrared solid-state image sensor
US6040577A (en) Chopperless operation of a thermal infrared radiation sensor system by application of heat pulses to thermally isolated pixel sensor elements
US3256435A (en) Infrared image system using pyroelectric detectors
US7485860B2 (en) Thermoelectric bridge IR detector
JP3648506B2 (en) Infrared imaging device
GB1592500A (en) Pyroelectric infrared detection system
JPH055435B2 (en)
JPH02137267A (en) Pyroelectric type infrared solid state image sensor and its driving method
JP3121424B2 (en) Semiconductor photodetector
Teranishi Thermoelectric uncooled infrared focal plane arrays
JPS6134263B2 (en)
JPS6349972Y2 (en)
JP2022071557A (en) Cooled imaging device and photodetector

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010130