JPH0712871A - Differential probe for detecting high frequency superposed microsignal - Google Patents

Differential probe for detecting high frequency superposed microsignal

Info

Publication number
JPH0712871A
JPH0712871A JP5173578A JP17357893A JPH0712871A JP H0712871 A JPH0712871 A JP H0712871A JP 5173578 A JP5173578 A JP 5173578A JP 17357893 A JP17357893 A JP 17357893A JP H0712871 A JPH0712871 A JP H0712871A
Authority
JP
Japan
Prior art keywords
choke coil
probe
differential
frequency
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5173578A
Other languages
Japanese (ja)
Other versions
JP3165561B2 (en
Inventor
Kusuo Takagi
国主男 高木
Ryoichi Okayasu
良一 岡安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17357893A priority Critical patent/JP3165561B2/en
Publication of JPH0712871A publication Critical patent/JPH0712871A/en
Application granted granted Critical
Publication of JP3165561B2 publication Critical patent/JP3165561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow easy detection of a microlevel signal using a differential probe comprising a high frequency wideband common mode choke coil, a differential voltage detecting element, and a narrow-band BPF. CONSTITUTION:When a differential probe 20 is connected with the terminal of a telephone receiver, the stray capacity Ciota is increased significantly by an attenuator 22 and a wideband common mode choke coil 21 inserted between each end of the probe 20 and the metal housing 16. Consequently, a common mode AM modulated wave VR flows from the terminal of telephone receiver to the ground on the probe 20 side. The microdifferential voltage VR detected by two FETs in an element 14 is amplified by a preamplifier 15 and only a micromodulation wave VL detected by a semiconductor circuit in a telephone set is selected by a filter 23, amplified by a main amplifier 18 and displayed on a differential output display means 19.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はAM変調高周波信号内に
音声帯域の微小レベルの変調波信号が含まれている重畳
信号から、微小変調波信号を分離して検出する差動プロ
ーブに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential probe for separating and detecting a minute modulated wave signal from a superposed signal in which an AM modulated high frequency signal contains a minute level modulated wave signal in the voice band. is there.

【0002】[0002]

【従来の技術】従来、高周波や低周波の微小信号を計測
するこの種の検出手段には、ハイインピーダンスプロー
ブや差動プローブなどがある。
2. Description of the Related Art Conventionally, a high impedance probe or a differential probe has been known as this type of detecting means for measuring a minute signal of high frequency or low frequency.

【0003】図4はラジオ放送やCB無線などに用いら
れているAM変調波を電話機の通信線に印加したとき、
信号が受話器から雑音として聞こえる限界である雑音可
聴イミュニティ特性を評価する試験系であり、1は電話
機などの被試験機器(以下、EUTという)、2は擬似
大地面、3は擬似大地面上の所定の高さhにEUT1を
設置する絶縁支持台、4はEUTの通信線、V0 は通信
線・大地間にコモンモードで印加するAM変調波などの
試験信号、5はEUTの送受器コード、6は送受器であ
り、図中R1 ,R2 はEUT1の受話器端子である。ま
た7は送受器6内に図示しない受話器が装着された受話
口、8はコンデンサマイク、9は受話口7とコンデンサ
マイク8とを音響的に結合する音響カプラ、10はコン
デンサマイク8の電気信号により受話器の音圧Pを指示
するレベルメータ、11は人が送受器を持った場合を模
擬した擬似手、12は音響カプラ部分への周囲騒音の侵
入を除去するしゃ音箱である。また13は受話器端子R
1 ,R2 間に生じる電圧VR を計測するための従来の差
動プローブ、14は電界効果トランジスタ(以下、FE
Tという)などの差動電圧検出素子、15はFETの検
出電圧を増幅するプリアンプ、16はFET14やプリ
アンプ15を囲む差動プローブの金属筐体、17は同軸
ケーブルなどの差動プローブ出力ケーブル、18は差動
プローブ出力ケーブル17の接続されたメインアンプ、
19はオシロスコープやレベルメータなどの差動出力表
示手段である。
FIG. 4 shows the case where an AM modulated wave used in radio broadcasting, CB radio, etc. is applied to a communication line of a telephone.
A test system for evaluating the noise audible immunity characteristic, which is the limit at which a signal can be heard as noise from the handset. Insulating support for mounting the EUT 1 at a predetermined height h, 4 is an EUT communication line, V 0 is a test signal such as an AM modulated wave applied in a common mode between the communication line and ground, and 5 is a handset code of the EUT , 6 are handsets, and R 1 and R 2 in the figure are receiver terminals of the EUT 1 . Further, 7 is an earpiece in which a handset (not shown) is mounted in the handset 6, 8 is a condenser microphone, 9 is an acoustic coupler for acoustically coupling the earpiece 7 and the condenser microphone 8, and 10 is an electric signal of the condenser microphone 8. Is a level meter for indicating the sound pressure P of the handset, 11 is a pseudo hand simulating the case where a person holds the handset, and 12 is a sound insulation box for removing ambient noise from entering the acoustic coupler portion. 13 is the receiver terminal R
A conventional differential probe for measuring the voltage V R generated between 1 and R 2 , 14 is a field effect transistor (hereinafter referred to as FE).
(Referred to as T), 15 is a preamplifier for amplifying the detection voltage of the FET, 16 is a metal housing of the differential probe surrounding the FET 14 and the preamplifier 15, 17 is a differential probe output cable such as a coaxial cable, 18 is a main amplifier to which the differential probe output cable 17 is connected,
Reference numeral 19 is a differential output display means such as an oscilloscope or a level meter.

【0004】また、図5(a)は搬送波周波数fH を変
調波周波数fL で振幅変調した試験信号V0 の波形、図
5(b)は前記試験信号V0 を通信線4に印加したとき
に、受話機端子R1 ,R2 の間に生ずる電圧VR の波形
である。電圧VR はコモンモードのV0 が電話機回路の
不平衡によりノーマルモードに変換された出力で、V0
と同一波形のAM変調波VH とV0 が電話機の半導体回
路等で検波された変調波VL との重畳波形となり、VL
は微小レベルとなることが報告されている。(1992
年電子情報通信学会、春季全国大会論文集、SB−3−
2) このような試験系を用いた電話機の雑音可聴イミュニテ
ィ特性の評価方法は、通常VR 波形、特にその中に含ま
れるVL 波形のレベルが微小であるため、図中13で示
した差動プローブを用いても検出困難である。そこで、
一般にはVR の検出のかわりに、VR によって受話器を
駆動しその音響出力をレベルメータ10に指示させ、雑
音音圧Pを測定することにより行なわれている。すなわ
ち、印加試験信号V0 のレベルをしだいに大きくしてゆ
き音圧Pがあらかじめ定められた雑音可聴音圧P0 に等
しくなったときのV0 の大きさでEUTの雑音可聴イミ
ュニティ特性を評価している。
Further, FIG. 5 (a) shows the waveform of the test signal V 0 amplitude-modulated with the carrier wave frequency f H at the modulating wave frequency f L , and FIG. 5 (b) applies the test signal V 0 to the communication line 4. At this time, it is the waveform of the voltage V R generated between the receiver terminals R 1 and R 2 . The voltage V R is the output of the common mode V 0 converted to the normal mode due to the unbalance of the telephone circuit, and V 0
AM modulated waves V H and V 0, which have the same waveform as the above, become a superimposed waveform of the modulated wave V L detected by the semiconductor circuit of the telephone set, and V L
Has been reported to be at a micro level. (1992
IEICE, Spring National Convention Proceedings, SB-3-
2) In the method of evaluating the noise audible immunity characteristic of the telephone using such a test system, the level of the normal V R waveform, particularly the V L waveform included therein, is very small, so that the difference shown in FIG. It is difficult to detect using a dynamic probe. Therefore,
Instead of the detection of V R is typically drives the handset by V R is instructed to the sound output level meter 10 are performed by measuring the noise sound pressure P. That is, the level of the applied test signal V 0 is gradually increased and the noise audible immunity characteristic of the EUT is evaluated by the magnitude of V 0 when the sound pressure P becomes equal to the predetermined noise audible sound pressure P 0. is doing.

【0005】この方法は受話器の種類が何であっても最
終的な雑音音圧で評価するため、すぐれた方法である。
This method is an excellent method because it is evaluated by the final noise sound pressure regardless of the type of the handset.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記の
測定方法では受話口7が電話機によりまちまちで、音響
カプラ9との嵌合性が悪く検出レベルが変動し易かった
り、測定のつどしゃ音箱12内へ送受器を入れ受話口7
を音響カプラ9に装置する必要があるなど測定系の構成
や調整等に手間がかかる欠点がある。そこで、図に示し
たようなFET差動プローブ13を直接受話器R1 ・R
2 端子へ接触して雑音音圧P0 に相当する受話器端子間
電圧VR 、特にその中の検波電圧VL を測定する電気的
な評価法が実現できればきわめて有用と考えられる。
However, in the above-mentioned measuring method, the earpiece 7 is different depending on the telephone set, the fitting property with the acoustic coupler 9 is poor, and the detection level is easily changed, or the sound box 12 for measurement is inside. Insert handset into earpiece 7
Is required to be mounted on the acoustic coupler 9, so that the configuration and adjustment of the measurement system is troublesome. Therefore, handset a FET differential probe 13 as shown in FIG direct R 1 · R
Voltage handset-terminal contacts the second terminal corresponding to the noise sound pressure P 0 V R, electrical evaluation method are considered very useful if implemented in particular measuring the detected voltage V L therein.

【0007】しかし、従来の差動プローブ13はFET
間の浮遊容量Clは小さいものの各FETと金属筐体間
に存在する容量CgおよびCg′が大きいために、受話
器端子R1 ,R2 にプローブを接触させたとたんに、該
端子に誘起している図5(b)に示すVR 中のVH と同
様の誘起コモンモード電圧が容量Cg,Cg′を通って
差動プローブ13の金属筐体16から出力ケーブル17
の外部導体を介してメインアンプ18や差動出力表示手
段19等から大地に流れるので、検波電圧VLも変って
しまい、真のVR の値が変化して正しい雑音可聴音圧P
0 に対応したVL の値が計測できないという問題点があ
った。
However, the conventional differential probe 13 is a FET
Although the stray capacitance Cl between them is small, the capacitances Cg and Cg ′ existing between each FET and the metal casing are large. Therefore, when the probes are brought into contact with the receiver terminals R 1 and R 2 , they are induced to the terminals. The induced common mode voltage similar to V H in V R shown in FIG. 5B passes from the metal housing 16 of the differential probe 13 to the output cable 17 through the capacitors Cg and Cg ′.
Since it flows to the ground from the main amplifier 18, the differential output display means 19, etc. via the outer conductor of, the detection voltage V L also changes, the true value of V R changes, and the correct noise audible sound pressure P
There is a problem that the value of V L corresponding to 0 cannot be measured.

【0008】本発明は前記の問題点を解決するため、従
来の差動プローブの入力部に、高周波のコモンモード電
流に対してハイインピーダンスとなる手段を設けると共
にプローブ内に検波電圧VL を選択する手段を設け微小
レベルの信号の検出ができるようにすることを目的とす
る。
In order to solve the above-mentioned problems, the present invention provides a means for providing a high impedance to a high frequency common mode current in the input part of a conventional differential probe, and selects a detection voltage V L in the probe. It is an object of the present invention to provide a means for doing so that a signal of a minute level can be detected.

【0009】[0009]

【課題を解決するための手段】本発明は前記の課題を解
決するために、2端子間に生ずる高周波重畳低周波微小
信号を検出する差動プローブを、2つの接触端子に接続
されるペア線を所定の実効透磁率を有する閉磁路コアに
分割巻きしてなるコモンモード高周波広帯域チョークコ
イルと該チョークコイルの出力を高周波減衰器を介して
接続する差動電圧検出素子と、該素子の出力を増幅する
増幅器と該増幅器の出力に接続された前記低周波信号周
波数を中心周波数とする狭帯域バンドパスフィルタとに
より構成する。
In order to solve the above-mentioned problems, the present invention provides a differential probe for detecting a high-frequency superposed low-frequency minute signal generated between two terminals with a pair wire connected to two contact terminals. Is divided into a closed magnetic circuit core having a predetermined effective magnetic permeability, a common mode high frequency wideband choke coil, a differential voltage detecting element for connecting the output of the choke coil via a high frequency attenuator, and an output of the element. It is composed of an amplifier for amplification and a narrow band bandpass filter having a center frequency of the low frequency signal frequency connected to the output of the amplifier.

【0010】[0010]

【作用】本発明によれば前記のように構成したので差動
信号出力端子に出力される検波信号に重畳して出力され
る高周波成分に対してはコモンモード高周波広帯域チョ
ークコイルが高インピーダンスを呈するので前記端子に
差動プローブを接触させても試験回路に攪乱を与えるこ
とはなく、また差動電圧検出素子が検出した差動信号を
増幅する増幅器のあとに接続した狭帯域バンドパスフィ
ルタによって増幅系の信号対雑音比が大幅に改善される
ので微小低周波信号を容易に検出できるのである。
According to the present invention, since it is configured as described above, the common mode high frequency wide band choke coil exhibits a high impedance with respect to the high frequency component output superimposed on the detection signal output to the differential signal output terminals. Therefore, even if a differential probe is brought into contact with the terminals, it does not disturb the test circuit, and it is amplified by a narrow band bandpass filter connected after the amplifier that amplifies the differential signal detected by the differential voltage detection element. Since the signal-to-noise ratio of the system is greatly improved, minute low frequency signals can be easily detected.

【0011】[0011]

【実施例】図1は本発明の第1の実施例のブロック図で
ある。
1 is a block diagram of a first embodiment of the present invention.

【0012】図1において、20は本発明の差動プロー
ブ、21はプローブ先端回路部に用いた入出力巻線間容
量CS が小さく、インダクタンスの大きい高周波広帯域
コモンモードチョークコイル、22は高周波領域まで減
衰特性が一定の広帯域減衰器、23は変調波周波数fL
を通過中心周波数とする狭帯域バンドパスフィルタであ
る。なお、14はFETなどからなる差動電圧検出素
子、15はプリアンプ、16は差動プローブの金属筐
体、17は同軸ケーブルなどの差動プローブ出力ケーブ
ル、18はメインアンプ、19はオシロスコープ或はレ
ベルメータなどの差動出力表示手段である。このような
構成の差動プローブ20の先端を受話器R1・R2 端子
に接触した場合、プローブの各先端とその金属筐体16
との間には広帯域コモンモードチョークコイル21と、
アッテネータ22とが挿入されているため浮遊容量Ct
がきわめて小さく、差動電圧検出素子14のFET入力
部と金属筐体16との間に大きな浮遊容量Cg,Cg′
があっても、受話器R1 ,R2端子に生じているコモン
モードのVH がプローブ側から大地に流れることはな
い。したがって、差動電圧検出素子14の2つのFET
で検出した微小差動電圧VR は、プリアンプ15で増幅
され、フィルタ23によってVL 成分のみが選択された
後ナインアンプ18で増幅され差動出力表示手段19で
表示される。
In FIG. 1, 20 is a differential probe of the present invention, 21 is a high frequency wide band common mode choke coil having a small input / output winding capacitance C S used in the probe tip circuit portion and a large inductance, and 22 is a high frequency region. Is a wideband attenuator with a constant attenuation characteristic up to 23, and the modulation wave frequency f L
Is a narrow bandpass filter having a pass center frequency of. Reference numeral 14 is a differential voltage detecting element including an FET, 15 is a preamplifier, 16 is a differential probe metal housing, 17 is a differential probe output cable such as a coaxial cable, 18 is a main amplifier, 19 is an oscilloscope or It is a differential output display means such as a level meter. When the tip of the differential probe 20 having such a configuration is brought into contact with the handsets R 1 and R 2 terminals, each tip of the probe and its metal housing 16
Between the wide band common mode choke coil 21 and
Since the attenuator 22 is inserted, the stray capacitance C t
Is extremely small, and a large stray capacitance Cg, Cg ′ is provided between the FET input portion of the differential voltage detection element 14 and the metal housing 16.
Even if there is, the common mode V H generated at the handsets R 1 and R 2 does not flow from the probe side to the ground. Therefore, the two FETs of the differential voltage detection element 14 are
The minute differential voltage V R detected in 1 is amplified by the preamplifier 15, and after the V L component is selected by the filter 23, it is amplified by the nine amplifier 18 and displayed by the differential output display means 19.

【0013】ここで図3は図1のバンドパスフィルタ2
3を除去した場合のVR のスペトクラムを示したもので
図3(a)はプリアンプ15の出力部、図3(b)はメ
インアンプ18の出力部のスペクトラムである。雑音可
聴音圧P0 を与えるVR 中のVH やVL 、特にVL は前
述したように微小レベルであり、これがプリアンプ15
で増幅された後も通常は図3(a)のVS で示される計
測器の検知限界レベル以下である。したがって図3
(a)のレベルを更に増幅する必要があり、これをその
まま増幅度Aのメインアンプ18を通すと、図3(b)
に示されるようにVL およびVH のレベルはそれぞれA
L およびAVH となって検知限界レベルVS 以上とな
る。
FIG. 3 shows the bandpass filter 2 of FIG.
3 shows the spectrum of V R when 3 is removed. FIG. 3A shows the spectrum of the output part of the preamplifier 15 and FIG. 3B shows the spectrum of the output part of the main amplifier 18. As described above, V H and V L in V R that give the noise audible sound pressure P 0 , particularly V L, are minute levels, and this is the preamplifier 15.
Even after being amplified by, it is usually below the detection limit level of the measuring instrument shown by V S in FIG. Therefore, FIG.
It is necessary to further amplify the level of (a), and if this is passed through the main amplifier 18 of amplification degree A as it is, FIG.
As shown in, the levels of V L and V H are respectively A
It becomes V L and AV H , which is higher than the detection limit level V S.

【0014】しかし、これらはもともと、メインアンプ
18への入力レベルが小さく、他のノイズ成分を含むた
め、これらの増幅分にメインアンプ18自身の持つホワ
イトノイズの増幅分が加わった出力レベルVA 以下とな
り、レベルVA の中に埋もれた状態になっている。
However, since these originally have a low input level to the main amplifier 18 and include other noise components, the output level V A in which the amplified amount of white noise of the main amplifier 18 itself is added to these amplified components. Below, the state is buried in the level V A.

【0015】このような状態でオシロスコープ等の差動
出力表示手段19に出力信号をそのまま入力してもVL
やVH の検知は困難であり、検知可能とするためにはf
L やfH のみに同調させた選択レベルメータやスペクラ
ムアナライザなど周波数選別機能をもつ大規模で高価な
計測器が必要となるなどの欠点がある。また、これらの
計測器を用いた場合にも、同調周波数の帯域幅等によっ
ては変調周波数fL や搬送周波数fH の検知分解能が不
十分となるという欠点がある。
In such a state, even if the output signal is directly input to the differential output display means 19 such as an oscilloscope, V L
And V detection H is difficult, in order to enable detection f
There are drawbacks such as the need for a large-scale and expensive measuring instrument having a frequency selection function such as a selective level meter or spectrum analyzer tuned only to L or f H. Further, even when these measuring instruments are used, there is a drawback that the detection resolution of the modulation frequency f L and the carrier frequency f H becomes insufficient depending on the bandwidth of the tuning frequency and the like.

【0016】これに対して本発明では、図1に示したよ
うにプリアンプ15の出力をバンドパスフィルタ23を
通した後メインアンプ18に入力している。図2(a)
はこのときのバンドパスフィルタ23の出力部、図2
(b)はメインアンプ18の出力部のスペクトラムであ
り、図3(a)のようにノイズ成分を含むプリアンプ1
5の出力からバンドパスフィルタ23を通して図2
(a)のようにVL 成分のみを抽出し、これをメインア
ンプ15で増幅して図2(b)のようなAVL レベルを
得ており、これを差動出力表示手段19で表示すれば、
選択レベルメータやスペクトラムアナライザなどの大規
模な計測器がなくてもVL を容易に検知することができ
る。
On the other hand, in the present invention, as shown in FIG. 1, the output of the preamplifier 15 is input to the main amplifier 18 after passing through the bandpass filter 23. Figure 2 (a)
Is the output part of the bandpass filter 23 at this time, as shown in FIG.
3B shows the spectrum of the output section of the main amplifier 18, and the preamplifier 1 including the noise component as shown in FIG.
2 through the bandpass filter 23 from the output of FIG.
As shown in (a), only the V L component is extracted and amplified by the main amplifier 15 to obtain an AV L level as shown in FIG. 2B, which can be displayed by the differential output display means 19. If
VL can be easily detected without a large-scale measuring instrument such as a selection level meter or a spectrum analyzer.

【0017】図6は本発明の差動プローブ20の先端に
用いる高周波広帯域コモンモードチョークコイル21の
構成を示す第1の実施例であり、24は高周波領域まで
所定の透磁率を有する方形状の閉磁路コア、25は中央
磁路のl1 部分に疎に捲回した巻線、26は中央磁路の
0 部分に密に捲回した巻線、27は中央磁路のl2
分に疎に捲回した巻線であり、いずれの巻線も2本そろ
えてあるいはそろえた上に撚り線にして各磁路に捲回し
てある。また密に捲回した磁路l0 部分は他の疎に捲回
したl1 ,l2 部分にくらべ長さが短くなっている。こ
のようなチョークコイルでは各巻線25,26,27の
両端間に浮遊容量それぞれC1 ,C0 ,C2 が散在し、
密巻線26を施した磁路l0 部分のC0 は大きな値をも
つが疎巻線を施したl1 ,l2 部分は磁路が長く巻線ピ
ッチも大きいためC1 ,C2 は小さい。したがって、こ
れらが直列接続されるチョークコイル21全体の入出力
巻線間容量は一部に大きなC0 があっても小さく抑えら
れる。したがって、差動プローブ20の入力端子から高
周波のコモンモード電流が侵入しても上記入出力巻線間
容量部分の影響が少なく、高周波域での阻止特性の低下
は少ない。また、コアの一部に集中巻線26が施されて
いるため、低域でのインダクタンスが大きくなり、これ
によって阻止特性が低域側にも拡大し全体として広帯域
特性が実現できる。また受話器端子間電圧VR の計測時
のようなプローブ入力端子間のノーマルモード電流に対
しては2つの線がそろえて、またはそろえた上に撚り線
にしてコアに捲回されているため線間の漏洩インダクタ
ンスが小さく、伝送損失は小さくなる。
FIG. 6 is a first embodiment showing the structure of the high frequency wide band common mode choke coil 21 used at the tip of the differential probe 20 of the present invention. Reference numeral 24 is a square having a predetermined magnetic permeability up to the high frequency region. Closed magnetic circuit core, 25 is a winding wound loosely around the central magnetic path l 1 part, 26 is a winding closely wound around the central magnetic path l 0 part, and 27 is a central magnetic path l 2 part The windings are sparsely wound, and each winding is formed by twisting two windings or by winding them in each magnetic path. Further, the length of the densely wound magnetic path l 0 is shorter than that of the other loosely wound l 1 and l 2 . In such a choke coil, stray capacitances C 1 , C 0 , C 2 are scattered between both ends of each winding 25, 26, 27,
C 0 of the magnetic path l 0 part provided with the dense winding 26 has a large value, but C 1 and C 2 have a large magnetic path and a large winding pitch in the l 1 and l 2 parts provided with the sparse winding. small. Therefore, the capacitance between the input and output windings of the entire choke coil 21 in which they are connected in series can be suppressed to be small even if a large C 0 is present in a part thereof. Therefore, even if a high-frequency common-mode current enters from the input terminals of the differential probe 20, the influence of the capacitance between the input and output windings is small, and the deterioration of the blocking characteristic in the high-frequency region is small. In addition, since the concentrated winding 26 is provided on a part of the core, the inductance in the low frequency band becomes large, whereby the blocking characteristic is expanded to the low frequency band and the wide band characteristic can be realized as a whole. Further, for normal mode current between the probe input terminals such as when measuring the voltage V R between the handset terminals, the two wires are aligned, or aligned and then twisted to form a stranded wire around the core. The leakage inductance between them is small, and the transmission loss is small.

【0018】図7は本発明による差動プローブ20の先
端に用いるコモンモードチョークコイル21の構造を示
す第2の実施例、図8は同第3の実施例であり、いずれ
も図6の集中巻線26部分に第2のコア(補助コア)2
8または28′をあてて、両閉磁路の中央磁路に共通の
集中巻線26を施したものである。このような構造では
コモンモード電流に対して補助コア28または28′に
もインダクタンスが生じるため低域での阻止特性を改善
できる効果がある。なお図8のコア29は図6や図7の
方形状コア24にかえて中央の対向磁路間距離が大きい
菱形コアとしたもので、図示しない楕円形状としても同
様であるが、集中巻線26部分の中央・外部磁路間距離
が拡大されるため巻数を増加させることができ、それだ
け低域での阻止特性を更に改善できる利点がある。
FIG. 7 is a second embodiment showing the structure of the common mode choke coil 21 used at the tip of the differential probe 20 according to the present invention, and FIG. 8 is the third embodiment thereof, both of which are concentrated in FIG. The second core (auxiliary core) 2 in the winding 26 part
8 or 28 'is applied, and a common concentrated winding 26 is applied to the central magnetic paths of both closed magnetic paths. In such a structure, an inductance also occurs in the auxiliary core 28 or 28 'with respect to the common mode current, so that the blocking characteristic in the low frequency region can be improved. The core 29 of FIG. 8 is a rhombic core having a large distance between the opposing magnetic paths in the center instead of the rectangular core 24 of FIGS. 6 and 7. The same applies to an elliptical shape (not shown), but a concentrated winding. The number of turns can be increased because the distance between the center and the external magnetic path of the 26 part is increased, and there is an advantage that the blocking characteristic in the low frequency region can be further improved.

【0019】図9は図6のコモンモードチョークコイル
21の方形状コア24のかわりに部分同軸円筒状のコア
を用いた実施例であり30−1および30−2は円軸状
外部磁路に切欠きのあるコアを長さ方向の中央部で半分
に切断した構成のものであり、あらかじめ中央磁路を挿
入する円筒状ボビン31に前述のような巻線25〜27
を施し、両側からコア30−1,30−2を挿入して固
定するようにしてある。
FIG. 9 shows an embodiment in which a partial coaxial cylindrical core is used in place of the rectangular core 24 of the common mode choke coil 21 of FIG. 6, and 30-1 and 30-2 are circular external magnetic paths. The core having a notch is cut in half at the central portion in the longitudinal direction, and the windings 25 to 27 as described above are provided on the cylindrical bobbin 31 into which the central magnetic path is inserted in advance.
Then, the cores 30-1 and 30-2 are inserted and fixed from both sides.

【0020】以上、高周波のコモンモード電流に対して
は、図6〜図9のようなチョークコイルが有効であるこ
とを述べたが図1に示すように、これらと広帯域アッテ
ネータ22を組合せた構成にすれば更に前記Cgが小さ
くなり阻止特性が改善できることは明らかである。なお
これまでの説明ではいずれのコアに対しても巻線は図6
の25〜27のような密および疎な巻線で構成するよう
説明したが要求される特性によっては疎密の区分をせず
均質に捲回しても本発明の効果がそこなわれないことは
明らかである。
It has been described above that the choke coils as shown in FIGS. 6 to 9 are effective for the high-frequency common mode current. However, as shown in FIG. 1, the choke coils are combined with the wideband attenuator 22. It is obvious that the Cg can be further reduced and the blocking characteristics can be improved if the above is adopted. It should be noted that in the above description, the winding is shown in FIG.
Although it has been described that the windings are composed of dense and sparse windings such as Nos. 25 to 27, it is clear that the effect of the present invention will not be impaired even if the winding is performed uniformly without dividing into sparse and dense sections depending on the required characteristics. Is.

【0021】図10は図4の試験系で、受話器端子R1
・R2 に、図4の従来の差動プローブ13および本発明
の第1の実施例である図1の差動プローブ20を接触し
た前後について、雑音音圧Pの変動量を求めた一例であ
り図10のIは従来プローブ使用時、IIは本発明による
差動プローブ使用時の特性である。図10に示すように
従来プローブ接触時には音圧変動が30dB以上あった
ものが本発明のプローブの場合には、3dB程度に抑え
られており、これによって本発明の改善効果が明らかで
ある。
FIG. 10 shows the test system of FIG. 4 in which the receiver terminal R 1
An example in which the fluctuation amount of the noise sound pressure P is obtained before and after contacting the conventional differential probe 13 of FIG. 4 and the differential probe 20 of FIG. 1, which is the first embodiment of the present invention, with R 2 . Yes In FIG. 10, I is the characteristic when the conventional probe is used, and II is the characteristic when the differential probe according to the present invention is used. As shown in FIG. 10, in the case of the probe of the present invention, the sound pressure variation of 30 dB or more when the conventional probe was in contact was suppressed to about 3 dB, which clearly shows the improving effect of the present invention.

【0022】図11は本発明の差動プローブの第2の実
施例であり、32はノーマルモード電流に対して大きな
インダクタンスをもちコモンモード電流に対してはイン
ダクタンスが小さいノーマルモードチョークコイルであ
る。
FIG. 11 shows a second embodiment of the differential probe of the present invention, and 32 is a normal mode choke coil having a large inductance with respect to the normal mode current and a small inductance with respect to the common mode current.

【0023】図12は図11のコモンモードチョークコ
イル21とノーマルモードチョーク32の構造比較説明
図であって図に示すようにノーマルモードチョークコイ
ル32は、図6に示す閉磁路コア24と同じ形状のコア
24′に巻線25′,26′,27″を捲回したもの
で、その捲線位置はコモンモードチョークコイル21の
巻線25,26,27と同一磁路上に捲回され、2つの
巻線方向が互に逆巻きにしてある。
FIG. 12 is a structural comparison explanatory view of the common mode choke coil 21 and the normal mode choke 32 of FIG. 11, and as shown in the figure, the normal mode choke coil 32 has the same shape as the closed magnetic circuit core 24 shown in FIG. Windings 25 ', 26', 27 "are wound around the core 24 'of the core 24', and the winding position is wound on the same magnetic path as the windings 25, 26, 27 of the common mode choke coil 21. The winding directions are opposite to each other.

【0024】図11に示すように差動電圧検出素子14
の入力側に前記のノーマルモードチョークコイル32を
挿入すると2つのFETの入力線間容量Clが大きい場
合にはプローブ入力端子間に生じる高周波のVR 信号が
Clで短絡され、正しいレベルが計測できないことがあ
るが、このような場合、ノーマルモードチョークコイル
32は、VR によるノーマルモード電流に対しては大き
いインダクタンスとして作用するため、正しいVR を計
測することができる。
As shown in FIG. 11, the differential voltage detecting element 14
When the input side for inserting the normal mode choke coil 32 when the input line capacitance Cl of the two FET is large is shorted V R signal of the high frequency produced between the probe input terminal with Cl, correct level can not be measured it is but, in such a case, the normal mode choke coil 32 is to act as a large inductance with respect to the normal mode current by V R, it is possible to measure the correct V R.

【0025】次に図11のSW1 ,SW2 はバンドパス
フィルタ23を入り切りするスイッチである。スイッチ
SW1 ,SW2 をバンドパスフィルタ側に切替えれば、
図1の出力と同様のVL の波形とレベルの信号が出力さ
れ、このスイッチSW1 ,SW2 を短絡側に切替えれ
ば、VH とVL の重畳された波形とレベルの信号が出力
され、レベルの大きいVH のレベルを検知できる。すな
わち、本スイッチSW1,SW2 の切替えにより、VH
またはVL の波形と出力レベルを区別して検知すること
ができる。
Next, SW 1 and SW 2 in FIG. 11 are switches for turning on / off the bandpass filter 23. By switching the switches SW 1 and SW 2 to the bandpass filter side,
The same V L waveform and level signal as the output of FIG. 1 is output. If these switches SW 1 and SW 2 are switched to the short-circuit side, a V H and V L superimposed waveform and level signal is output. Therefore, the level of V H having a large level can be detected. That is, V H is changed by switching the switches SW 1 and SW 2.
Alternatively, the V L waveform and the output level can be detected separately.

【0026】図13は本発明による差動プローブの第3
の実施例のブロック図である。同図において33は通過
中心周波数がfH の高周波用のバントパスフィルタであ
り、プリアンプ15の出力を2系統に分けそれぞれ低周
波用バンドパスフィルタ23、及び高周波用バンドパス
フィルタ33を通して出力するようにし、メインアンプ
も18−1,18−2それぞれの帯域用を用いたもの
で、これによって2チャンネルの表示手段19を用いれ
ばVL とVH り両波形およびレベルを区別して同時に検
知できる。
FIG. 13 shows a third differential probe according to the present invention.
2 is a block diagram of an embodiment of FIG. In the figure, reference numeral 33 denotes a high frequency band pass filter having a pass center frequency of f H , which divides the output of the preamplifier 15 into two systems and outputs them through the low frequency band pass filter 23 and the high frequency band pass filter 33, respectively. to the main amplifier is also 18-1 and 18-2 which was used for each band, thereby be detected simultaneously by distinguishing the two waveforms and levels Ri V L and V H by using the display means 19 of the two channels.

【0027】図14は本発明の第4の実施例で、図13
に示す第3の実施例の差動プローブの低周波用狭帯域バ
ンドパスフィルタ23′及び高周波用狭帯域バンドパス
フィルタ33′は各通過中心周波数fL ,fH を外部制
御電圧で変化できるようにしたもので、制御端子34−
1および34−2を設けてある。これらの端子へ可変直
流電圧など外部信号を印加することにより、それぞれの
中心通過周波数を変えることができるようにしてあり、
雑音可聴イミュニティ試験で、AM変調波の印加信号の
うち、fH やfL の内、少くとも一方の周波数を変えて
行う場合、これらに同期させた外部信号を各制御端子3
4−1または34−2に印加することにより、差動プロ
ーブの入力信号周波数に同期して各フィルタの通過周波
数が選択されるため、目的とする計測電圧が正しく検知
される。よって、印加信号を掃引させた前記イミュニテ
ィ試験を自動化することも可能となる。
FIG. 14 shows a fourth embodiment of the present invention, which is shown in FIG.
The low-frequency narrowband bandpass filter 23 'and the high-frequency narrowband bandpass filter 33' of the differential probe of the third embodiment shown in FIG. 6 are designed so that the pass center frequencies f L and f H can be changed by an external control voltage. Control terminal 34-
1 and 34-2 are provided. By applying an external signal such as a variable DC voltage to these terminals, the center pass frequency of each can be changed.
In the noise audible immunity test, when the frequency of at least one of f H and f L of the applied signal of the AM modulated wave is changed, an external signal synchronized with these is used for each control terminal 3.
By applying to 4-1 or 34-2, the pass frequency of each filter is selected in synchronization with the input signal frequency of the differential probe, so that the target measured voltage is correctly detected. Therefore, it is possible to automate the immunity test in which the applied signal is swept.

【0028】[0028]

【発明の効果】以上詳細に説明したように、本発明は、
AM変調高周波信号内に音声帯域の微小変調波が含まれ
た重畳信号から、微小変調波信号を分離して検出する差
動プローブの2つの接触端子と差動電圧検出素子との間
にコイルの巻線数を増加しても、入出力巻線間の浮遊容
量が小さく、線間の漏洩インダクタンスも小さい高周波
広帯域コモンモードチョークコイルを挿入するととも
に、プリアンプの出力に微小変調周波のみを通過させる
狭帯域バンドパスフィルタを接続し、所要レベル迄増幅
するようにしたので、差動プローブを被試験機の受話器
端子に接触させても、雑音音圧など負荷系への影響が殆
どなく、適正な微小変調波レベルを検出することができ
るという顕著な効果がある。
As described in detail above, the present invention is
Between the two contact terminals of the differential probe and the differential voltage detecting element, which separate and detect the minute modulated wave signal from the superimposed signal in which the minute modulated wave of the voice band is included in the AM modulated high frequency signal, the coil of the coil is provided. Even if the number of windings is increased, the stray capacitance between the input and output windings is small and the leakage inductance between the wires is small. Since a band-pass filter is connected to amplify to the required level, even if the differential probe is brought into contact with the receiver terminal of the device under test, there is almost no effect on the load system such as noise and sound pressure, and the appropriate minute There is a remarkable effect that the modulated wave level can be detected.

【0029】なお、差動プローブの差動電圧検出素子に
用いる2つのFETなどの素子間の入力インピーダンス
が小さい場合でも、測定点へのプローブ接触により検出
電圧が低下しないので適正な計測が行えるという効果も
期待できる。
Even if the input impedance between the elements such as the two FETs used for the differential voltage detection element of the differential probe is small, the detection voltage does not drop due to the probe contact with the measurement point, so that proper measurement can be performed. You can expect an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例のブロック図である。FIG. 1 is a block diagram of a first embodiment of the present invention.

【図2】本発明の差動プローブを用いたときの検出信号
のスペクトラムの一例の説明図である。
FIG. 2 is an explanatory diagram of an example of a spectrum of a detection signal when the differential probe of the present invention is used.

【図3】従来の差動プローブによる検出信号と搬送周波
数のスペクトラムの一例の説明図である。
FIG. 3 is an explanatory diagram of an example of a spectrum of a detection signal and a carrier frequency by a conventional differential probe.

【図4】雑音可聴イミュニティ特性を評価する試験系の
説明図である。
FIG. 4 is an explanatory diagram of a test system for evaluating a noise audible immunity characteristic.

【図5】(a)試験信号とし用いる振幅V0 のAM変調
波の波形図である。 (b)試験信号V0 を通信線に印加した時に被試験機の
受話器端子R1 ・R2間に生ずる電圧VR の波形図であ
る。
FIG. 5A is a waveform diagram of an AM modulation wave having an amplitude V 0 used as a test signal. (B) is a waveform diagram of the voltage V R generated between the receiver terminals R 1 and R 2 of the device under test when the test signal V 0 is applied to the communication line.

【図6】本発明の差動プローブ入力部に挿入する方形状
コアを用いた高周波広帯域コモンモードチョークコイル
の構造説明図である。
FIG. 6 is a structural explanatory view of a high frequency broadband common mode choke coil using a rectangular core inserted in the differential probe input unit of the present invention.

【図7】本発明の差動プローブ入力部に挿入する方形状
コアと方形状補助コアを用いた高周波広帯域コモンモー
ドチョークコイルの構造説明図である。
FIG. 7 is a structural explanatory view of a high frequency broadband common mode choke coil using a rectangular core and a rectangular auxiliary core to be inserted in the differential probe input unit of the present invention.

【図8】本発明の差動プローブ入力部に挿入する菱形状
コアと方形状補助コアを用いた高周波広帯域コモンモー
ドチョークコイルの構造説明図である。
FIG. 8 is a structural explanatory view of a high frequency broadband common mode choke coil using a rhombus core and a rectangular auxiliary core to be inserted in the differential probe input unit of the present invention.

【図9】本発明の差動プローブ入力部に挿入する部分同
軸円筒状コアを用いた高周波広帯域コモンモードチョー
クコイルの分解構造説明図である。
FIG. 9 is an exploded structural explanatory view of a high frequency broadband common mode choke coil using a partial coaxial cylindrical core inserted into the differential probe input section of the present invention.

【図10】図10の試験系の受話器端子間に差動プロー
ブ接触時の雑音音圧の変動を示す図である。
10 is a diagram showing fluctuations in noise sound pressure when a differential probe is contacted between the receiver terminals of the test system of FIG.

【図11】本発明の第2の実施例のブロック図である。FIG. 11 is a block diagram of a second embodiment of the present invention.

【図12】本発明の差動プローブに挿入するコモンモー
ドとノーマルモードの高周波広帯域のチョークコイルの
構造比較説明図である。
FIG. 12 is a structural comparison explanatory diagram of a common mode and normal mode high frequency broadband choke coil to be inserted in the differential probe of the present invention.

【図13】本発明の第3の実施例のブロック図である。FIG. 13 is a block diagram of a third embodiment of the present invention.

【図14】本発明の第4の実施例のブロック図である。FIG. 14 is a block diagram of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 被試験機器(EUT) 2 擬似大地面 3 絶縁支持台 4 EUTの通信線 5 送受器コード 6 送受器 7 受話口 8 コンデンサマイク 9 音響カプラ 10 レベルメータ 11 擬似手 12 遮音箱 13 従来の差動プローブ 14 差動電圧検出素子 15 プリアンプ 16 金属筐体 17 出力ケーブル 18,18−1,18−2 メインアンプ 19 差動出力表示手段 R1 ,R2 受話器端子 fH 搬送波周波数 fL 変調波周波数 20 本発明の差動プローブ 21 コモンモードチョークコイル 22 高周波広帯域減衰器 23 低周波狭帯域フィルタ 23′ 中心周波数可変狭帯域フィルタ 24,24′ 方形状コア 24,25′ 巻線 26,26′ 巻線 27,27′ 巻線 28,28′ 方形状補助コア 29 菱形状コア 30 部分同軸円筒状コア 31 巻枠 32 ノーマルモードチョークコイル 33 広帯域バンドパスフィルタ 33′ 中心周波数可変バンドパスフィルタ 34−1,34−2 制御端子1 Equipment under test (EUT) 2 Pseudo ground plane 3 Insulated support base 4 Communication line of EUT 5 Handset cord 6 Handset 7 Earpiece 8 Condenser microphone 9 Acoustic coupler 10 Level meter 11 Pseudo hand 12 Sound insulation box 13 Conventional differential Probe 14 Differential voltage detection element 15 Preamplifier 16 Metal housing 17 Output cable 18, 18-1, 18-2 Main amplifier 19 Differential output display means R 1 , R 2 Receiver terminal f H Carrier frequency f L Modulated wave frequency 20 The differential probe 21 of the present invention 21 common mode choke coil 22 high frequency wide band attenuator 23 low frequency narrow band filter 23 'center frequency variable narrow band filter 24, 24' square core 24, 25 'winding 26, 26' winding 27 , 27 'Winding 28, 28' Square auxiliary core 29 Diamond-shaped core 30 Partial coaxial cylindrical core 31 Winding frame 32 normal mode choke coil 33 wideband bandpass filter 33 'center frequency variable bandpass filter 34-1, 34-2 control terminal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 2端子間に生ずる微小信号を検出する差
動プローブにおいて、 該プローブの2つの接触端子に接続された高周波広帯域
コモンモードチョークコイルと、該チョークコイルの出
力端にそれぞれ接続された高周波広帯域減衰器と該減衰
器の出力端に接続された高周波広帯域ノルマルモードチ
ョークコイルと、該チョークコイルの出力端に接続され
た差動電圧検出素子と、該素子からの出力を増幅するプ
リアンプと所定の中心周波数を有するバンドパスフィル
タとからなることを特徴とする高周波重畳微小信号検出
用差動プローブ。
1. A differential probe for detecting a minute signal generated between two terminals, wherein a high frequency wide band common mode choke coil connected to two contact terminals of the probe and an output terminal of the choke coil are respectively connected. A high frequency broadband attenuator, a high frequency broadband normal mode choke coil connected to the output end of the attenuator, a differential voltage detection element connected to the output end of the choke coil, and a preamplifier for amplifying the output from the element A differential probe for detecting high-frequency superimposed minute signals, which comprises a bandpass filter having a predetermined center frequency.
【請求項2】 前記高周波広帯域コモンモードチョーク
コイルは、高周波領域まで所定の実効透磁率を有する所
定の形状の閉磁路コアの長辺方向の磁路の一端から他端
へ一対の入出力巻線をそろえて同方向に捲回し、前記高
周波広帯域ノーマルモードチョークコイルは前記閉磁路
コアの前記磁路に一対の入出力巻線を互に逆方向に捲回
してなることを特徴とする請求項1記載の高周波重畳微
小信号検出用差動プローブ。
2. The high frequency wide band common mode choke coil comprises a pair of input and output windings from one end to the other end of a magnetic path in a long side direction of a closed magnetic circuit core having a predetermined shape having a predetermined effective magnetic permeability up to a high frequency region. 2. The high-frequency broadband normal-mode choke coil is formed by winding a pair of input and output windings in opposite directions in the magnetic path of the closed magnetic circuit core. A differential probe for detecting a high-frequency superposed minute signal described.
【請求項3】 請求項2記載のチョークコイルの巻線は
前記閉磁路コアの長辺方向の磁路上の捲線範囲を所定の
幅で3分割し、中央は密に捲回し、両側は疎に捲回して
前記コモンモードおよびノーマルモードチョークコイル
を形成してなることを特徴とする高周波重畳微小信号検
出用差動プローブ。
3. The winding of the choke coil according to claim 2, wherein the winding range on the magnetic path in the long side direction of the closed magnetic circuit core is divided into three with a predetermined width, the center is densely wound, and both sides are sparsely wound. A differential probe for detecting a high-frequency superimposed minute signal, which is formed by winding the common mode and normal mode choke coils.
JP17357893A 1993-06-22 1993-06-22 High frequency superimposed small signal detection differential probe Expired - Lifetime JP3165561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17357893A JP3165561B2 (en) 1993-06-22 1993-06-22 High frequency superimposed small signal detection differential probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17357893A JP3165561B2 (en) 1993-06-22 1993-06-22 High frequency superimposed small signal detection differential probe

Publications (2)

Publication Number Publication Date
JPH0712871A true JPH0712871A (en) 1995-01-17
JP3165561B2 JP3165561B2 (en) 2001-05-14

Family

ID=15963173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17357893A Expired - Lifetime JP3165561B2 (en) 1993-06-22 1993-06-22 High frequency superimposed small signal detection differential probe

Country Status (1)

Country Link
JP (1) JP3165561B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544250A (en) * 2005-06-13 2008-12-04 カスケード マイクロテック インコーポレイテッド Wideband active / passive differential signal probe
US10267848B2 (en) 2008-11-21 2019-04-23 Formfactor Beaverton, Inc. Method of electrically contacting a bond pad of a device under test with a probe
WO2022162924A1 (en) * 2021-02-01 2022-08-04 三菱電機株式会社 Sensor circuit and electronic device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149410B2 (en) 2012-12-18 2015-10-06 Absolutely Fitness, LLC Roller barre

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544250A (en) * 2005-06-13 2008-12-04 カスケード マイクロテック インコーポレイテッド Wideband active / passive differential signal probe
US10267848B2 (en) 2008-11-21 2019-04-23 Formfactor Beaverton, Inc. Method of electrically contacting a bond pad of a device under test with a probe
WO2022162924A1 (en) * 2021-02-01 2022-08-04 三菱電機株式会社 Sensor circuit and electronic device
JPWO2022162924A1 (en) * 2021-02-01 2022-08-04
DE112021006202T5 (en) 2021-02-01 2023-09-14 Mitsubishi Electric Corporation Sensor circuit and electronic device

Also Published As

Publication number Publication date
JP3165561B2 (en) 2001-05-14

Similar Documents

Publication Publication Date Title
US3882287A (en) Method and apparatus for detecting faults and locating conductors in multi-conductor cables
KR100812291B1 (en) Insulation degradation diagnosis apparatus
US4006410A (en) Corona discharge detection system for detecting the presence of any corona discharge in an electrical system
KR102038136B1 (en) System for detecting partial discharge of switchgear using acoustic emission sensor of optical fiber
US5818243A (en) Impedance meter
JP3165561B2 (en) High frequency superimposed small signal detection differential probe
KR20150082335A (en) High performance sensor for partial discharge signal-analyzing systems
JP2010008309A (en) Partial discharge measurement device
US5703481A (en) Apparatus for detecting digital carrier signals on telephone cables
JP3112214B2 (en) Noise audible immunity evaluation tester
JP2000304794A (en) Conduction immunity testing device
JPS6140571A (en) Partial dischrge measurement of hot cable
JP3087969B2 (en) Partial discharge measurement method
JP3196627B2 (en) Partial discharge detection method
JP3075322B2 (en) High frequency unbalanced characteristic evaluation tester
JPH07113822A (en) Probe for measuring floating
CN214845577U (en) High-potential partial discharge detection device and system for GIS and cable equipment
CN116599470A (en) Front-end circuit of high internal resistance parametric array difference frequency channel
JPS61173175A (en) Partial discharge monitor device for high-voltage apparatus
Hofer Measuring switch-mode power amplifiers
JP2514998B2 (en) Signal discriminator
CN105929313A (en) Hollow coil sensor for high-voltage equipment partial discharge measurement
JP2002347621A (en) Train control signal receiver
SU883815A1 (en) Vibration magnetometer receiving device
JP2001324536A (en) Partial discharge measuring method for power cable line

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090302

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 12

EXPY Cancellation because of completion of term