JPH07131004A - Semiconductor device and preparation thereof - Google Patents

Semiconductor device and preparation thereof

Info

Publication number
JPH07131004A
JPH07131004A JP5152288A JP15228893A JPH07131004A JP H07131004 A JPH07131004 A JP H07131004A JP 5152288 A JP5152288 A JP 5152288A JP 15228893 A JP15228893 A JP 15228893A JP H07131004 A JPH07131004 A JP H07131004A
Authority
JP
Japan
Prior art keywords
impurity diffusion
concentration
substrate
diffusion region
diffusion regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5152288A
Other languages
Japanese (ja)
Inventor
Kazuhiro Sasada
一弘 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5152288A priority Critical patent/JPH07131004A/en
Publication of JPH07131004A publication Critical patent/JPH07131004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the reliability of a semiconductor device by suppressing the occurrence of parasitic capacitance and further maintaining hot carrier reliability. CONSTITUTION:P<+> type impurity diffusion regions 5, 6, higher in impurity concentration than a substrate 1, are formed on n<->type low-concentration impurity diffusion regions 8, 9. Thus these impurity diffusion regions 5, 6 act as potential barriers, and prevent majority carriers from being attracted from the low- concentration impurity diffusion regions 8, 9 even when they are exposed to the fringing electric field from a gate electrode 3. Therefore, the impurity diffusion regions 5, 6 also prevent the occurrence of parasitic capacitance. Even if the field strength of source and drain is increased in proximity to the low- concentration diffusion regions, and thus hot carriers are produced, for example, by increasing the impurity concentration of the low-concentration impurity diffusion regions 8, 9, it is hard for the hot carriers to reach a gate oxide film 2 because of the presence of the p<+>-type impurity diffusion regions 5, 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LDD(Lightl
y Doped Drain)構造を有する半導体装置
とその製造方法に関する。
The present invention relates to an LDD (Lightl)
The present invention relates to a semiconductor device having a y Doped Drain) structure and a method for manufacturing the same.

【0002】[0002]

【従来の技術】通常構造のMOSトランジスタのドレイ
ン近傍では電界集中が激しくなり、大量のホットキャリ
アが生成し、特性劣化を起こしやすいことが知られてい
る。このホットキャリアの発生を減少させるためには、
ドレイン端の不純物濃度を低くし、プロファイルを緩や
かにすることで電界集中を避けることが有効である。
2. Description of the Related Art It is known that in the vicinity of the drain of a MOS transistor having a normal structure, electric field concentration becomes intense, a large amount of hot carriers are generated, and characteristics are easily deteriorated. In order to reduce the generation of this hot carrier,
It is effective to avoid electric field concentration by lowering the impurity concentration at the drain end and making the profile gentle.

【0003】この問題点を解決する構造として、例えば
特開昭64−37055号公報(H01L29/78)
に示すようなLDD構造のトランジスタが良く知られて
いる。即ち、図2において、シリコン基板1上に酸化膜
2及びポリシリコンからなるゲート電極3を形成した
後、ゲート電極をマスクとしてn型不純物としてのリン
(P)をイオン注入して(n-)層を形成し(a)、C
VD法により前記基板1の上にシリコン酸化膜(SiO
2)4を堆積させ(b)、このSi酸化膜4をエッチバ
ック処理してサイドウォール4aを形成し(c)、更
に、前記ゲート電極3及びサイドウォール4aをマスク
としてn型不純物としてのヒ素(As)をイオン注入し
て(n+)層を形成する(d)。
As a structure for solving this problem, for example, Japanese Patent Application Laid-Open No. 64-37055 (H01L29 / 78).
A well-known LDD structure transistor as shown in FIG. That is, in FIG. 2, after forming the oxide film 2 and the gate electrode 3 made of polysilicon on the silicon substrate 1, phosphorus (P) as an n-type impurity is ion-implanted using the gate electrode as a mask (n ). Forming a layer (a), C
A silicon oxide film (SiO 2) is formed on the substrate 1 by the VD method.
2 ) 4 is deposited (b), the Si oxide film 4 is etched back to form sidewalls 4a (c), and arsenic is used as an n-type impurity by using the gate electrodes 3 and the sidewalls 4a as masks. (As) is ion-implanted to form an (n + ) layer (d).

【0004】前記公開公報では、更に前記(n-)層の
下に、基板よりも濃度の高い(p+)層を形成してトラ
ンジスタの短チャネル効果の防止を図っている。
In the above publication, a (p + ) layer having a higher concentration than the substrate is further formed under the (n ) layer to prevent the short channel effect of the transistor.

【0005】[0005]

【発明が解決しようとする課題】従来例のようなLDD
構造のトランジスタにおいて、ホットキャリア信頼性を
改善するためには、図2のように(n-)層とゲート電
極3とをオーバーラップさせ、且つ(n-)層の不純物
濃度を高くすることにより、ドレインやソースにおける
低濃度拡散領域近傍の電界強度が小さくなり、インパク
トイオン化率が減少してホットキャリアの発生を軽減す
ることができる。
LDD as in the prior art
In a transistor having a structure, in order to improve the hot carrier reliability, the (n ) layer and the gate electrode 3 are overlapped with each other and the impurity concentration of the (n ) layer is increased as shown in FIG. The electric field strength in the vicinity of the low-concentration diffusion region in the drain or source is reduced, the impact ionization rate is reduced, and the generation of hot carriers can be reduced.

【0006】ところがこのような構造にすると、逆にド
レインやソースにおける低濃度拡散領域とゲート電極と
の間に寄生容量が発生し、トランジスタとしての特性を
劣化させる問題がある。本発明は、半導体装置及びその
製造方法の改良に関し、ホットキャリア信頼性を維持し
つつ、寄生容量の発生を抑制して、半導体装置としての
信頼性を向上させることを目的とする。
However, with such a structure, on the contrary, a parasitic capacitance is generated between the low-concentration diffusion region in the drain or source and the gate electrode, and there is a problem that characteristics of the transistor are deteriorated. The present invention relates to an improvement in a semiconductor device and a method of manufacturing the same, and an object thereof is to suppress the occurrence of parasitic capacitance while maintaining the hot carrier reliability, and to improve the reliability as a semiconductor device.

【0007】[0007]

【課題を解決するための手段】第1の発明における半導
体装置は、一導電型の半導体基板と、この基板の上に形
成されたゲート絶縁膜と、このゲート絶縁膜上に形成さ
れたゲート電極と、前記基板における前記ゲート電極の
両側に形成され、ソース及びドレイン領域となる他導電
型の高濃度不純物拡散領域と、この高濃度不純物拡散領
域に隣接してチャネル側に位置するように形成され、前
記高濃度不純物拡散領域よりも不純物濃度が低い他導電
型の低濃度不純物拡散領域と、この低濃度不純物拡散領
域の上部に位置するように形成され、前記基板よりも不
純物濃度が高い一導電型の不純物拡散領域とを具備した
ものである。
A semiconductor device according to a first invention is a semiconductor substrate of one conductivity type, a gate insulating film formed on the substrate, and a gate electrode formed on the gate insulating film. A high-concentration impurity diffusion region of another conductivity type that is formed on both sides of the gate electrode in the substrate and serves as a source and drain region, and is formed so as to be adjacent to the high-concentration impurity diffusion region and located on the channel side. , A low-concentration impurity diffusion region of another conductivity type having an impurity concentration lower than that of the high-concentration impurity diffusion region, and one conductivity having an impurity concentration higher than that of the substrate and formed so as to be located above the low-concentration impurity diffusion region. Type impurity diffusion region.

【0008】また、第2の発明における半導体装置の製
造方法は、一導電型の半導体基板に形成されたゲート電
極をマスクとして、前記基板における前記ゲート電極の
両側に、前記基板よりも不純物濃度が高い一導電型の不
純物拡散領域を形成する工程と、前記ゲート電極をマス
クとして、前記この一導電型の不純物拡散領域の下に、
他導電型の低濃度不純物拡散領域を形成する工程と、前
記ゲート電極の側壁にサイドウォールを形成する工程
と、前記ゲート電極及びサイドウォールをマスクとし
て、前記基板に、他導電型の高濃度不純物拡散領域を形
成する工程とを行うものである。
In the method of manufacturing a semiconductor device according to the second aspect of the present invention, the gate electrode formed on a semiconductor substrate of one conductivity type is used as a mask, and the impurity concentration on both sides of the gate electrode in the substrate is higher than that in the substrate. Forming a high conductivity type impurity diffusion region, and using the gate electrode as a mask, under the conductivity type impurity diffusion region,
Forming a low-concentration impurity diffusion region of another conductivity type, forming a sidewall on the side wall of the gate electrode, and using the gate electrode and the sidewall as a mask, a high-concentration impurity of another conductivity type on the substrate. And a step of forming a diffusion region.

【0009】また、第3の発明における半導体装置の製
造方法は、前記基板よりも不純物濃度が高い一導電型の
不純物拡散領域を形成する工程を瞬間気相ドーピング法
で行うものである。
In the method of manufacturing a semiconductor device according to the third aspect of the invention, the step of forming an impurity diffusion region of one conductivity type having an impurity concentration higher than that of the substrate is performed by an instantaneous vapor phase doping method.

【0010】[0010]

【作用】即ち、他導電型の低濃度不純物拡散領域の上部
に、基板よりも不純物濃度が高い一導電型の不純物拡散
領域を設けたので、一導電型の不純物拡散領域がポテン
シャル障壁となって、ゲート電極からのフリンジング電
界によっても、低濃度不純物拡散領域から多数キャリア
が誘起されにくい。従って、寄生容量の発生も抑制され
る。
That is, since the one conductivity type impurity diffusion region having a higher impurity concentration than the substrate is provided above the other conductivity type low concentration impurity diffusion region, the one conductivity type impurity diffusion region serves as a potential barrier. Also, the majority carriers are difficult to be induced from the low-concentration impurity diffusion region by the fringing electric field from the gate electrode. Therefore, the generation of parasitic capacitance is also suppressed.

【0011】また、仮に、低濃度不純物拡散領域の不純
物濃度を高くするなどして、ドレインやソースにおける
低濃度拡散領域近傍の電界強度が大きくなり、ホットキ
ャリアが発生しても、一導電型の不純物活性領域が介在
するぶんホットキャリアがゲート酸化膜に到達しにくく
なる。また、瞬間気相ドーピング法によって、浅い一導
電型の不純物拡散領域を簡単に形成することができる。
Further, even if the electric field strength in the vicinity of the low-concentration diffusion region in the drain or the source is increased by increasing the impurity concentration in the low-concentration impurity diffusion region, and hot carriers are generated, one conductivity type Hot carriers due to the presence of the impurity active region are less likely to reach the gate oxide film. Further, a shallow one conductivity type impurity diffusion region can be easily formed by the instantaneous vapor phase doping method.

【0012】[0012]

【実施例】本発明の実施例を図1に基づいて説明する。
但し、従来例と同様の構成には同符号を用い説明を省略
する。図1Aにおいて、p型Si基板1にゲート電極3
を形成するまでの工程は、従来例と同様である。ゲート
電極3を形成した後、瞬間気相ドーピング法によって、
前記基板1における前記ゲート電極3の両側に浅い(p
+)型の不純物拡散領域5、6(接合深さ:20〜50
0Å、不純物濃度:1017〜1018cm-3)を形成す
る。
EXAMPLE An example of the present invention will be described with reference to FIG.
However, the same components as those in the conventional example are designated by the same reference numerals and the description thereof will be omitted. In FIG. 1A, the gate electrode 3 is formed on the p-type Si substrate 1.
The steps up to the formation of are similar to those of the conventional example. After forming the gate electrode 3, by the instantaneous vapor phase doping method,
Shallow (p
+ Type impurity diffusion regions 5 and 6 (junction depth: 20 to 50)
0Å, impurity concentration: 10 17 to 10 18 cm −3 ) are formed.

【0013】瞬間気相ドーピング法のプロセスは以下の
通りである。即ち、まず、前記基板1をチャンバーに設
置した後、水素雰囲気中で800℃〜1050℃に加熱
して自然酸化膜を取り除く。その後、チャンバー内の温
度を800℃〜900℃まで下げ、B26ガス7を導入
し、1分〜30分間待機する。そうすると、前記ゲート
電極3をマスクとして、浅い(p+)型の不純物拡散領
域5、6が形成される。
The process of the instantaneous vapor phase doping method is as follows. That is, first, after the substrate 1 is placed in the chamber, it is heated to 800 ° C. to 1050 ° C. in a hydrogen atmosphere to remove the natural oxide film. Then, the temperature in the chamber is lowered to 800 ° C. to 900 ° C., B 2 H 6 gas 7 is introduced, and the process is waited for 1 minute to 30 minutes. Then, using the gate electrode 3 as a mask, shallow (p + ) type impurity diffusion regions 5 and 6 are formed.

【0014】次に図1Bにおいて、リン(P)やヒ素
(As)をイオン注入法により注入して、前記浅い(p
+)型の不純物拡散領域5、6の下に(n-)型の低濃度
不純物拡散領域8、9を形成する。そして、前記基板1
上に、減圧CVD法によりSi酸化膜を堆積し、これを
エッチバック処理することにより、前記ゲート電極3の
側壁にサイドウォール4aを形成する。
Next, in FIG. 1B, phosphorus (P) or arsenic (As) is implanted by an ion implantation method to obtain the shallow (p)
Under the + ) type impurity diffusion regions 5 and 6, (n ) type low concentration impurity diffusion regions 8 and 9 are formed. And the substrate 1
A Si oxide film is deposited on the upper surface by a low pressure CVD method and is etched back to form a sidewall 4a on the sidewall of the gate electrode 3.

【0015】最後に、図1Cにおいて、前記ゲート電極
3及びサイドウォール4aをマスクとして、Asをイオ
ン注入法により注入し、(n+)型の高濃度不純物拡散
領域10、11を形成し、熱処理して、各領域を活性化
させる。尚、トランジスタの短チャネル効果を防止する
ためには、前記浅い(p+)型の不純物拡散領域5、6
の接合深さは1000Å以下が望ましく、特に、64M
DRAMクラスの集積度では500Å以下が望ましい。
Finally, in FIG. 1C, using the gate electrode 3 and the sidewall 4a as a mask, As is implanted by an ion implantation method to form (n + ) type high-concentration impurity diffusion regions 10 and 11, and a heat treatment is performed. Then, each region is activated. In order to prevent the short channel effect of the transistor, the shallow (p + ) type impurity diffusion regions 5 and 6 are used.
It is desirable that the junction depth of 1000 Å or less, especially 64M
It is desirable that the integration degree of the DRAM class is 500 Å or less.

【0016】本実施例では、この数値を実現するため
に、比較的簡単な瞬間気相ドーピング法を用いたが、こ
れに限定するものではなく、通常のイオン注入法によっ
て実現しても全く問題はない。また、本実施例では、p
型のSi基板を用いたが、n型のSi基板を用いた場合
は、各拡散領域のp、nの導電型は逆にすることは勿論
である。
In the present embodiment, in order to realize this numerical value, a relatively simple instantaneous vapor phase doping method was used, but the present invention is not limited to this, and there is no problem even if it is realized by a normal ion implantation method. There is no. Further, in this embodiment, p
Although the n-type Si substrate is used, it is needless to say that the conductivity types of p and n in each diffusion region are reversed when the n-type Si substrate is used.

【0017】[0017]

【発明の効果】本発明の半導体装置及びその製造方法に
あっては、寄生容量の発生を抑制し且つホットキャリア
信頼性を維持することができるので、半導体装置として
の信頼性を向上させることができる。また、請求項3に
記載の半導体装置の製造方法にあっては、瞬間気相ドー
ピング法によって、浅い一導電型の不純物活性領域を簡
単に形成することができる。
According to the semiconductor device and the method of manufacturing the same of the present invention, since the generation of parasitic capacitance can be suppressed and the hot carrier reliability can be maintained, the reliability of the semiconductor device can be improved. it can. Further, in the method of manufacturing a semiconductor device according to the third aspect, the shallow one conductivity type impurity active region can be easily formed by the instantaneous vapor phase doping method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における半導体装置の製造プロ
セスを示す断面図である。
FIG. 1 is a cross-sectional view showing a manufacturing process of a semiconductor device according to an embodiment of the invention.

【図2】従来例における半導体装置の製造プロセスを示
す断面図である。
FIG. 2 is a cross-sectional view showing a manufacturing process of a semiconductor device in a conventional example.

【符号の説明】[Explanation of symbols]

1 p型Si基板(一導電型の半導体基板) 2 ゲート絶縁膜 3 ゲート電極 4a サイドウォール 5、6 (p+)型の不純物拡散領域(一導電型の不純
物拡散領域) 8、9 (n-)型の低濃度不純物拡散領域(他導電型
の低濃度不純物拡散領域) 10、11 (n+)型の高濃度不純物拡散領域(他導
電型の高濃度不純物拡散領域)
1 p-type Si substrate (one conductivity type semiconductor substrate) 2 gate insulating film 3 gate electrode 4a sidewalls 5, 6 (p + ) type impurity diffusion region (one conductivity type impurity diffusion region) 8, 9 (n ) Type low concentration impurity diffusion region (other conductivity type low concentration impurity diffusion region) 10, 11 (n + ) type high concentration impurity diffusion region (other conductivity type high concentration impurity diffusion region)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/772 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H01L 29/772

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一導電型の半導体基板と、この基板の上
に形成されたゲート絶縁膜と、このゲート絶縁膜上に形
成されたゲート電極と、前記基板における前記ゲート電
極の両側に形成され、ソース及びドレイン領域となる他
導電型の高濃度不純物拡散領域と、この高濃度不純物拡
散領域に隣接してチャネル側に位置するように形成さ
れ、前記高濃度不純物拡散領域よりも不純物濃度が低い
他導電型の低濃度不純物拡散領域と、この低濃度不純物
拡散領域の上部に位置するように形成され、前記基板よ
りも不純物濃度が高い一導電型の不純物拡散領域とを具
備したことを特徴とする半導体装置。
1. A semiconductor substrate of one conductivity type, a gate insulating film formed on the substrate, a gate electrode formed on the gate insulating film, and formed on both sides of the gate electrode on the substrate. , Other-conductivity-type high-concentration impurity diffusion regions to be the source and drain regions, and adjacent to the high-concentration impurity diffusion regions and located on the channel side, and having a lower impurity concentration than the high-concentration impurity diffusion regions. A low-concentration impurity diffusion region of another conductivity type; and a single-conductivity-type impurity diffusion region formed above the low-concentration impurity diffusion region and having a higher impurity concentration than the substrate. Semiconductor device.
【請求項2】 一導電型の半導体基板に形成されたゲー
ト電極をマスクとして、前記基板における前記ゲート電
極の両側に、前記基板よりも不純物濃度が高い一導電型
の不純物拡散領域を形成する工程と、 前記ゲート電極をマスクとして、前記この一導電型の不
純物拡散領域の下に、他導電型の低濃度不純物拡散領域
を形成する工程と、 前記ゲート電極の側壁にサイドウォールを形成する工程
と、 前記ゲート電極及びサイドウォールをマスクとして、前
記基板に、他導電型の高濃度不純物拡散領域を形成する
工程と、 を行うことを特徴とした半導体装置の製造方法。
2. A step of forming an impurity diffusion region of one conductivity type having an impurity concentration higher than that of the substrate on both sides of the gate electrode in the substrate using the gate electrode formed on the semiconductor substrate of one conductivity type as a mask. A step of forming a low-concentration impurity diffusion region of another conductivity type under the impurity diffusion region of one conductivity type using the gate electrode as a mask; and a step of forming a sidewall on a sidewall of the gate electrode. And a step of forming a high-concentration impurity diffusion region of other conductivity type on the substrate using the gate electrode and the sidewall as a mask.
【請求項3】 前記基板よりも不純物濃度が高い一導電
型の不純物拡散領域を形成する工程は瞬間気相ドーピン
グ法で行うことを特徴とした請求項2に記載の半導体装
置の製造方法。
3. The method for manufacturing a semiconductor device according to claim 2, wherein the step of forming the one conductivity type impurity diffusion region having an impurity concentration higher than that of the substrate is performed by an instantaneous vapor phase doping method.
JP5152288A 1993-06-23 1993-06-23 Semiconductor device and preparation thereof Pending JPH07131004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5152288A JPH07131004A (en) 1993-06-23 1993-06-23 Semiconductor device and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5152288A JPH07131004A (en) 1993-06-23 1993-06-23 Semiconductor device and preparation thereof

Publications (1)

Publication Number Publication Date
JPH07131004A true JPH07131004A (en) 1995-05-19

Family

ID=15537252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5152288A Pending JPH07131004A (en) 1993-06-23 1993-06-23 Semiconductor device and preparation thereof

Country Status (1)

Country Link
JP (1) JPH07131004A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980006509A (en) * 1996-06-29 1998-03-30 김주용 MOS transistor and manufacturing method thereof
JP2004087960A (en) * 2002-08-28 2004-03-18 Fujitsu Ltd Manufacturing method of semiconductor device
KR100936413B1 (en) * 2002-06-24 2010-01-12 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Semiconductor device and method of fabricating the same
WO2017126472A1 (en) * 2016-01-20 2017-07-27 ローム株式会社 Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR980006509A (en) * 1996-06-29 1998-03-30 김주용 MOS transistor and manufacturing method thereof
KR100936413B1 (en) * 2002-06-24 2010-01-12 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Semiconductor device and method of fabricating the same
JP2004087960A (en) * 2002-08-28 2004-03-18 Fujitsu Ltd Manufacturing method of semiconductor device
WO2017126472A1 (en) * 2016-01-20 2017-07-27 ローム株式会社 Semiconductor device
US10804388B2 (en) 2016-01-20 2020-10-13 Rohm Co., Ltd. Semiconductor device

Similar Documents

Publication Publication Date Title
JP2662230B2 (en) Method for forming a CMOS structure
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JP2848757B2 (en) Field effect transistor and method of manufacturing the same
US5254490A (en) Self-aligned method of fabricating an LDD MOSFET device
US7485516B2 (en) Method of ion implantation of nitrogen into semiconductor substrate prior to oxidation for offset spacer formation
KR20000065719A (en) Semiconductor device and fabricating method thereof
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
US6509613B1 (en) Self-aligned floating body control for SOI device through leakage enhanced buried oxide
KR20040019913A (en) Semiconductor device and manufacturing mehtod thereof
KR100282710B1 (en) Method for manufacturing bipolar transistor and its structure
US20060138567A1 (en) Semiconductor device and fabricating method thereof
JP2001217412A (en) Semiconductor device and manufacturing method thereof
US6294803B1 (en) Semiconductor device having trench with vertically formed field oxide
US5600177A (en) Semiconductor device having an electrically conductive layer including a polycrystalline layer containing an impurity and a metallic silicide layer
US5640035A (en) MOSFET having improved driving performance
JPH07131004A (en) Semiconductor device and preparation thereof
US6683349B1 (en) Semiconductor device and method of manufacturing the same
US6635522B2 (en) Method of forming a MOS transistor in a semiconductor device and a MOS transistor fabricated thereby
KR19980081139A (en) Method of forming a CMOS circuit device
JP4186247B2 (en) Method for manufacturing semiconductor device and method for forming conductive silicon film
JPS61112379A (en) Mos field effect transistor and manufacture thereof
JP3166911B2 (en) Method for manufacturing semiconductor device
JP3494758B2 (en) Method of manufacturing buried transistor
JPS6112390B2 (en)
US6720224B2 (en) Method for forming transistor of semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees