JPH07130282A - Electron emission element and electronic equipment using it - Google Patents
Electron emission element and electronic equipment using itInfo
- Publication number
- JPH07130282A JPH07130282A JP15013193A JP15013193A JPH07130282A JP H07130282 A JPH07130282 A JP H07130282A JP 15013193 A JP15013193 A JP 15013193A JP 15013193 A JP15013193 A JP 15013193A JP H07130282 A JPH07130282 A JP H07130282A
- Authority
- JP
- Japan
- Prior art keywords
- electron
- emitting device
- lower electrode
- fermi level
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 14
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 12
- 150000003624 transition metals Chemical class 0.000 claims abstract description 10
- 238000010894 electron beam technology Methods 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 239000013078 crystal Substances 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims 2
- 239000011159 matrix material Substances 0.000 claims 1
- 230000003287 optical effect Effects 0.000 claims 1
- 238000000059 patterning Methods 0.000 claims 1
- 230000000737 periodic effect Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 9
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
- 239000010408 film Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 11
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000002186 photoelectron spectrum Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 229910018979 CoPt Inorganic materials 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- NGPGDYLVALNKEG-UHFFFAOYSA-N azanium;azane;2,3,4-trihydroxy-4-oxobutanoate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)C(O)C([O-])=O NGPGDYLVALNKEG-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Electron Sources, Ion Sources (AREA)
- Cold Cathode And The Manufacture (AREA)
- Electron Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電子ビームを面状に放
出する電子放出素子およびそれを用いた電子線応用機器
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron emitting device for emitting an electron beam in a plane and an electron beam application device using the same.
【0002】[0002]
【従来の技術】単色性のよい面状の電子ビームを取り出
せると期待されている電子放出素子の1つに、電極間に
薄い絶縁膜を挟み込んだ多層膜のトンネル現象を利用し
たものがある。その代表的なものとして金属−絶縁体−
金属構造(MIM構造)が挙げられる。2. Description of the Related Art One of electron-emitting devices which is expected to be able to extract a planar electron beam having a good monochromaticity is one which utilizes a tunnel phenomenon of a multilayer film in which a thin insulating film is sandwiched between electrodes. A typical example is metal-insulator-
A metal structure (MIM structure) is mentioned.
【0003】図2はMIM構造を電子放出素子として動
作させたときの原理図を示す。上部電極11と下部電極
13の間に電圧17(数V〜10V)を印加すると、絶
縁膜12内の電界のため、下部電極13中のフェルミ準
位近傍の電子はトンネル現象により障壁を透過し、絶縁
膜12,上部電極11の伝導帯へ出現する。これらの電
子のうち、上部電極11の仕事関数φ以上のエネルギー
を有する電子は、真空10中に放出されることになる。
現在までにAu−Al2O3−Al構造等に於てこの原理
による電子放出が観測されている(応用物理,Vol3
2,No.8,(1963)p568)。FIG. 2 shows a principle diagram when the MIM structure is operated as an electron-emitting device. When a voltage 17 (several V to 10 V) is applied between the upper electrode 11 and the lower electrode 13, an electric field in the insulating film 12 causes electrons near the Fermi level in the lower electrode 13 to pass through the barrier due to the tunnel phenomenon. , Appearing in the conduction band of the insulating film 12 and the upper electrode 11. Among these electrons, the electrons having energy equal to or higher than the work function φ of the upper electrode 11 are emitted into the vacuum 10.
Up to the present, electron emission based on this principle has been observed in Au-Al 2 O 3 -Al structures and the like (applied physics, Vol 3
2, No. 8, (1963) p568).
【0004】このMIM構造の電子放出素子には様々な
長所がある。まず、素子が薄膜状の単純な構造であるた
め大面積化が容易であり、面状電子放出素子を作成しや
すい。また上部電極11が平坦かつ大面積のため、針状
の電子放出端を持つ電界放射陰極アレイ等に比べ真空1
0との界面状態が安定であり、環境ガスの影響を受けに
くく、広い真空度の範囲で動作が可能である。さらに1
0V程度の低電圧の印加で電子放出が可能であり高圧電
源等を要しない点も大きな利点である。The electron emission device having the MIM structure has various advantages. First, since the device has a thin film-like simple structure, it is easy to increase the area, and it is easy to produce a planar electron-emitting device. In addition, since the upper electrode 11 is flat and has a large area, a vacuum 1 is used as compared with a field emission cathode array having a needle-shaped electron emission end.
The interface state with 0 is stable, is not easily affected by environmental gas, and can operate in a wide vacuum range. 1 more
It is a great advantage that electrons can be emitted by applying a low voltage of about 0 V and a high-voltage power source or the like is not required.
【0005】一方、従来の電子線描画装置は、点状電子
源を用いているため、露光面積が小さく、ウェハー全面
の描画に時間がかかり、スループットが小さい。スルー
プットを向上させる為には放射電流密度が高く、単色性
の良い面状電子源から放出された電子ビームを用いた大
面積の一括露光を可能にする必要がある。On the other hand, since the conventional electron beam drawing apparatus uses the point electron source, the exposure area is small, it takes time to draw the entire surface of the wafer, and the throughput is small. In order to improve the throughput, it is necessary to enable large-area batch exposure using an electron beam emitted from a planar electron source having a high emission current density and good monochromaticity.
【0006】電子デバイスとしては、過去に用いられて
いた真空管デバイスに変わり、半導体デバイスが主流で
ある。これは、半導体デバイスの方が信頼性,集積化の
容易さの点で従来の真空管デバイスより優れていたため
である。しかしながら、デバイスの動作速度を決める電
子の飽和速度は、半導体中の2〜3×105m/s に対
し、真空中ではほぼ光速であり、デバイスの高速化を図
れる可能性がある。この実現の為には集積化が可能な、
薄膜電子源を実現する必要がある。As electronic devices, semiconductor devices have become the mainstream, replacing vacuum tube devices used in the past. This is because the semiconductor device is superior to the conventional vacuum tube device in terms of reliability and ease of integration. However, the saturation speed of electrons, which determines the operation speed of the device, is approximately 3 × 10 5 m / s in a semiconductor, which is almost the speed of light in a vacuum, and thus the device may be accelerated. To achieve this, integration is possible,
It is necessary to realize a thin film electron source.
【0007】[0007]
【発明が解決しようとする課題】図2の原理で電子放出
がなされる場合、理論的には放出電流密度が高く、熱陰
極に比べてエネルギー幅の十分狭い電子線が得られると
期待される。しかし従来のMIM構造の電子放出素子で
は上部電極11に流れ込むダイオード電流に比べ、真空
10中に放出される電子電流の割合(放射比)が低く
(1/104〜1/106 )、放出電流密度が小さい。さ
らに、放出電子のエネルギー幅も大きく広がっているこ
とが報告されている。これは従来のMIM構造の電子放
出素子では、トンネルした電子が絶縁膜12,上部電極
11の伝導帯を走行する際の電子の散乱が大きく、大部
分の電子はエネルギーを失って上部電極11の仕事関数
φ以下のエネルギー準位に落ち込み放射比が低くなるこ
と、また同様の散乱の効果により、電子が様々なエネル
ギー準位をとるようになり、エネルギー幅が広がるため
と考えられている。When electrons are emitted according to the principle of FIG. 2, it is theoretically expected that an electron beam having a high emission current density and an energy width sufficiently narrower than that of a hot cathode can be obtained. . However, in the conventional electron-emitting device having the MIM structure, the ratio of the electron current emitted in the vacuum 10 (emission ratio) is lower than the diode current flowing into the upper electrode 11.
(1/10 4 to 1/10 6 ), the emission current density is small. Furthermore, it has been reported that the energy width of the emitted electrons is greatly expanded. In the conventional MIM structure electron-emitting device, when the tunneled electrons travel in the conduction band of the insulating film 12 and the upper electrode 11, the scattering of the electrons is large, and most of the electrons lose their energy and lose their energy. It is considered that electrons fall into various energy levels due to the fact that the radiation ratio falls to an energy level equal to or lower than the work function φ and the same scattering effect causes the energy width to widen.
【0008】本発明の目的は、放出電流密度,低エネル
ギー分散化を向上させた面状薄膜電子源を供給するこ
と、およびそれを利用したスループットの高い電子線描
画装置、ならびに微小真空管デバイス等の電子応用機器
を実現することにある。It is an object of the present invention to supply a planar thin film electron source with improved emission current density and low energy dispersion, and an electron beam drawing apparatus and a micro vacuum tube device using the same for high throughput. It is to realize electronic application equipment.
【0009】[0009]
【課題を解決するための手段】上記目的は、次の各々に
より達成できる。The above object can be achieved by each of the following.
【0010】1)MIM構造において下部電極として、
占有電子状態が電子相関によってフェルミ準位近傍に局
在し、占有電子状態密度が局所的に高くなるものを用い
て、トンネル電流密度を向上させる。1) As a lower electrode in the MIM structure,
The occupied electron state is localized near the Fermi level due to electron correlation, and the occupied electron state density is locally increased to improve the tunnel current density.
【0011】2)MIM構造において、フェルミ準位近
傍の占有電子状態密度が高い下部電極として、その電子
状態密度が主にdバンド,fバンドによって形成される
物質を用いる。2) In the MIM structure, as the lower electrode having a high occupied electronic state density near the Fermi level, a substance whose electronic state density is mainly formed by d band and f band is used.
【0012】3)MIM構造において、下部電極金属と
してフェルミ準位直下に、主にdバンドに起因する非常
に高い占有電子状態密度を持つ第8族遷移金属を用い
る。3) In the MIM structure, a Group 8 transition metal having a very high occupied electronic state density mainly due to the d band is used as a lower electrode metal immediately below the Fermi level.
【0013】4)第8族遷移金属としてPd,Pt,N
i,Co,Feを用いる。4) Pd, Pt, N as the Group 8 transition metal
i, Co, Fe are used.
【0014】5)下部電極金属として複数の第8族遷移
金属からなる合金を用いる。5) An alloy composed of a plurality of Group 8 transition metals is used as the lower electrode metal.
【0015】6)MIM構造の電子放出素子の駆動電圧
を、上部電極金属の電子放出しきい値電圧+0.5V 以
下とする。6) The driving voltage of the electron-emitting device having the MIM structure is set to the electron-emitting threshold voltage of the upper electrode metal +0.5 V or less.
【0016】[0016]
【作用】MIM構造の電子放出素子は、図2に示すよう
に絶縁膜12に、上部電極11と下部電極13より高電
界を印加し、実効的に薄くなった障壁をトンネルした電
子を放出させる。この場合トンネル電流密度jは、下部
電極13の占有電子状態中のエネルギーEの電子に対す
る透過確率をT(E),フェルミ分布関数をf(E),電子
状態密度をD(E),トンネル障壁に入射する電子の速度
をv,電気素量をeとした時、数1と表わされる。In the MIM structure electron-emitting device, as shown in FIG. 2, a higher electric field is applied to the insulating film 12 than the upper electrode 11 and the lower electrode 13 to emit electrons tunneled through the effectively thinned barrier. . In this case, the tunnel current density j is T (E), the Fermi distribution function is f (E), the electron state density is D (E), the tunnel barrier is the tunneling barrier, and the transmission probability is T (E) for electrons of the energy E in the occupied electronic state of the lower electrode 13. When the velocity of the electrons incident on is denoted by v and the elementary charge is denoted by e, it is expressed by Equation 1.
【0017】[0017]
【数1】 [Equation 1]
【0018】ここで、∫dkは、運動量空間での積分を
意味する。Here, ∫dk means integration in the momentum space.
【0019】透過確率T(E)は、障壁の厚さと高さに敏
感に影響されるので、実際にはトンネルする電子はフェ
ルミ準位近傍の電子がほとんどである。従って、放出電
流密度を高くするためには、下部電極13として、特に
透過確率T(E)が高い領域のフェルミ準位近傍(フェル
ミ準位直下〜結合エネルギー2eV)の占有電子状態密
度D(E)が高い物質を用いればよい。Since the transmission probability T (E) is sensitively affected by the thickness and height of the barrier, in practice, most of the tunneling electrons are electrons near the Fermi level. Therefore, in order to increase the emission current density, as the lower electrode 13, the occupied electronic state density D (E) near the Fermi level (directly below the Fermi level to the binding energy of 2 eV) in the region where the transmission probability T (E) is particularly high. ) May be used.
【0020】価電子帯を構成する占有電子状態数の総数
は元素によって大差はないため、フェルミ準位近傍の占
有電子状態密度を上げるには、電子相関に起因する電子
状態密度のフェルミ準位近傍での局在化を利用する。そ
れを実現する例として、その価電子帯上部の占有電子状
態が主にdバンド,fバンドに起因する物質を用いれば
よい。これらは次の根拠による。Since the total number of occupied electronic states making up the valence band does not differ greatly depending on the element, in order to increase the occupied electronic state density near the Fermi level, the electronic state density near the Fermi level caused by electron correlation can be increased. Take advantage of localization at. As an example for realizing this, a substance whose occupied electronic states in the upper part of the valence band mainly originate in the d band and the f band may be used. These are based on the following grounds.
【0021】一般にd電子,f電子は電子相関(電子間
のクーロン相互作用)による斥力が大きく、バンド分散
が小さいためエネルギー的に局在化する。すなわち単位
エネルギー当りのバンド数が多くなるため、電子状態密
度が、あるエネルギーの近傍で局所的に非常に高くな
る。これに対し、従来のMIM電子源に、酸化膜形成の
容易さの観点から用いられてきたAlは、フェルミ準位
近傍がsバンド,pバンドによって形成されており、電
子間のクーロン相互作用による斥力が小さいため、バン
ド分散が大きくエネルギー的に広がり、単位エネルギー
当りの電子状態密度は局所的には低くなる。この比は数
10倍〜100倍程度になることが光電子分光等による
電子構造の研究から明らかである。Generally, d-electrons and f-electrons have large repulsive force due to electron correlation (Coulomb interaction between electrons) and have small band dispersion, so that they are localized in terms of energy. That is, since the number of bands per unit energy increases, the electronic density of states becomes extremely high locally near a certain energy. On the other hand, Al, which has been used in the conventional MIM electron source from the viewpoint of easiness of oxide film formation, has s-band and p-band in the vicinity of the Fermi level, which is due to Coulomb interaction between electrons. Since the repulsive force is small, the band dispersion is large and the energy spreads, and the electronic density of states per unit energy is locally low. It is clear from the study of the electronic structure by photoelectron spectroscopy that the ratio becomes several tens to 100 times.
【0022】図3にdバンドに起因する電子状態を持つ
Ni(18)と、従来から用いられてきたAl(19)の光
電子スペクトルの模式図を示す(詳しくはトピックス
インアプライド フィジックス 第27巻(1979
年)p204およびp369:Topics in Applied Phy
sics Vol.27(1979)p204およびp369を参
照)。Ni(18)はフェルミ準位直下から2eVの範囲
で局在的な高い電子状態密度を持つのに対し、Al(1
9)は8eVの範囲でブロードな電子状態密度を持つこ
とが明らかである。よってdバンド,fバンドがフェル
ミ準位近傍の占有電子状態を形成するものをMIM構造
の電子放出素子の下部電極13に用いれば、電子放出素
子の大幅(数10〜100倍)な放出電流密度の向上を
達成できる。FIG. 3 shows a schematic diagram of photoelectron spectra of Ni (18) having an electronic state caused by the d band and Al (19) which has been conventionally used (for details, see the topics.
In Applied Physics Vol. 27 (1979
Year) p204 and p369: Topics in Applied Phy
sics Vol. 27 (1979) p204 and p369). Ni (18) has a localized high electron density in the range of 2 eV from just below the Fermi level, while Al (1
It is clear that 9) has a broad electron density of states in the range of 8 eV. Therefore, if the lower electrode 13 of the electron-emitting device having the MIM structure is formed so that the d-band and the f-band form occupied electronic states in the vicinity of the Fermi level, the emission current density of the electron-emitting device can be significantly increased (tens to 100 times). Can be achieved.
【0023】具体的には第8族遷移金属はフェルミ準位
直下に主にdバンドに起因する非常に大きな占有電子状
態を持ち有効である。第8族遷移金属中、Pd,Pt,
Ni,Co,Feは融点が比較的低いため蒸着法などに
よる成膜が容易であり素子作製に向く。又、下部電極1
3としては、第8族遷移金属同士の合金であるCoPt,
FeNi等や第8族遷移金属を含む化合物であるNiS
i2 などを用いることもできる。Specifically, the Group 8 transition metal is effective because it has a very large occupied electronic state mainly due to the d band just below the Fermi level. Among Group 8 transition metals, Pd, Pt,
Since Ni, Co, and Fe have relatively low melting points, they can be easily formed into a film by a vapor deposition method or the like and are suitable for device fabrication. Also, the lower electrode 1
3 includes CoPt, which is an alloy of Group 8 transition metals,
NiS which is a compound containing FeNi or the like and a Group 8 transition metal
i 2 or the like can also be used.
【0024】このような手法によって高い放出電流密度
を達成したMIM型電子放出素子においては、目標の放
出電流密度を取るのに過剰な電圧をかける必要がない。
そこで、両電極にかける駆動電圧を上部電極11の電子
放出しきい値電圧+0.5V以下に制限すれば、フェル
ミ準位より0.5eV 以上低いエネルギー準位からトン
ネルした電子、および絶縁膜12中或いは上部電極11
中で散乱されエネルギーを失った電子をカットできるた
め、放出電子のエネルギー幅を0.5eV 以下に抑える
ことが出来る。即ち単色性の良い電子ビームを得ること
ができる。また低電圧動作のため、絶縁膜12の破壊も
防止でき、電子放出素子の長寿命化が達成できる。In the MIM type electron-emitting device which achieves a high emission current density by such a method, it is not necessary to apply an excessive voltage to obtain a target emission current density.
Therefore, if the driving voltage applied to both electrodes is limited to the electron emission threshold voltage of the upper electrode +0.5 V or less, the electrons tunneled from the energy level lower than the Fermi level by 0.5 eV or more and the insulating film 12 Or the upper electrode 11
Since the electrons scattered inside and losing energy can be cut, the energy width of the emitted electrons can be suppressed to 0.5 eV or less. That is, an electron beam having good monochromaticity can be obtained. Further, since the operation is performed at a low voltage, it is possible to prevent the insulating film 12 from being broken, and it is possible to extend the life of the electron-emitting device.
【0025】電子線描画装置での露光時間は放出電流密
度に逆比例して短くなるから、上記のような高い放出電
流密度を持つ面状電子源を使用すれば、短時間の大面積
一括露光が可能となり、スループットを大幅に向上でき
る。また、微小真空管による信号増幅素子を作成した場
合、放出電流密度の向上により、相互コンダクタンスが
向上するため、素子の低ノイズ化,高利得化,高速化を
実現する。Since the exposure time in the electron beam drawing apparatus is shortened in inverse proportion to the emission current density, if a planar electron source having a high emission current density as described above is used, large-area batch exposure in a short time is performed. It is possible to significantly improve the throughput. Further, when a signal amplifying element using a micro vacuum tube is created, the emission current density is improved and the mutual conductance is improved, so that noise reduction, high gain and high speed of the element are realized.
【0026】[0026]
【実施例】本発明を用いた実施例を図1を用いて説明す
る。表面を清浄化した基板14上に下部電極13として
Pdを10nm蒸着する。下部電極13としてPt,N
i,Co,Feなどを用いる場合には、所望の金属また
は合金を蒸着する。基板14には、例えば、熱酸化によ
り表面に酸化シリコン膜を形成したシリコン基板を用い
るとよい。続いて同じ真空中でAlを4nm蒸着する。
この二層膜を陽極酸化法により上面のAlのみ酸化す
る。陽極酸化は3%酒石酸アンモニウム水溶液で4Vの
化成電圧で行う。陽極酸化によって酸化できるAlの膜
厚は高い精度で化成電圧に依存しているため、4Vの化
成電圧で4nmのAlのみ選択的に酸化できる。このよ
うにして、Pdから構成される下部電極13上にAl2
O3で構成される絶縁膜12を形成出来る。Alの膜厚
を4nm以外に設定した場合は、化成電圧もそれに対応
した電圧とすることは言うまでもない。次に絶縁膜12
上に上部電極11を形成する。上部電極11としては、
例えばAuを超高真空中での蒸着により10nm形成す
ればよい。EXAMPLE An example using the present invention will be described with reference to FIG. Pd of 10 nm is vapor-deposited as the lower electrode 13 on the substrate 14 whose surface is cleaned. Pt, N as the lower electrode 13
When using i, Co, Fe, etc., a desired metal or alloy is vapor-deposited. As the substrate 14, for example, a silicon substrate having a silicon oxide film formed on its surface by thermal oxidation may be used. Then, Al is vapor-deposited to a thickness of 4 nm in the same vacuum.
Only the Al on the upper surface of the two-layer film is oxidized by the anodic oxidation method. Anodization is performed with a 3% ammonium tartrate aqueous solution at a formation voltage of 4V. Since the film thickness of Al that can be oxidized by anodic oxidation depends on the formation voltage with high accuracy, only 4 nm of Al can be selectively oxidized at the formation voltage of 4V. In this way, Al 2 is formed on the lower electrode 13 composed of Pd.
The insulating film 12 composed of O 3 can be formed. Needless to say, when the film thickness of Al is set to a value other than 4 nm, the formation voltage is set to a voltage corresponding thereto. Next, the insulating film 12
The upper electrode 11 is formed on top. As the upper electrode 11,
For example, Au may be formed to a thickness of 10 nm by vapor deposition in an ultrahigh vacuum.
【0027】本実施例において、Alの酸化過程を陽極
酸化法の替わりに、気相酸化法を用いることも有効であ
る。AlとPdの二層膜を真空槽に入れ、0.001 〜
10Torr程度の酸素を導入して基板を加熱することによ
りAlを酸化し、Al2O3からなる絶縁膜12を形成す
ることが出来る。絶縁膜12として酸化シリコンSiO
2 を用いる場合には、この気相酸化法の方が有効であ
る。また、本実施例において上部電極11として不純物
を高濃度にドープして低抵抗化した半導体を用いてもよ
い。例えば、リンPをドープしたSiが有効である。In the present embodiment, it is also effective to use the vapor phase oxidation method instead of the anodic oxidation method for the Al oxidation process. A two-layer film of Al and Pd was placed in a vacuum chamber and 0.001 ~
By introducing oxygen of about 10 Torr and heating the substrate, Al is oxidized and the insulating film 12 made of Al 2 O 3 can be formed. Silicon oxide SiO as the insulating film 12
When 2 is used, this gas phase oxidation method is more effective. Further, in the present embodiment, the upper electrode 11 may be made of a semiconductor which is doped with impurities at a high concentration to have a low resistance. For example, Si doped with phosphorus P is effective.
【0028】本発明を用いた別の実施例を図4に示す。
下部電極13および絶縁膜12は先の実施例と同様に形
成する。次にSiO2 やAl2O3などの絶縁体を化学気
相蒸着法(CVD法)などにより50nm程度の膜厚で
蒸着し、保護層15を形成する。この上に、上部電極1
1を先の実施例と同様の方法で形成する。さらに、Au
など低抵抗の材料を100nm程度蒸着して電極端子1
6を形成する。このようにして形成したMIM電子放出
素子では、上部電極11および下部電極13の周辺部が
膜厚の厚い保護層15で覆われているため、電極周辺部
への電界集中が起こるのを防ぐことができ、安定した電
子放出と電子放出素子の長寿命化が実現出来る。さら
に、電極端子16は上部電極11よりも膜厚が厚いため
低抵抗であり、MIM電子放出素子を動作させる際、上
部電極11から下部電極13に流れる動作電流による電
圧降下を防げる。Another embodiment using the present invention is shown in FIG.
The lower electrode 13 and the insulating film 12 are formed in the same manner as in the previous embodiment. Next, an insulator such as SiO 2 or Al 2 O 3 is vapor-deposited with a film thickness of about 50 nm by a chemical vapor deposition method (CVD method) or the like to form the protective layer 15. On top of this, the upper electrode 1
1 is formed in the same manner as in the previous embodiment. Furthermore, Au
Electrode terminal 1 by depositing a low resistance material such as 100 nm
6 is formed. In the MIM electron-emitting device thus formed, the peripheral portions of the upper electrode 11 and the lower electrode 13 are covered with the thick protective layer 15, so that the electric field concentration on the peripheral portions of the electrodes is prevented. Therefore, stable electron emission and long life of the electron-emitting device can be realized. Further, since the electrode terminal 16 has a larger film thickness than the upper electrode 11, it has a low resistance and prevents a voltage drop due to an operating current flowing from the upper electrode 11 to the lower electrode 13 when operating the MIM electron-emitting device.
【0029】また、これらの実施例において下部電極1
3上に形成するAlをエピタキシャル膜とすると、それ
を酸化して得られる絶縁膜12も結晶性の良いものが得
られる。このようにすると、下部電極13から上部電極
11へトンネルする電子の絶縁膜12内での散乱確率が
減少するため、トンネル電流が増大し、また、真空中に
放出される電流量も増大し、また放出電子の運動エネル
ギー分布も小さくなりエネルギー分散が小さい良質な電
子ビームを得ることが出来る。また、下部電極13をエ
ピタキシャル成長膜または単結晶膜とすると、その上に
形成するAlもエピタキシャル膜あるいは配向膜となり
やすくなるので、下部電極13のエピタキシャル膜化も
有効である。Further, in these embodiments, the lower electrode 1
When Al formed on 3 is used as an epitaxial film, the insulating film 12 obtained by oxidizing it can have good crystallinity. By doing so, the probability of scattering of electrons tunneling from the lower electrode 13 to the upper electrode 11 in the insulating film 12 decreases, so that the tunnel current increases and the amount of current emitted into the vacuum also increases. Also, the kinetic energy distribution of the emitted electrons becomes smaller, and a high-quality electron beam with small energy dispersion can be obtained. Further, when the lower electrode 13 is an epitaxial growth film or a single crystal film, Al formed on the lower electrode 13 is likely to become an epitaxial film or an orientation film, so that it is also effective to form the lower electrode 13 as an epitaxial film.
【0030】図5は本発明による別の実施例を示したも
のである。Pd,Ptなどの単結晶基板を下部電極13
とし、その上に絶縁膜12,保護層15,上部電極1
1,電極端子16を形成する。これらの形成方法は、先
の実施例と同様である。このように、下部電極13とし
て単結晶を用いることにより、絶縁膜12および上部電
極11の結晶性が向上するため、放出電子の電流量が増
大し、ビーム特性も向上することは先に述べた通りであ
る。FIG. 5 shows another embodiment according to the present invention. A single crystal substrate such as Pd or Pt is used as the lower electrode 13
And an insulating film 12, a protective layer 15, and an upper electrode 1 on top of it.
1, the electrode terminal 16 is formed. The method of forming these is similar to that of the previous embodiment. As described above, by using the single crystal for the lower electrode 13, the crystallinity of the insulating film 12 and the upper electrode 11 is improved, so that the amount of current of emitted electrons is increased and the beam characteristics are also improved. On the street.
【0031】図6は、本発明のMIM面状電子放出素子
を電子線描画装置に搭載した例である。MIM電子放出
素子21から発生した面状電子線は、Si製マスク22
で集積回路パターンに整形される。この電子線はブラン
カ23を通った後、電子レンズ24により縮小し、偏向
器25を通過して、ウェハ26上に転写される。ウェハ
26は可動ステージ27に載せて露光範囲を移動させ
る。本発明の面状電子源を用いた場合、放出電流密度が
高く1回の露光時間が短いこと、また大面積の一括露光
が可能なのでステージの移動回数が少なくなり、スルー
プットの大幅な向上が可能となる。FIG. 6 shows an example in which the MIM planar electron-emitting device of the present invention is mounted on an electron beam drawing apparatus. The planar electron beam generated from the MIM electron-emitting device 21 is a mask 22 made of Si.
Is shaped into an integrated circuit pattern. After passing through the blanker 23, this electron beam is reduced by the electron lens 24, passes through the deflector 25, and is transferred onto the wafer 26. The wafer 26 is placed on the movable stage 27 to move the exposure range. When the planar electron source of the present invention is used, the emission current density is high and the exposure time for one exposure is short, and since large-area batch exposure is possible, the number of stage movements is reduced, and throughput can be greatly improved. Becomes
【0032】図7は別の電子線描画装置の例である。本
発明のMIM電子放出素子を多数の小さな格子状に形成
する。このMIM電子放出素子マトリクス28は各々独
立に動作し、それぞれ回路パターン発生器29により制
御され、全体として集積回路パターンに整形される。こ
の後上記と同様のシステムによってウェハ26上に転写
される。本発明の面状電子源を用いたスループット向上
の効果は先に述べた通りである。この装置の場合、回路
パターンを電気的な任意に整形出来るので、マスクを使
用する場合より柔軟性が高く、さらにスループットを向
上できる。FIG. 7 shows an example of another electron beam drawing apparatus. The MIM electron-emitting device of the present invention is formed into a large number of small grids. The MIM electron-emitting device matrixes 28 operate independently and are controlled by the circuit pattern generators 29, respectively, and are shaped into integrated circuit patterns as a whole. After that, it is transferred onto the wafer 26 by the same system as described above. The effect of improving the throughput using the planar electron source of the present invention is as described above. In the case of this device, since the circuit pattern can be electrically shaped arbitrarily, it is more flexible than the case of using a mask, and the throughput can be further improved.
【0033】図8は、本発明のMIM面状電子放出素子
を微小真空管として適用した例である。表面に100n
mの熱酸化膜30を形成した高濃度PドープSi基板3
1にフォトリソ工程により1×1mm2 のMIM形成領域
をパターニングし、酸化膜を100nmエッチングす
る。そこにメタルマスクを用い、Pdを蒸着によって8
5nm形成し下部電極13とする。この上に同様にして
Alを5nm形成する。これを熱酸化法により、Alを
全て酸化し絶縁膜12とする。つづいて、Auを10n
m蒸着し上部電極11を形成し、MIM構造を完成す
る。FIG. 8 shows an example in which the MIM planar electron-emitting device of the present invention is applied as a micro vacuum tube. 100n on the surface
Highly-concentrated P-doped Si substrate 3 having m thermal oxide film 30 formed thereon
1) A 1 × 1 mm 2 MIM formation region is patterned by a photolithography process, and the oxide film is etched by 100 nm. Using a metal mask there, Pd is vapor-deposited 8
The lower electrode 13 is formed to a thickness of 5 nm. Al is similarly formed thereon to a thickness of 5 nm. All of this is oxidized by thermal oxidation to form the insulating film 12. Next, Au for 10n
Then, the upper electrode 11 is formed by vapor deposition to complete the MIM structure.
【0034】次に、電子放出面の両側をRFスパッタリ
ング法によりSiO2 の絶縁厚膜32を1000nm堆
積し、その上に放出電流を取り出すアノード板33を接
合する。これにより、微小真空管を完成する。印加電圧
17は高濃度PドープSi基板31と上部電極11の間
に印加される。上部電極11とアノード板33の間には
電子の引込み電圧34として50Vを印加する。印加電
圧17を0Vから高めていくと、あるしきい値以上にな
ると放出電流は急激に増加する。これは、下部電極1
3,上部電極11,アノード板33をそれぞれソース,
ゲート,ドレインと考えるとエンハンスメント型電界効
果トランジスタと同じ特性になっている。本発明のMI
M電子源を用いた場合、放出電流即ちドレイン電流が高
く、素子の相互コンダクタンスが上がるため、低ノイ
ズ,高利得,高速のデバイスとなる。Next, an insulating thick film 32 of SiO 2 is deposited to a thickness of 1000 nm on both sides of the electron emission surface by the RF sputtering method, and an anode plate 33 for taking out an emission current is bonded thereon. This completes the micro vacuum tube. The applied voltage 17 is applied between the high-concentration P-doped Si substrate 31 and the upper electrode 11. 50 V is applied as an electron pull-in voltage 34 between the upper electrode 11 and the anode plate 33. When the applied voltage 17 is increased from 0V, the emission current sharply increases at a certain threshold value or more. This is the lower electrode 1
3, the upper electrode 11, the anode plate 33 as the source,
Considering the gate and drain, the characteristics are the same as those of the enhancement type field effect transistor. MI of the present invention
When the M electron source is used, the emission current, that is, the drain current is high, and the transconductance of the element is increased, so that the device has low noise, high gain, and high speed.
【0035】[0035]
【発明の効果】本発明は、MIM型電子放出素子の下部
電極金属として、フェルミ準位近傍の占有電子状態密度
が大きい金属を用いることにより、放出電流密度を大幅
に向上させることが出来る。更にその効果で低電圧動作
が可能となるため、電子線の単色化、及び絶縁破壊の防
止を行うことが出来る。According to the present invention, the emission current density can be significantly improved by using a metal having a large occupied electronic state density near the Fermi level as the lower electrode metal of the MIM type electron-emitting device. Furthermore, the effect enables low-voltage operation, so that the electron beam can be monochromatic and dielectric breakdown can be prevented.
【図1】本発明の実施例の電子放出素子の断面図。FIG. 1 is a sectional view of an electron-emitting device according to an embodiment of the present invention.
【図2】MIM型電子放出素子の動作原理を示す図。FIG. 2 is a diagram showing an operating principle of an MIM type electron-emitting device.
【図3】Ni、およびAlの光電子スペクトル図。FIG. 3 is a photoelectron spectrum diagram of Ni and Al.
【図4】本発明の実施例の電子放出素子の断面図。FIG. 4 is a sectional view of an electron-emitting device according to an embodiment of the present invention.
【図5】本発明の実施例の電子放出素子の断面図。FIG. 5 is a sectional view of an electron-emitting device according to an embodiment of the present invention.
【図6】本発明の電子放出素子を用いた電子線描画装置
の実施例の構成図。FIG. 6 is a configuration diagram of an embodiment of an electron beam drawing apparatus using the electron-emitting device of the present invention.
【図7】本発明の電子放出素子を用いた電子線描画装置
の実施例の構成図。FIG. 7 is a configuration diagram of an embodiment of an electron beam drawing apparatus using the electron-emitting device of the present invention.
【図8】本発明の電子放出素子を用いた微小真空管の信
号増幅素子の実施例の断面図。FIG. 8 is a cross-sectional view of an embodiment of a signal amplifying device of a micro vacuum tube using the electron emitting device of the present invention.
11…上部電極、12…絶縁膜、13…下部電極、14
…基板、15…保護層、16…電極端子。11 ... Upper electrode, 12 ... Insulating film, 13 ... Lower electrode, 14
... substrate, 15 ... protective layer, 16 ... electrode terminal.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/027 49/00 (72)発明者 会田 敏之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 矢口 富雄 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 成清 正 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 山田 絵実子 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Continuation of front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location H01L 21/027 49/00 (72) Inventor Toshiyuki Aida 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi, Ltd. Central (72) Inventor Tomio Yaguchi, 1-280, Higashi Koikeku, Kokubunji, Tokyo, Central Research Laboratory, Hitachi, Ltd. (72) Inventor, Tadashi Seisei, 1-280, Higashi Koikeku, Kokubunji, Tokyo, Hitachi, Central Research Center ( 72) Inventor Emiko Yamada 1-280, Higashi Koigokubo, Kokubunji City, Tokyo Metropolitan Research Center, Hitachi, Ltd.
Claims (12)
極と下部電極との間に絶縁膜を挟んだ構造を有する電子
放出素子において、下部電極として、価電子帯全体の占
有電子状態中の内、フェルミ準位近傍(フェルミ準位直
下から2eVの結合エネルギーの範囲)の占有電子状態
密度が局所的に高い物質を用いることを特徴とする電子
放出素子。1. An electron-emitting device having a structure in which an insulating film is sandwiched between an upper electrode and a lower electrode made of a metal or a semiconductor, the lower electrode being used as a lower electrode in an occupied electronic state of the entire valence band, An electron-emitting device characterized by using a substance having a locally high occupied state density of electrons in the vicinity of the Fermi level (range of binding energy of 2 eV from immediately below the Fermi level).
極として、フェルミ準位近傍に電子相関に起因する局在
化した高い占有電子状態密度を持つ物質を用いることを
特徴とする電子放出素子。2. The electron-emitting device according to claim 1, wherein a substance having a localized high occupied electronic state density due to electron correlation is used as a lower electrode in the vicinity of the Fermi level. .
部電極のフェルミ準位近傍の占有電子状態が、主に局所
的に高い占有電子状態密度を持つdバンド,fバンドに
よって形成されるものを用いることを特徴とする電子放
出素子。3. The electron-emitting device according to claim 1, wherein the occupied electronic states in the vicinity of the Fermi level of the lower electrode are mainly formed locally by the d band and f band having a high occupied electronic state density. An electron-emitting device characterized by using one.
下部電極として、フェルミ準位直下に、主にdバンドに
起因する高い占有電子状態密度を持つ周期表第8族遷移
金属を用いることを特徴とする電子放出素子。4. The electron-emitting device according to claim 1, wherein
An electron-emitting device characterized by using, as a lower electrode, a Group 8 transition metal of the periodic table having a high occupied electronic state density mainly due to the d band just below the Fermi level.
Pt,Ni,Co,Feを用いる事を特徴とする電子放
出素子。5. The group 8 transition metal according to claim 3 is Pd,
An electron-emitting device characterized by using Pt, Ni, Co, Fe.
下部電極として、複数の第8族遷移金属元素からなる合
金、あるいは第8族遷移金属元素を含む化合物を用いる
ことを特徴とする電子放出素子。6. The electron-emitting device according to claim 1, wherein
An electron-emitting device characterized in that an alloy composed of a plurality of Group 8 transition metal elements or a compound containing a Group 8 transition metal element is used as the lower electrode.
下部電極として、第8族遷移元素の金属または合金、或
いは第8族遷移元素を含む化合物の、単結晶あるいは単
結晶膜あるいは配向膜を用いることを特徴とする電子放
出素子。7. The electron-emitting device according to claim 1, wherein
An electron-emitting device characterized in that a single crystal, a single crystal film, or an alignment film of a metal or alloy of a Group 8 transition element or a compound containing a Group 8 transition element is used as the lower electrode.
下部電極を構成する金属上に別の金属を形成し、それを
酸化することにより絶縁膜とすることを特徴とする電子
放出素子。8. The electron-emitting device according to claim 1, wherein
An electron-emitting device characterized in that another metal is formed on a metal forming a lower electrode and is oxidized to form an insulating film.
上部電極と下部電極にかける駆動電圧を上部電極金属の
電子放出しきい値電圧+0.5V 以下の範囲に抑えて放
出させることを特徴とする電子放出素子。9. The electron-emitting device according to claim 1, wherein
An electron-emitting device characterized in that a driving voltage applied to the upper electrode and the lower electrode is suppressed within a range of an electron-emission threshold voltage of the upper electrode metal +0.5 V or less for emission.
ビームを所望の位置のみ透過させてパターン化するマス
ク部と、前記パターン化した電子ビームを被露光面に投
射するための電子光学系とから構成される電子線描画装
置。10. An electron-emitting device according to any one of claims 1 to 9, a mask portion for transmitting and patterning an electron beam only at a desired position, and an electron optics for projecting the patterned electron beam onto a surface to be exposed. An electron beam drawing device composed of a system.
クス状に配列し、それぞれが独立に動作出来るようにし
た面状の電子放出源と、パターンデータからパターン信
号を発生し、前記電子放出源に出力するためのパターン
発生器と、前記電子放出源から放出された所望のパター
ンの電子ビームを被露光面に投射するための電子光学系
とから構成される電子線描画装置。11. An electron emission device according to claim 1, wherein the electron emission devices are arranged in a matrix and each of them can operate independently, and a pattern signal is generated from pattern data to generate the electron emission. An electron beam drawing apparatus comprising a pattern generator for outputting to an electron source and an electron optical system for projecting an electron beam of a desired pattern emitted from the electron emitting source onto a surface to be exposed.
電子放出素子から放出された電子を集める第3電極とか
ら構成された信号増幅素子。12. A signal amplifying device comprising the electron-emitting device according to claim 1 and a third electrode for collecting electrons emitted from the electron-emitting device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15013193A JPH07130282A (en) | 1993-06-22 | 1993-06-22 | Electron emission element and electronic equipment using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15013193A JPH07130282A (en) | 1993-06-22 | 1993-06-22 | Electron emission element and electronic equipment using it |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07130282A true JPH07130282A (en) | 1995-05-19 |
Family
ID=15490164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15013193A Pending JPH07130282A (en) | 1993-06-22 | 1993-06-22 | Electron emission element and electronic equipment using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07130282A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0896354A1 (en) * | 1997-08-08 | 1999-02-10 | Pioneer Electronic Corporation | Electron emission device and display device using the same |
EP0911854A1 (en) * | 1997-08-08 | 1999-04-28 | Pioneer Electronic Corporation | Electron emission device and display device using the same |
US6583578B1 (en) | 1999-10-18 | 2003-06-24 | Matsushita Electric Works, Ltd. | Field emission-type electron source and manufacturing method thereof |
KR100710211B1 (en) * | 2000-10-25 | 2007-04-20 | 엘지전자 주식회사 | Field Emission Display |
-
1993
- 1993-06-22 JP JP15013193A patent/JPH07130282A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0896354A1 (en) * | 1997-08-08 | 1999-02-10 | Pioneer Electronic Corporation | Electron emission device and display device using the same |
EP0911854A1 (en) * | 1997-08-08 | 1999-04-28 | Pioneer Electronic Corporation | Electron emission device and display device using the same |
US6583578B1 (en) | 1999-10-18 | 2003-06-24 | Matsushita Electric Works, Ltd. | Field emission-type electron source and manufacturing method thereof |
KR100710211B1 (en) * | 2000-10-25 | 2007-04-20 | 엘지전자 주식회사 | Field Emission Display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7102157B2 (en) | Nanotube-based vacuum devices | |
US5473218A (en) | Diamond cold cathode using patterned metal for electron emission control | |
JP3235172B2 (en) | Field electron emission device | |
US5445550A (en) | Lateral field emitter device and method of manufacturing same | |
US6614169B2 (en) | Display device using thin film cathode and its process | |
JPS6146931B2 (en) | ||
JPH0145694B2 (en) | ||
DE4426594A1 (en) | Switching device | |
Fomani et al. | Toward amp-level field emission with large-area arrays of Pt-coated self-aligned gated nanoscale tips | |
US7176478B2 (en) | Nanotube-based vacuum devices | |
JP2003162956A (en) | Mis/mim electron emitter | |
JPH07130282A (en) | Electron emission element and electronic equipment using it | |
CN111725040B (en) | Preparation method of field emission transistor, field emission transistor and equipment | |
KR19990045142A (en) | Structure and manufacturing method of metal-insulator-metal or metal-insulator-semiconductor electron source | |
Fomani et al. | Low-voltage field ionization of gases up to torr-level pressures using massive arrays of self-aligned gated nanoscale tips | |
JP3407289B2 (en) | Electron emission device and driving method thereof | |
JP3260502B2 (en) | Electron-emitting device | |
JP3502883B2 (en) | Cold electron-emitting device and method of manufacturing the same | |
Shaw et al. | Silicon field emitter arrays | |
JP3405773B2 (en) | Micro field emission cathode device and method of manufacturing the same | |
JP3465890B2 (en) | Electron emitting element and flat display using the same | |
JP3487230B2 (en) | Field emission electron source, method of manufacturing the same, and display device | |
JP2005523563A (en) | Ejector with packed zeolite release layer | |
JP3468299B2 (en) | Electron emission device | |
JP3826539B2 (en) | Method for manufacturing cold electron-emitting device |