JPH0713066A - Range finder for camera - Google Patents

Range finder for camera

Info

Publication number
JPH0713066A
JPH0713066A JP14509593A JP14509593A JPH0713066A JP H0713066 A JPH0713066 A JP H0713066A JP 14509593 A JP14509593 A JP 14509593A JP 14509593 A JP14509593 A JP 14509593A JP H0713066 A JPH0713066 A JP H0713066A
Authority
JP
Japan
Prior art keywords
voltage
circuit
switch
integration
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14509593A
Other languages
Japanese (ja)
Other versions
JP3234999B2 (en
Inventor
Hiroyuki Saito
浩幸 斉藤
Akira Ito
顕 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP14509593A priority Critical patent/JP3234999B2/en
Priority to US08/260,353 priority patent/US5572012A/en
Priority to DE4421092A priority patent/DE4421092C2/en
Priority to GB9412103A priority patent/GB2279197B/en
Priority to GB9725885A priority patent/GB2317521B/en
Publication of JPH0713066A publication Critical patent/JPH0713066A/en
Application granted granted Critical
Publication of JP3234999B2 publication Critical patent/JP3234999B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To shorten the distance measurement time without lowering the distance measurement precision by integrating and comparing the output signal of a photodetecting element with a specific voltage and switching input registers of an integration circuit corresponding to the level. CONSTITUTION:A level decision circuit 60 compares the output of the integration circuit 50. i.e., an integrated voltage Vi with the reference V1 selected with a switch 62 and outputs the comparison result, i.e., an output voltage Vo to a CPU 70. While light projection is repeated. the switch 62 is turned ON to a reference voltage source 63 at the moment the integrated voltage Vi reaches V2 of a reference voltage source 64, and while similar operation is repeated. the operation is ended once the integrated voltage Vi reaches the reference V1. Further, while the light projection is repeated, the switch 6 is connected to the side of an input resistance 53 and the switch 62 is connected to the side of the reference voltage source 63 once the integrated voltage Vi reaches V2 of the reference voltage source 64 to attenuate the input signal to the integration circuit 50 to 1/10. Consequently, higher resolution than before is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被写体に測距光を投光
して被写体からの反射光を受光して測距を行うカメラ用
測距装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distance measuring device for a camera which emits distance measuring light to a subject and receives reflected light from the subject to measure the distance.

【0002】[0002]

【従来の技術】従来の公知のアクティブタイプの測距装
置は、被写体に向けて近赤外光を投光し、被写体からの
反射光を受光素子で受光する。受光素子上での前記反射
光の入射位置は被写体距離に応じて変化するから、反射
光の入射位置を電気的に調べることにより被写体距離を
測定することができる。
2. Description of the Related Art A conventional known active type distance measuring device projects near-infrared light toward a subject and receives light reflected from the subject by a light receiving element. Since the incident position of the reflected light on the light receiving element changes according to the subject distance, the subject distance can be measured by electrically checking the incident position of the reflected light.

【0003】前記受光素子として、半導体位置検出素子
(以下PSD)が多く用いられている。PSDは2つの
出力端子を備え、入射光の強度と位置とに応じた電流を
各出力端子から発生させる。この2つのチャンネルの電
流、またはこれらに対応した2つの電圧の比を求めるこ
とによって、光の入射位置にのみ依存した信号を得るこ
とができる。
A semiconductor position detecting element (PSD) is often used as the light receiving element. The PSD has two output terminals, and each output terminal generates a current according to the intensity and position of incident light. By obtaining the ratio of the currents of the two channels or the two voltages corresponding thereto, a signal that depends only on the incident position of light can be obtained.

【0004】このような測距装置では、近赤外光の投光
素子(以下IRED)をパルス駆動し、PSDからの信
号を交流結合で信号成分だけ取り出し適度に増幅する。
増幅された信号を発光時間内で積分し、積分電圧が所定
電圧になるまで積分を繰り返してそれまでの回数をPS
Dからの信号の大きさとする。
In such a distance measuring apparatus, a near infrared light projecting element (hereinafter referred to as IRED) is pulse-driven, and a signal from the PSD is AC-coupled to extract only a signal component and appropriately amplify it.
The amplified signal is integrated within the light emission time, the integration is repeated until the integrated voltage reaches a predetermined voltage, and the number of times up to that point is PS.
The magnitude of the signal from D is used.

【0005】PSDからの2つの出力について所定電圧
までの積分回数をN1、N2とすると、式1の値Xを求
めることにより被写体の反射率にかかわらず安定した測
距精度を維持することが可能となる。
When the number of integrations up to a predetermined voltage for the two outputs from the PSD is N1 and N2, it is possible to maintain stable ranging accuracy regardless of the reflectance of the object by obtaining the value X of the equation 1. Becomes

【0006】 X=N1/(N1+N2) (1)X = N1 / (N1 + N2) (1)

【0007】[0007]

【発明が解決しようとする課題】上記のように積分回数
N1、N2から値Xを求める方法では、測距精度をあげ
るためにN1、N2を大きくとると所定電圧付近ののカ
ウント誤差が小さくなり測距精度は向上するものの測距
時間が長くなる。逆にN1、N2を小さくすると所定電
圧付近のカウント誤差が小さくなり測距時間は短くなる
が分解能が低下して測距精度が低下する。
In the method of obtaining the value X from the number of integration times N1 and N2 as described above, if N1 and N2 are increased in order to improve the distance measurement accuracy, the count error near the predetermined voltage becomes smaller. Although the distance measurement accuracy is improved, the distance measurement time becomes longer. On the other hand, if N1 and N2 are reduced, the count error near the predetermined voltage is reduced and the distance measurement time is shortened, but the resolution is reduced and the distance measurement accuracy is reduced.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決するた
めに、本発明のカメラ用測距装置では、被写体にパルス
光を投光する投光手段と、前記被写体からの反射光を受
光する受光手段と、前記受光手段の出力信号をそれに応
じた電圧に変換する電流電圧変換回路と、前記電流電圧
変換回路の出力信号を増幅する増幅回路と、前記増幅回
路の出力信号を積分する積分回路と、所定の電圧を発生
する第1の基準電圧源と、前記第1の基準電圧よりも低
い所定の電圧を発生する第2の基準電圧源と、前記積分
回路の出力信号の電圧レベルを前記第1または前記第2
の基準電圧源の出力電圧と比較する比較手段と、前記比
較手段の出力信号から前記被写体までの距離を演算する
演算手段とを有している。
In order to solve the above problems, in the distance measuring apparatus for a camera of the present invention, a light projecting means for projecting pulsed light to a subject and a light reflected from the subject are received. Light receiving means, a current-voltage conversion circuit for converting the output signal of the light receiving means into a voltage corresponding thereto, an amplifier circuit for amplifying the output signal of the current-voltage conversion circuit, and an integration circuit for integrating the output signal of the amplifier circuit. A first reference voltage source for generating a predetermined voltage, a second reference voltage source for generating a predetermined voltage lower than the first reference voltage, and a voltage level of an output signal of the integrating circuit, First or the second
Comparing means for comparing with the output voltage of the reference voltage source, and computing means for computing the distance to the object from the output signal of the comparing means.

【0009】[0009]

【作用】積分電圧が第1の所定値より低い第2の所定値
に達するまでは受光素子の出力信号を通常の精度で積分
し、第2の所定値から第1の所定値までは積分回路への
入力抵抗を切り換え、より高い精度で積分する。
The output signal of the light receiving element is integrated with normal accuracy until the integrated voltage reaches the second predetermined value which is lower than the first predetermined value, and the integration circuit operates from the second predetermined value to the first predetermined value. Switch the input resistance to and integrate with higher accuracy.

【0010】[0010]

【実施例】本発明の構成を図1に基づいて説明する。投
光回路10は被写体に測距のための投射光を投光する投
光回路である。投光回路10はIRED14を駆動する
ための駆動回路であり、ベース抵抗11、トランジスタ
12、電流制限抵抗13およびIRED14からなる。
PSD3は被写体からの反射光を受光し、電流電圧変換
回路20および30にその受光位置に応じた信号を出力
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described with reference to FIG. The light projecting circuit 10 is a light projecting circuit that projects projection light for distance measurement onto a subject. The light projecting circuit 10 is a drive circuit for driving the IRED 14, and includes a base resistor 11, a transistor 12, a current limiting resistor 13 and an IRED 14.
The PSD 3 receives the reflected light from the subject and outputs a signal according to the light receiving position to the current-voltage conversion circuits 20 and 30.

【0011】電流電圧変換回路20および電流電圧変換
回路30はPSD3と一体となって受光回路を構成す
る。PSD3に光信号が入射すると、PSD3はその強
度と入射位置に応じた電流を電流電圧変換回路20と電
流電圧変換回路30に出力する。電流電圧変換回路20
はアンプ21と帰還抵抗22で構成され入力電流に比例
した電圧を出力する回路であり、電流電圧変換回路30
はアンプ31と帰還抵抗32とを持ち、電流電圧変換回
路20とまったく同じ構成で、入力電流に応じた電圧を
出力する。
The current-voltage conversion circuit 20 and the current-voltage conversion circuit 30 are integrated with the PSD 3 to form a light receiving circuit. When an optical signal is incident on the PSD 3, the PSD 3 outputs a current according to the intensity and the incident position to the current-voltage conversion circuit 20 and the current-voltage conversion circuit 30. Current-voltage conversion circuit 20
Is a circuit which is composed of an amplifier 21 and a feedback resistor 22 and outputs a voltage proportional to an input current.
Has an amplifier 31 and a feedback resistor 32, and has exactly the same configuration as the current-voltage conversion circuit 20, and outputs a voltage according to the input current.

【0012】スイッチ4は電流電圧変換回路20と電流
電圧変換回路30のいずれかの出力を後段の回路に伝え
る役割を持ち、その状態はCPU70によって制御され
る。PSD3の遠距離側信号を用いて測距する時は電流
電圧変換回路20の側に、近距離側信号を用いての測距
する時は電流電圧変換回路30の側にオンする。
The switch 4 has a role of transmitting the output of either the current-voltage conversion circuit 20 or the current-voltage conversion circuit 30 to a circuit in the subsequent stage, and the state thereof is controlled by the CPU 70. When the distance is measured using the long distance side signal of the PSD 3, it is turned on to the current-voltage conversion circuit 20 side, and when the distance is measured using the short distance side signal, it is turned on to the current voltage conversion circuit 30 side.

【0013】続く増幅回路40はスイッチ4によって選
択された信号を増幅する。反転増幅のため出力信号の極
性は電源電圧と逆になる。
The subsequent amplifier circuit 40 amplifies the signal selected by the switch 4. Due to inverting amplification, the polarity of the output signal is opposite to the power supply voltage.

【0014】スイッチ6は増幅回路40と積分回路50
の間にあり、積分回路50中のアンプ51の入力抵抗を
入力抵抗52または入力抵抗53のいずれかに決定す
る。入力抵抗52は入力抵抗53の10分の1の抵抗値
を持ち、従って入力抵抗53を選択した時のアンプ51
のゲインは入力抵抗52を選択した時の10分の1とな
る。また、いずれの回路をも選択しないことができ、こ
の場合は増幅回路40の出力は積分回路50に伝えられ
ない。
The switch 6 includes an amplifying circuit 40 and an integrating circuit 50.
, And the input resistance of the amplifier 51 in the integration circuit 50 is determined to be either the input resistance 52 or the input resistance 53. The input resistor 52 has a resistance value that is one tenth of that of the input resistor 53. Therefore, the amplifier 51 when the input resistor 53 is selected.
The gain is 1/10 of that when the input resistor 52 is selected. Further, it is possible to select neither circuit, and in this case, the output of the amplification circuit 40 is not transmitted to the integration circuit 50.

【0015】積分回路50はアンプ51、入力抵抗5
2、入力抵抗53、積分コンデンサ54、スイッチ5
5、電圧ホロワ56で構成された、入力電圧を時間積分
するための回路である。積分動作に先だって積分コンデ
ンサ54に残っている電荷を放電するためスイッチ55
がオンする。十分に放電するとスイッチ55はオフす
る。積分動作がスイッチ6のオンによって開始すると、
積分コンデンサ54は入力信号の時間積分値を電荷の形
で貯える。このときの積分コンデンサ54の端子間電圧
の値はコンパレータ61に出力されている。積分動作が
終了するとスイッチ6はオフする。
The integrating circuit 50 includes an amplifier 51 and an input resistor 5
2, input resistor 53, integrating capacitor 54, switch 5
5. A circuit for integrating the input voltage with time, which is composed of a voltage follower 56. A switch 55 is provided to discharge the electric charge remaining in the integration capacitor 54 prior to the integration operation.
Turns on. When discharged sufficiently, the switch 55 is turned off. When the integration operation is started by turning on the switch 6,
The integrating capacitor 54 stores the time integrated value of the input signal in the form of electric charge. The value of the voltage between the terminals of the integrating capacitor 54 at this time is output to the comparator 61. When the integration operation is completed, the switch 6 is turned off.

【0016】レベル判定回路60はコンパレータ61と
基準電圧源63、基準電圧源64とで構成された入力電
圧のレベルを判定するための回路である。コンパレータ
61は積分電圧Viをスイッチ62によって選択された
基準電圧源63の電圧V1または基準電圧源64の電圧
V2と比較し、その結果をデジタル信号出力電圧Voに
変換してCPU70に出力する。レベル判定回路60は
積分回路50の出力すなわち積分電圧Viをスイッチ6
2によって選択された基準V1またはと比較し、その比
較結果すなわち出力電圧VoをCPU70に出力する。
CPU70はRAM71、ROM72、カウンタ73、
カウンタ74とデータの授受を行うと共に、投光回路1
0およびモータ75に駆動信号を出力する。モータ75
は鏡筒76を駆動する。
The level judging circuit 60 is a circuit for judging the level of the input voltage which is composed of a comparator 61, a reference voltage source 63 and a reference voltage source 64. The comparator 61 compares the integrated voltage Vi with the voltage V1 of the reference voltage source 63 or the voltage V2 of the reference voltage source 64 selected by the switch 62, converts the result into a digital signal output voltage Vo, and outputs it to the CPU 70. The level determination circuit 60 switches the output of the integration circuit 50, that is, the integrated voltage Vi, to the switch 6
It is compared with the reference V1 selected by 2 or the comparison result, that is, the output voltage Vo is output to the CPU 70.
The CPU 70 includes a RAM 71, a ROM 72, a counter 73,
Data is transmitted to and received from the counter 74, and the light projecting circuit 1
0 and a drive signal are output to the motor 75. Motor 75
Drives the lens barrel 76.

【0017】次に本発明の実施例の回路の動作について
説明する。不図示の公知のレリーズスイッチが押される
と、CPU70は測距ルーチンに入り、まず図1内のす
べての回路の電源をオンする。次にCPU70はRAM
71の内容をクリアし、投光回路10にパルス状の投光
信号を出力する。ベース抵抗11はその信号がハイ(”
H”)レベルになる条件でIRED14を駆動し、IR
ED14は発光する。発光した光は投光レンズ1によっ
て集光され、不図示の被写体によってその一部を反射さ
れ、反射した光の一部は受光レンズ2によって再び集光
されPSD3に入射する。
Next, the operation of the circuit according to the embodiment of the present invention will be described. When a known release switch (not shown) is pressed, the CPU 70 enters a distance measuring routine and first turns on the power supplies of all the circuits in FIG. Next, the CPU 70 is a RAM
The contents of 71 are cleared and a pulsed light emitting signal is output to the light emitting circuit 10. The signal of the base resistor 11 is high ("
Drive the IRED 14 under the condition that the H ") level is reached.
The ED 14 emits light. The emitted light is condensed by the light projecting lens 1, part of it is reflected by a subject (not shown), and part of the reflected light is condensed again by the light receiving lens 2 and enters the PSD 3.

【0018】まず、電流電圧変換回路20による測距を
図2に基づいて説明する。最初にスイッチ4を電流電圧
変換回路20側に、スイッチ62を基準電圧源64側
に、スイッチ6を入力抵抗52側にそれぞれオンする。
次にスイッチ55をオンし積分コンデンサ54にたまっ
ている電荷を放電させる。十分に電荷を放電した後、ス
イッチ55はオフする。そしてカウンタ73中の値N1
を0にクリアする。続いて電流電圧変換回路20での測
距動作に入るが、測距の方法は図2に示した通りであ
る。投光を繰り返しながら値N1に10を加算してい
き、積分電圧Viが基準電圧源64のV2に達した時点
でスイッチ62を基準電圧源63の方にオンし、再び同
様な動作を繰り返しながら値N1に1を加算していき、
積分電圧ViがV1に達した時点で終了する。もしも被
写体までの距離が遠くてあらかじめ定められた回数Nc
だけ投光してもV2に達しない場合は無限遠と判断し、
RAM71中の無限遠フラグをセットして終了する。そ
れ以外の場合は測距終了時にカウンタ73に残っている
値N1をRAM71の適切なアドレスに格納する。
First, distance measurement by the current-voltage conversion circuit 20 will be described with reference to FIG. First, the switch 4 is turned on to the current-voltage conversion circuit 20 side, the switch 62 is turned to the reference voltage source 64 side, and the switch 6 is turned to the input resistor 52 side.
Next, the switch 55 is turned on to discharge the electric charge accumulated in the integrating capacitor 54. After discharging the electric charge sufficiently, the switch 55 is turned off. And the value N1 in the counter 73
Is cleared to 0. Next, the distance measuring operation in the current-voltage conversion circuit 20 is started, and the distance measuring method is as shown in FIG. While repeatedly projecting light, 10 is added to the value N1, and when the integrated voltage Vi reaches V2 of the reference voltage source 64, the switch 62 is turned on toward the reference voltage source 63, and the same operation is repeated again. Add 1 to the value N1,
The process ends when the integrated voltage Vi reaches V1. If the distance to the subject is too long, a predetermined number of times Nc
If it does not reach V2 even if only the light is projected, it is determined to be infinity,
The infinity flag in the RAM 71 is set and the process ends. In other cases, the value N1 remaining in the counter 73 at the end of the distance measurement is stored in the RAM 71 at an appropriate address.

【0019】続いてCPU70は電流電圧変換回路30
による測距を行う。最初にスイッチ4を電流電圧変換回
路30側に、スイッチ62を基準電圧源64側に、スイ
ッチ6を入力抵抗52側にそれぞれオンする。次にスイ
ッチ55をオンし積分コンデンサ54にたまっている電
荷を放電させる。十分に電荷を放電した後、スイッチ5
5はオフする。そしてカウンタ74中の値N2を0にク
リアする。続いて電流電圧変換回路30での測距動作に
入るが、測距の方法は図2に示した通りである。投光を
繰り返しながら値N2に10を加算していき、積分電圧
Viが基準電圧源64のV2に達した時点でスイッチ6
を入力抵抗53の側に、スイッチ62を基準電圧源63
の方にそれぞれオンし、積分回路50への入力信号を1
0分の1に減衰させる。このため、それまでより高い分
解能が得られる。再び同様な動作を繰り返しながら値N
1に1を加算していき、積分電圧ViがV1に達した時
点で終了する。測距終了時にカウンタ74に残っている
値N2をRAM71の適切なアドレスに格納する。
Subsequently, the CPU 70 controls the current-voltage conversion circuit 30.
Distance measurement by. First, the switch 4 is turned on to the current-voltage conversion circuit 30 side, the switch 62 is turned to the reference voltage source 64 side, and the switch 6 is turned to the input resistor 52 side. Next, the switch 55 is turned on to discharge the electric charge accumulated in the integrating capacitor 54. After fully discharging the charge, switch 5
5 turns off. Then, the value N2 in the counter 74 is cleared to 0. Next, the distance measuring operation in the current-voltage conversion circuit 30 is started, and the distance measuring method is as shown in FIG. While repeatedly projecting light, 10 is added to the value N2, and when the integrated voltage Vi reaches V2 of the reference voltage source 64, the switch 6
To the input resistor 53 side, and the switch 62 to the reference voltage source 63
, And turn on the input signal to the integrating circuit 50 to 1
Attenuate to 1/0. Therefore, higher resolution can be obtained. While repeating the same operation again, the value N
One is added to 1, and the process ends when the integrated voltage Vi reaches V1. The value N2 remaining in the counter 74 at the end of the distance measurement is stored in an appropriate address of the RAM 71.

【0020】以上の測距動作が終了すると、CPU70
は、無限遠フラグがセットされていれば無限遠、セット
されていなければRAM71に保存されている値N1と
N2を用いて値Xを算出する。値Xが定まると、図4に
示すように値Xによって一義的に定まるROM72のア
ドレスを参照し被写体までの距離を求め、その結果にし
たがってモータ75を制御し鏡筒76を駆動する。最後
にCPU70は図1内のすべての回路の電源をオフし
て、このルーチンを抜ける。図3にこの測距動作中の図
1の各部の変化を示した。
When the above distance measuring operation is completed, the CPU 70
Calculates the value X using the values N1 and N2 stored in the RAM 71 if the infinity flag is set to infinity, and if not set. When the value X is determined, the distance to the object is obtained by referring to the address of the ROM 72 that is uniquely determined by the value X as shown in FIG. 4, and the motor 75 is controlled to drive the lens barrel 76 according to the result. Finally, the CPU 70 turns off the power of all the circuits in FIG. 1 and exits this routine. FIG. 3 shows changes in each part of FIG. 1 during the distance measuring operation.

【0021】以上が本実施例における回路の動作であ
る。以上の動作をフローチャートで表わすと図5〜図7
のようになる。まず、メインルーチンを図5に基づいて
説明する。この測距ルーチンに入ると、CPU70は測
距回路全体の電源をオンし(S001)、CPU70は
RAM71の内容をクリアする(S002)。そして電
流電圧変換回路20での測距を行い、値N1をRAM7
1に保存し(S003)、同時に無限遠フラグの状態を
確認し、セットされていればS009にジャンプする
(S004)。同様に電流電圧変換回路30での測距を
行い、値N2をRAM71に保存し(S005)、サブ
ルーチンS003とS005の操作でRAM71に保存
されている値N1と値N2を読み出して値Xを算出する
(S006)。その結果無限遠フラグがセットされてい
れば無限遠、それ以外では図4に示されるようにXの値
をオフセット値とするあらかじめ決められたROM72
のアドレスを参照して、被写体までの距離を求める(S
007)。最後に測距回路の電源をオフし(S00
8)、このルーチンを抜ける。
The above is the operation of the circuit in this embodiment. The above operation is shown in a flow chart in FIGS.
become that way. First, the main routine will be described with reference to FIG. When this distance measuring routine is entered, the CPU 70 turns on the power supply of the entire distance measuring circuit (S001), and the CPU 70 clears the contents of the RAM 71 (S002). Then, the distance is measured by the current-voltage conversion circuit 20, and the value N1 is set in the RAM 7
1 is stored (S003), the state of the infinity flag is checked at the same time, and if set, the process jumps to S009 (S004). Similarly, the current-voltage conversion circuit 30 measures the distance, stores the value N2 in the RAM 71 (S005), and reads the values N1 and N2 stored in the RAM 71 by the operations of the subroutines S003 and S005 to calculate the value X. Yes (S006). As a result, if the infinity flag is set, it is at infinity, otherwise, as shown in FIG. 4, a predetermined ROM 72 that uses the value of X as an offset value.
The distance to the subject is obtained by referring to the address (S
007). Finally, turn off the power of the distance measuring circuit (S00
8) Exit this routine.

【0022】次に、各サブルーチン内での動作を説明す
る。まず電流電圧変換回路20による測距のサブルーチ
ンを図6に基づいて説明する。電流電圧変換回路20に
よる測距のサブルーチンに入ると、CPU70はスイッ
チ4を電流電圧変換回路20側にオンし(S101)、
スイッチ55を一瞬オンし積分コンデンサ54にたまっ
ている電荷を放電した後(S102)、カウンタ73中
の値N1に0、値nに10をそれぞれ代入し、スイッチ
62をV1側にオンし、スイッチ6で入力抵抗52を選
択する(S103)。続いて値N1が回数Nc以上かど
うかを判定し、回数Nc以上ならばRAM71中の無限
遠フラグをセットしメインルーチンに戻る(S10
5)。回数Nc未満ならばS106にジャンプする(S
104)。
Next, the operation within each subroutine will be described. First, a subroutine for distance measurement by the current-voltage conversion circuit 20 will be described with reference to FIG. When entering the distance measurement subroutine by the current-voltage conversion circuit 20, the CPU 70 turns on the switch 4 to the current-voltage conversion circuit 20 side (S101),
After turning on the switch 55 for a moment to discharge the electric charge accumulated in the integrating capacitor 54 (S102), 0 is assigned to the value N1 and 10 is assigned to the value n in the counter 73, the switch 62 is turned on to the V1 side, and the switch is turned on. The input resistor 52 is selected at 6 (S103). Subsequently, it is determined whether or not the value N1 is the number Nc or more. If the number Nc or more, the infinity flag in the RAM 71 is set and the process returns to the main routine (S10).
5). If it is less than the number of times Nc, jump to S106 (S
104).

【0023】続いてCPU70によって投光を開始し
(S106)、時間T1だけ待機すると(S107)、
スイッチ6をオンし(S108)、時間T2だけ積分動
作を行う(S109)。この間積分コンデンサ54には
電荷が貯えられる。それから投光回路10の動作を止め
て投光動作を終了し、スイッチ6をオフし積分動作を終
えて(S110)、時間T3だけ待機し(S111)、
カウンタ73に値nを加算する(S112)。CPU7
0は出力電圧Voのレベルを判断し(S113)、Lレ
ベルであればS104にジャンプする。Hレベルであれ
ば次にスイッチ62がV2を選択しているかどうかを判
断し、V2を選択していればカウンタ73中の値N1を
RAM71に記憶して(S114)メインルーチンに戻
る。V1を選択していれば値nに1を代入し、基準電圧
をV2に設定し、入力抵抗53を選択して、S104に
ジャンプする。
Subsequently, the CPU 70 starts light emission (S106) and waits for a time T1 (S107).
The switch 6 is turned on (S108), and the integration operation is performed for the time T2 (S109). During this time, the charge is stored in the integrating capacitor 54. Then, the operation of the light projecting circuit 10 is stopped to end the light projecting operation, the switch 6 is turned off to complete the integrating operation (S110), and waits for a time T3 (S111).
The value n is added to the counter 73 (S112). CPU7
0 determines the level of the output voltage Vo (S113), and if it is at L level, jumps to S104. If it is at the H level, it is next determined whether or not the switch 62 is selecting V2. If V2 is selected, the value N1 in the counter 73 is stored in the RAM 71 (S114) and the process returns to the main routine. If V1 is selected, 1 is substituted for the value n, the reference voltage is set to V2, the input resistor 53 is selected, and the process jumps to S104.

【0024】次に、電流電圧変換回路30による測距の
サブルーチンを図7に基づいて説明する。電流電圧変換
回路30による測距のサブルーチンに入ると、CPU7
0はスイッチ4を電流電圧変換回路30側にオンし、ス
イッチ62をV2側にオンし(S201)、スイッチ5
5を一瞬オンし積分コンデンサ54にたまっている電荷
を放電した後(S202)、カウンタ73中の値N2に
0、値nに10をそれぞれ代入し、スイッチ62をV1
側にオンし、スイッチ6で入力抵抗52を選択する(S
203)。
Next, a subroutine for distance measurement by the current-voltage conversion circuit 30 will be described with reference to FIG. When the subroutine for distance measurement by the current-voltage conversion circuit 30 is entered, the CPU 7
0 turns on the switch 4 to the current-voltage conversion circuit 30 side, turns on the switch 62 to the V2 side (S201), and switches 5
After turning on 5 for a moment to discharge the electric charge accumulated in the integrating capacitor 54 (S202), 0 is assigned to the value N2 and 10 is assigned to the value n in the counter 73, and the switch 62 is set to V1.
And the switch 6 selects the input resistor 52 (S
203).

【0025】続いてCPU70によって投光を開始し
(S204)、時間T1だけ待機すると(S205)、
スイッチ6をオンし(S206)、時間T2だけ積分動
作を行う(S207)。この間積分コンデンサ54には
電荷が貯えられる。それから投光回路10の動作を止め
て投光動作を終了し、スイッチ6をオフし、積分動作を
終えて(S208)、時間T3だけ待機し(S20
9)、カウンタ74に値nを加算する(S210)。C
PU70は出力電圧Voのレベルを判断し(S21
1)、Hレベルであればカウンタ74中の値N2をRA
M71に記憶して(S212)メインルーチンに戻る。
V1を選択していれば値nに1を代入し、基準電圧をV
2に設定し、入力抵抗53を選択してS204にジャン
プする。以上の動作により、被写体までの距離が測定さ
れる。
Subsequently, the CPU 70 starts light emission (S204) and waits for a time T1 (S205).
The switch 6 is turned on (S206), and the integration operation is performed for the time T2 (S207). During this time, the charge is stored in the integrating capacitor 54. Then, the operation of the light projecting circuit 10 is stopped to end the light projecting operation, the switch 6 is turned off, the integrating operation is completed (S208), and the process waits for time T3 (S20).
9), the value n is added to the counter 74 (S210). C
The PU 70 determines the level of the output voltage Vo (S21
1) If it is H level, the value N2 in the counter 74 is RA
Store in M71 (S212) and return to the main routine.
If V1 is selected, substitute 1 for the value n and set the reference voltage to V
Set to 2, select the input resistor 53, and jump to S204. With the above operation, the distance to the subject is measured.

【0026】本発明の他の実施例として、積分時間を2
種類持ち、積分電圧が第1の所定値より低い第2の所定
値までは、積分時間の長い方で積分を繰り返し、第2の
所定値から第1の所定値までは積分時間の短い方で積分
を繰り返し、N1、N2はそれぞれ積分時間の比率に応
じた値を加算してゆけば、本発明の第1実施例と同様の
効果が得られる。
As another embodiment of the present invention, the integration time is set to 2
Until the second predetermined value, which has a kind and an integration voltage lower than the first predetermined value, repeats the integration with the longer integration time, and from the second predetermined value to the first predetermined value with the shorter integration time. The same effect as that of the first embodiment of the present invention can be obtained by repeating the integration and adding N1 and N2 respectively according to the ratio of the integration time.

【0027】本発明のまた他の実施例として、増幅回路
のゲインを複数持ち、積分電圧が第1の所定値より低い
第2の所定値までは、ゲインの高い方で積分を繰り返
し、第2の所定値から第1の所定値までは、ゲインの低
い方で積分を繰り返し、N1、N2はそれぞれゲインの
比率に応じた値を加算していけば、本発明の第1実施例
と同様の効果が得られる。
According to another embodiment of the present invention, a plurality of gains of the amplifier circuit are provided, and integration is repeated at the higher gain until the second predetermined value where the integrated voltage is lower than the first predetermined value. From the predetermined value of 1 to the first predetermined value, the integration is repeated at the lower gain side, and N1 and N2 are similar to those of the first embodiment of the present invention as long as values corresponding to the gain ratios are added. The effect is obtained.

【0028】[0028]

【発明の効果】本発明の構成によれば、受光素子の出力
信号を積分して特定の電圧と比較し、そのレベルに応じ
て積分回路の入力抵抗を切り換えるため、測距精度を下
げることなく、測距時間を短くすることができる。
According to the structure of the present invention, the output signal of the light receiving element is integrated and compared with a specific voltage, and the input resistance of the integrating circuit is switched according to the level thereof, so that the ranging accuracy is not lowered. , Distance measurement time can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す構成図FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の実施例の積分動作を説明する動作図FIG. 2 is an operation diagram illustrating an integration operation according to an embodiment of the present invention.

【図3】本発明の実施例の測距時の一連の動作をを説明
する動作図
FIG. 3 is an operation diagram illustrating a series of operations during distance measurement according to the embodiment of the present invention.

【図4】本発明の実施例の値Xから距離を求めるROM
72上のテーブル
FIG. 4 is a ROM for obtaining a distance from a value X according to the embodiment of the present invention.
Table on 72

【図5】本発明の実施例の動作を示すメインフローチャ
ート
FIG. 5 is a main flow chart showing the operation of the embodiment of the present invention.

【図6】図5のフローチャートの電流電圧変換回路20
による測距の部分のサブルーチンを示すフローチャート
6 is a current-voltage conversion circuit 20 of the flowchart of FIG.
Flowchart showing the subroutine of the distance measurement part by

【図7】図5のフローチャートの電流電圧変換回路30
による測距の部分のサブルーチンを示すフローチャート
7 is a current-voltage conversion circuit 30 of the flowchart of FIG.
Flowchart showing the subroutine of the distance measurement part by

【符号の説明】[Explanation of symbols]

10 投光回路 3 半導体位置検出素子(PSD) 20、30 電流電圧変換回路 40 増幅回路 50 積分回路 63、64 基準電圧源 60 レベル判定回路 70 演算回路(CPU) 10 Light emitting circuit 3 Semiconductor position detecting element (PSD) 20, 30 Current-voltage conversion circuit 40 Amplifying circuit 50 Integrating circuit 63, 64 Reference voltage source 60 Level determination circuit 70 Operation circuit (CPU)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被写体にパルス光を投光する投光手段
と、前記被写体からの反射光を受光する受光手段と、前
記受光手段の出力信号をそれに応じた電圧に変換する電
流電圧変換回路と、前記電流電圧変換回路の出力信号を
増幅する増幅回路と、前記増幅回路の出力信号を積分す
る積分回路と、所定の電圧を発生する第1の基準電圧源
と、前記第1の基準電圧よりも低い所定の電圧を発生す
る第2の基準電圧源と、前記積分回路の出力信号の電圧
レベルを前記第1または前記第2の基準電圧源の出力電
圧と比較する比較手段と、前記比較手段の出力信号から
前記被写体までの距離を演算する演算手段とを有し、積
分電圧があらかじめ定められた第1の電圧に達するまで
の積分回数を距離データとする測距装置において、積分
電圧が第1の所定値より低い第2の所定値に達した後積
分入力のレベルを切り換えることを特徴とするカメラ用
測距装置。
1. A light projecting means for projecting pulsed light onto a subject, a light receiving means for receiving reflected light from the subject, and a current-voltage conversion circuit for converting an output signal of the light receiving means into a voltage corresponding thereto. An amplification circuit for amplifying the output signal of the current-voltage conversion circuit, an integration circuit for integrating the output signal of the amplification circuit, a first reference voltage source for generating a predetermined voltage, and a first reference voltage A second reference voltage source for generating a predetermined voltage that is lower than the above, a comparing means for comparing the voltage level of the output signal of the integrating circuit with the output voltage of the first or the second reference voltage source, and the comparing means. In the distance measuring device, which has distance calculating means for calculating the distance from the output signal of the above-mentioned object to the subject, and which uses the number of integrations until the integrated voltage reaches a predetermined first voltage as the distance data. It is a predetermined value of 1 A range finder for a camera, characterized in that the level of the integral input is switched after reaching a second lower predetermined value.
【請求項2】 前記積分入力のレベルは積分回路の入力
抵抗値を切り換えることを特徴とする請求項1のカメラ
用測距装置。
2. The range finder for a camera according to claim 1, wherein the level of the integration input switches the input resistance value of the integration circuit.
【請求項3】 前記積分入力のレベルは積分時間を切り
換えることを特徴とする請求項1のカメラ用測距装置。
3. The range finder for a camera according to claim 1, wherein the level of the integration input switches integration time.
【請求項4】 前記積分入力のレベルは増幅回路のゲイ
ンを切り換えることを特徴とする請求項1のカメラ用測
距装置。
4. The range finder for a camera according to claim 1, wherein the level of the integral input switches the gain of the amplifier circuit.
JP14509593A 1993-06-16 1993-06-16 Camera ranging device Expired - Fee Related JP3234999B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14509593A JP3234999B2 (en) 1993-06-16 1993-06-16 Camera ranging device
US08/260,353 US5572012A (en) 1993-06-16 1994-06-15 Distance measuring device for camera using integration of reflected light
DE4421092A DE4421092C2 (en) 1993-06-16 1994-06-16 Distance measuring device for a camera
GB9412103A GB2279197B (en) 1993-06-16 1994-06-16 Distance measuring device
GB9725885A GB2317521B (en) 1993-06-16 1994-06-16 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14509593A JP3234999B2 (en) 1993-06-16 1993-06-16 Camera ranging device

Publications (2)

Publication Number Publication Date
JPH0713066A true JPH0713066A (en) 1995-01-17
JP3234999B2 JP3234999B2 (en) 2001-12-04

Family

ID=15377262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14509593A Expired - Fee Related JP3234999B2 (en) 1993-06-16 1993-06-16 Camera ranging device

Country Status (1)

Country Link
JP (1) JP3234999B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7190174B2 (en) 2019-05-09 2022-12-15 株式会社水道技術開発機構 Fluid pipe full-cut cutting method and full-cut cutting device

Also Published As

Publication number Publication date
JP3234999B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US5444511A (en) Distance measuring device for camera
US5572012A (en) Distance measuring device for camera using integration of reflected light
JPH0713066A (en) Range finder for camera
JP3337868B2 (en) Camera ranging device
JP3509282B2 (en) Camera ranging device
JP2000214375A (en) Range finder device
JP3232421B2 (en) Distance measuring device
US6549874B2 (en) Distance measuring device
JP3163405B2 (en) Camera ranging device
JPH06249650A (en) Range finder for camera
JP3288984B2 (en) Distance measuring device and automatic focusing device
JP3321336B2 (en) Camera ranging device
US6421115B2 (en) Distance measuring apparatus
JP3223306B2 (en) Camera ranging device
JP3579524B2 (en) Distance measuring device and distance measuring method
JP3174941B2 (en) Camera ranging device
JP3361179B2 (en) Camera ranging device
JP3389406B2 (en) Camera ranging device
JP3481994B2 (en) Camera ranging device
JPH06194567A (en) Range-finder for camera
JPH07253321A (en) Distance measuring device for camera
JPH07181372A (en) Range finding device for camera
GB2317521A (en) Distance measuring device
JPH09257469A (en) Distance-measuring apparatus for camera
JPH09196664A (en) Distance measuring device for camera

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110928

LAPS Cancellation because of no payment of annual fees