JPH07128229A - Method and device for measuring organic solvent gas concentration, and dry cleaning machine - Google Patents

Method and device for measuring organic solvent gas concentration, and dry cleaning machine

Info

Publication number
JPH07128229A
JPH07128229A JP27551793A JP27551793A JPH07128229A JP H07128229 A JPH07128229 A JP H07128229A JP 27551793 A JP27551793 A JP 27551793A JP 27551793 A JP27551793 A JP 27551793A JP H07128229 A JPH07128229 A JP H07128229A
Authority
JP
Japan
Prior art keywords
gas
organic solvent
light
gas concentration
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27551793A
Other languages
Japanese (ja)
Inventor
Toyoichi Uchida
豊一 内田
Noriaki Matsumura
憲明 松村
Toshio Hattori
敏夫 服部
Haruo Hagiwara
春雄 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17556575&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH07128229(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27551793A priority Critical patent/JPH07128229A/en
Publication of JPH07128229A publication Critical patent/JPH07128229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To provide an organic solvent gas concentration measuring device capable of measuring an organic solvent gas concentration with high responsiveness at low cost. CONSTITUTION:An organic solvent gas concentration measuring device has a projecting means 110 for emitting a wavelength light of ultraviolet ray area, a light receiving means 120 for receiving the light from the projecting means 11, a gas introducing means 130 having a gas passage 131 in the optical path 140 of the light receiving means 120, and a concentration arithmetic control (signal processing circuit) means 150 based on the known absorptive characteristic to a gas to be inspected, and the concentration of the gas to be inspected is measured by the concentration arithmetic control means 150. As the projecting means 110, a one suppressed in ozone generation is used, and heat insulating means for preventing the dewing in a sensing internal part are provided on the projecting means 110, the light receiving means 120, and the outer circumference of the gas passage 131.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば1.1.1.ト
リクロロエタン、トリクロロエチレン、パークロロエチ
レン、ターペン(石油系)等の有機溶剤を使用する各種
洗浄機器に使用される有機溶剤のガス濃度を監視するの
に好適な有機溶剤ガス濃度測定方法及び装置並びにドラ
イクリーニング機械に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to, for example, 1.1.1. Organic solvent gas concentration measuring method and device suitable for monitoring gas concentration of organic solvent used in various cleaning equipment using organic solvent such as trichloroethane, trichloroethylene, perchlorethylene, terpene (petroleum-based), and dry cleaning It is about machines.

【0002】[0002]

【従来の技術】[Prior art]

(1)ガス濃度測定 従来、有機溶剤のガス濃度を計測する方法としては赤外
吸光度式ガス濃度センサや半導体式ガス濃度センサが一
般的であり、広く利用されてきている。通常ガス濃度計
測においては、物質(気体、液体、固対すべて)が分子
内の原子の結合により特定の波長で光を吸収をする事を
利用して行っている。紫外光域における吸収は電子エネ
ルギーの変化に起因する吸収であることが多く、紫外吸
収スペクトルを調べることにより不飽和結合、共役系の
結合を持つものの分析に利用されている。また赤外光域
における吸収は分子内の原子振動により生じ、 2.5〜25
μmの範囲に現れる。赤外吸収スペクトルを調べること
により官能基の定性分析や化合物の同定に利用されてい
る。
(1) Gas Concentration Measurement In the past, as a method for measuring the gas concentration of an organic solvent, an infrared absorption type gas concentration sensor and a semiconductor type gas concentration sensor have been generally used and widely used. Normally, gas concentration measurement is performed by utilizing the fact that substances (gas, liquid, solid) all absorb light at a specific wavelength due to the bonding of atoms in the molecule. Absorption in the ultraviolet region is often due to changes in electron energy, and is used for analysis of those having unsaturated bonds or conjugated bonds by examining the ultraviolet absorption spectrum. Also, absorption in the infrared region occurs due to atomic vibrations in the molecule,
Appears in the μm range. It is used for qualitative analysis of functional groups and identification of compounds by investigating infrared absorption spectra.

【0003】ガス濃度計測ではこの性質を利用して、対
象のガスの吸光特性にあわせた単波長だけの光が分光器
(光学バンドパスフィルタ(BPF)や回析格子等)により
選択して照射するか、干渉系を通した光を照射して、そ
の吸収量を計測している。紫外光域においても赤外光域
においても、光の吸収がランバート・ビア(Lambart-be
er) の法則に従う事を利用してガス濃度を求めている。
対象ガスの濃度を精度良く計測する為には、共存ガス、
特に大気中の窒素や酸素、炭酸ガス、水蒸気等による吸
収が少なく、対象のガスだけに吸収される波長を用いて
吸光度計測を行う必要がある。またパークロロエチレン
の紫外光域から赤外光域までの透過率スペクトル特性を
図3に示す。これから確認できる様にパークロロエチレ
ンはC-CL,C=Cによる吸収が紫外光域においては0.35μm
以下、赤外光域においては10.6〜13.5μmに現れてお
り、パークロロエチレンの定量分析を行う場合一般に赤
外光域の吸収波長が選ばれる。
Utilizing this property in gas concentration measurement, light of only a single wavelength that matches the absorption characteristics of the target gas is selected by a spectroscope (optical bandpass filter (BPF), diffraction grating, etc.) and irradiated. Or, the amount of absorption is measured by irradiating light through an interference system. Lambert-be absorption of light in both the ultraviolet and infrared regions
er) 's law is used to obtain the gas concentration.
In order to accurately measure the concentration of the target gas, coexisting gas,
In particular, absorption by nitrogen, oxygen, carbon dioxide, water vapor, etc. in the atmosphere is small, and it is necessary to measure the absorbance using a wavelength that is absorbed only by the target gas. Further, FIG. 3 shows the transmittance spectral characteristics of perchlorethylene from the ultraviolet light region to the infrared light region. As can be seen, the absorption of perchlorethylene by C-CL and C = C is 0.35 μm in the ultraviolet region.
In the following, it appears in the infrared light range of 10.6 to 13.5 μm, and when performing quantitative analysis of perchlorethylene, the absorption wavelength in the infrared light range is generally selected.

【0004】(2)ドライクリーニング機械 従来の各種の有機溶剤を用いた洗浄・乾燥方法を図10
に示すドライクリーナのシステム図を用いて概説する。
先ずドア1から衣料2を投入し、ドア1を閉じて運転を
開始すると、一般には次の順序で工程が進行する。 (1) 溶剤タンク3から溶剤4をバルブ5を介してポンプ
6で汲揚げ、バルブ7、フィルタ8から成る経路、又は
バルブ9から成る経路によって処理槽10に溶剤4を必
要量送り込む。 (2) 処理ドラム11をゆっくり回し、溶剤4を処理槽1
0、ボタントラップ12、バルブ13、ポンプ6、バル
ブ7、フィルタ8、又はバルブ9から成る経路で循環し
て衣料2を洗浄する。 (3) 処理槽10、ボタントラップ12、バルブ13、ポ
ンプ6、バルブ14、蒸留器15の経路で排液し、続い
て処理ドラム11が高速回転して衣料2中の溶剤4を遠
心分離し、同様に排液する。 (4) 前記 (1)項、 (2)項の工程を繰り返す。
(2) Dry cleaning machine FIG. 10 shows a conventional cleaning and drying method using various organic solvents.
An outline is given using the system diagram of the dry cleaner shown in.
First, when the clothes 2 are put in through the door 1 and the door 1 is closed and the operation is started, the steps generally proceed in the following order. (1) The solvent 4 is pumped up from the solvent tank 3 via the valve 5 by the pump 6, and the required amount of the solvent 4 is sent to the processing tank 10 through the path including the valve 7 and the filter 8 or the path including the valve 9. (2) Slowly rotate the processing drum 11 to add the solvent 4 to the processing tank 1
0, the button trap 12, the valve 13, the pump 6, the valve 7, the filter 8, or the valve 9 is circulated to wash the clothes 2. (3) The treatment tank 10, the button trap 12, the valve 13, the pump 6, the valve 14, and the distiller 15 are drained through the path, and then the treatment drum 11 is rotated at a high speed to centrifuge the solvent 4 in the clothing 2. , Drain similarly. (4) The steps of (1) and (2) above are repeated.

【0005】(5) 処理槽10、ボタントラップ12、バ
ルブ13、バルブ5の経路で溶剤タンク3に排液し、続
いて処理ドラム11が高速回転して衣料2中の溶剤4を
遠心分離し、排液する。 (6) 再び処理ドラム11をゆっくり回し、ファン16、
エアクーラ17、エアヒータ18から成るリカバリエア
ダクト19と、処理槽10の間を矢印20の向きでエア
を循環し、衣料2を乾燥する。衣料2から蒸発した溶剤
ガスは、エアクーラ17で凝縮し、回収経路21を経て
水分離器22に入り、溶剤配管23を通ってクリンタン
ク24に入る。 (7) 乾燥が終了すると、ダンパ25,26が破線の如く
開き、ダンパ25から新鮮な空気を取り入れて、ダンパ
26からエアクーラ17では回収できない未凝縮溶剤ガ
スを排気し、衣料2中の溶剤臭を脱臭する。 (8) 前記 (3)項の工程で蒸留器15に入った溶剤4は蒸
発してコンデンサ27で凝縮回収され、水分離器22、
溶剤配管23を通ってクリンタンク24に入り、オーバ
ーフロー付仕切板28から、溶剤タンク3に戻る。な
お、水分離器22で分離した水は水配管29によって系
外へ排出する。 以上説明した工程の進行状況を、溶剤毎に時間経過とと
もに示した1例を図11に示す。
(5) The treatment tank 10, the button trap 12, the valve 13 and the valve 5 are used to drain the solvent into the solvent tank 3, and then the treatment drum 11 is rotated at a high speed to centrifuge the solvent 4 in the garment 2. , Drain. (6) Slowly rotate the processing drum 11 again, the fan 16,
Air is circulated in the direction of arrow 20 between the recovery air duct 19 including the air cooler 17 and the air heater 18 and the processing tank 10 to dry the clothing 2. The solvent gas evaporated from the clothes 2 is condensed by the air cooler 17, enters the water separator 22 through the recovery path 21, and enters the clean tank 24 through the solvent pipe 23. (7) When the drying is completed, the dampers 25 and 26 open as shown by the broken line, fresh air is taken in from the damper 25, and the uncondensed solvent gas that cannot be collected by the air cooler 17 is exhausted from the damper 26, and the odor of the solvent in the clothing 2 Deodorize. (8) The solvent 4 that has entered the distiller 15 in the step (3) is evaporated and condensed and collected by the condenser 27, and the water separator 22,
The solvent enters the clean tank 24 through the solvent pipe 23 and returns from the partition plate 28 with overflow to the solvent tank 3. The water separated by the water separator 22 is discharged to the outside of the system through the water pipe 29. FIG. 11 shows an example in which the progress of the steps described above is shown for each solvent as time passes.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記し
たガス濃度計測及びドライクリーニング機械では次のよ
うな問題点があった。 (1)ガス濃度計測 (a) パークロロエチレンの定量分析を赤外光域(10.6〜
13.5μm)で行う場合、赤外光源であるニクロム光源や
セラミックヒータの10.6〜13.5μmの波長帯の光は弱い
為、受光器であるPbS や MCT、サーモパイル、焦電素子
等の感度を上げる為にチョッパにより断続光を照射して
分解能を上げている。しかしこの方法では、実用上数十
ppm 程度までしか計測できない。しかもこの10.6〜13.5
μmの波長帯を透過させる光学窓材は非常に高価であ
り、BPF を製作する為に用いる蒸着する膜材料も高価で
ある。また半導体式ガス濃度センサを用いてパークロロ
エチレンを計測する場合、応答時間が数分と遅く、精度
も±10%〜±20%程度と良くない。更に短期間の内
に何度も高濃度ガスに被毒するとセンサが劣化し、更に
特性が悪くなる(図6,図7)。 (b) 紫外光域のBPF は赤外光域に比べてコスト的には比
較的安価であるが、波長選択幅(半値幅)は3〜5%程
度の幅を持っており、この幅がピーク波長でない波長で
吸光度計測を行う場合には誤差要因となる。 (c) 紫外光光源に低圧水銀灯を用いた場合、水銀の発光
スペクトル(図4)によって決まるので、検出光波長は
任意に選ぶ事ができない。 (d) 吸光計測によりガス濃度を計測する場合、ガラスが
汚れ計測誤差を招く虞れがある。 (e) 紫外光源に低圧水銀灯を用いた場合、周囲温度によ
りその発光強度が変化する(図5)。
However, the above-mentioned gas concentration measuring and dry cleaning machine has the following problems. (1) Gas concentration measurement (a) Quantitative analysis of perchlorethylene was carried out in the infrared region (10.6 ~
13.5 μm), the light in the wavelength band of 10.6 to 13.5 μm of the nichrome light source that is an infrared light source and the ceramic heater is weak, so to increase the sensitivity of PbS, MCT, thermopile, pyroelectric element, etc. that are light receivers. The chopper irradiates intermittent light to improve the resolution. However, with this method
It can measure only up to ppm. Moreover, this 10.6-13.5
The optical window material that transmits the wavelength band of μm is very expensive, and the film material for vapor deposition used for manufacturing BPF is also expensive. In addition, when perchlorethylene is measured using a semiconductor gas concentration sensor, the response time is only a few minutes, and the accuracy is not good, about ± 10% to ± 20%. Further, if the high-concentration gas is poisoned many times within a short period of time, the sensor deteriorates and the characteristics further deteriorate (FIGS. 6 and 7). (b) Although the BPF in the ultraviolet light region is relatively inexpensive compared to the infrared light region, the wavelength selection width (half-value width) has a width of about 3 to 5%. When measuring the absorbance at a wavelength other than the peak wavelength, it causes an error. (c) When a low-pressure mercury lamp is used as the ultraviolet light source, the wavelength of detected light cannot be arbitrarily selected because it is determined by the emission spectrum of mercury (Fig. 4). (d) When the gas concentration is measured by absorption measurement, the glass may cause an error in measuring the contamination. (e) When a low-pressure mercury lamp is used as the ultraviolet light source, its emission intensity changes depending on the ambient temperature (Fig. 5).

【0007】(2)ドライクリーニング機械 (f) ドライクリーニング機械や金属洗浄機、ドライクリ
ーニング後の衣類等からサンプリングしてくるガスは温
度や湿度が高くセンシング部内で結露やガスの付着する
虞れがあり、これが誤動作誤差要因になる虞れがあっ
た。 (g) ドライクリーナの乾燥工程終了時はパークロロエチ
レンのガス濃度は約20000ppmであり、脱臭工程終了の検
知タイミングでは5000ppm から100ppmに2〜3分で到達
する。この様な濃度変化の大きいガス濃度計測はこれま
で正確には判断出来ておらず、安全側(長めに)にセッ
トされたシーケンス制御により乾燥工程が行われてい
た。しかも乾燥・脱臭工程は一定時間運転である為、乾
燥・脱臭不足による高濃度パークロロエチレンガスを排
出する虞れがあった。 (h) 排気口濃度及び作業場環境度は50ppm に規制されて
いるので、ドライクリーナの排気口に至るまでは通常パ
ークロロエチレンを活性炭で吸着し、基準値以下の濃度
にしてパークロロエチレンガスを外に放出しているが、
現状では定期的にガス検知管でそのガス濃度をチェック
している。しかし運転中のガス濃度の変動や突然の異
常、或いは活性炭が目詰りして排気口から濃いガスが放
出されてもすぐには検知出来ない等の不具合があった。 (i) 衣料によっては、ドライクリーニング後に取り出し
た時、乾燥不足や脱臭不足によって多量のパークロロエ
チレンを含んでいる場合がある。この取り出した衣料中
に含まれるパークロロエチレンのガス濃度をチェックす
ることは、ドライクリーナの運転状態を判断するのに重
要である。 以上の理由から従来は、安価で精度良く計測出来るセン
サが少なく、従って有機溶剤ガス濃度装置が余り普及し
ていなかった。そこで本発明は、有機溶剤のガス濃度を
高応答で、かつ安価に計測できる有機ガス濃度計測装置
を提供すると共に、更にそれを用いたドライクリーニン
グ機械を提供し、前記従来の問題を解決しようとするも
のである。
(2) Dry cleaning machine (f) Gas sampled from a dry cleaning machine, a metal cleaning machine, clothes after dry cleaning, etc. has a high temperature and humidity, and there is a possibility that dew condensation or gas may adhere in the sensing section. There is a possibility that this may cause a malfunction error. (g) At the end of the dry cleaner drying process, the gas concentration of perchlorethylene is about 20000 ppm, and the detection timing of the completion of the deodorizing process reaches from 5000 ppm to 100 ppm in a few minutes. It has not been possible to accurately determine the gas concentration measurement with such a large concentration change, and the drying process is performed by the sequence control set on the safe side (longer). Moreover, since the drying / deodorizing process is operated for a certain period of time, there is a risk of discharging high-concentration perchlorethylene gas due to insufficient drying / deodorizing. (h) Since the exhaust port concentration and workplace environment level are regulated to 50 ppm, perchlorethylene is usually adsorbed with activated carbon until the dry cleaner exhaust port is reached, and the perchlorethylene gas is adjusted to a concentration below the standard value. It is released outside,
At present, the gas concentration is regularly checked with a gas detector tube. However, there were problems such as fluctuations in gas concentration during operation, sudden abnormalities, or even if activated carbon was clogged and a rich gas was discharged from the exhaust port, it could not be detected immediately. (i) Some clothes may contain a large amount of perchlorethylene due to insufficient drying or insufficient deodorization when taken out after dry cleaning. It is important to check the gas concentration of perchlorethylene contained in the taken out clothing in order to judge the operating condition of the dry cleaner. For the above reasons, conventionally, there are few sensors that are inexpensive and can be accurately measured, and therefore, organic solvent gas concentration devices have not been widely used. Therefore, the present invention provides an organic gas concentration measuring device capable of measuring the gas concentration of an organic solvent with high response and at low cost, and further provides a dry cleaning machine using the same to solve the conventional problems. To do.

【0008】[0008]

【課題を解決するための手段】このため本発明は、検査
対象ガスに、紫外光域の波長よりなる検査光を照射する
とともに、検査対象ガスに対する検査光の発光強度と透
過光強度を測定して、予め測定した検査対象ガスに対す
る濃度と検査光のガス吸収特性に基づき、検査対象ガス
の濃度を測定するようにしたものであり、また紫外光域
の波長光を照射する投光手段と、同投光手段からの光を
受光する受光手段と、同投光手段と受光手段の光路内に
ガス流路部を有するガス導入手段と、検査対象ガスに対
する既知の吸光特性に基づく濃度演算制御(信号処理回
路)手段を具備し、ガス流路に導入される検査対象ガス
濃度を測定するようにしたものであり、更に前記ガス濃
度装置を備えたドライクリーニング機械としてなるもの
で、これらを課題解決のための手段とするものである。
Therefore, according to the present invention, the gas to be inspected is irradiated with the inspection light having a wavelength in the ultraviolet region, and the emission intensity and transmitted light intensity of the inspection light to the inspection gas are measured. Based on the gas absorption characteristics of the inspection light and the concentration of the inspection target gas measured in advance, the concentration of the inspection target gas is measured, and a light projecting means for irradiating the wavelength light in the ultraviolet light range, Light receiving means for receiving the light from the light projecting means, gas introducing means having a gas flow path portion in the optical path of the light projecting means and the light receiving means, and concentration calculation control based on a known light absorption characteristic for the gas to be inspected ( Signal processing circuit) means for measuring the concentration of the gas to be inspected introduced into the gas flow channel, and further as a dry cleaning machine equipped with the gas concentration device. It is an unit for determine.

【0009】[0009]

【作用】本発明では、ガス濃度計測装置の光源にはオゾ
ンレス低圧水銀灯を用いてBPFを省略し、ローコスト化
を図っており、受光器にはフォトダイオード〔光電子増
倍管(フォトマルチプライヤー)でも可〕を用いて、感
度及び分解能、応答性を高めている。光学窓材には溶融
石英を用いてローコスト化を図っている。また蛍光体付
き低圧水銀灯を用いた場合、蛍光体により低圧水銀灯の
発光波長 254μmを他の波長に変換する事ができる。更
に発光波長によってはBK7やクラウンガラス等のローコ
ストな光学窓材を用いる事が可能であり、機器構成を大
きく変更せず対処できる。センシング部全体を50℃に
保温する事により、光源の発光強度の安定を図り、セン
シング部内に水蒸気の付着を抑え、かつセンシングサイ
クルに合わせて、センシングしない時は外気をセンサ内
に入れセンサ内に付着したガスや水蒸気を洗浄する時間
を早める効果がある。
In the present invention, an ozone-less low-pressure mercury lamp is used as the light source of the gas concentration measuring device, and the BPF is omitted to achieve cost reduction. A photodiode (photomultiplier tube (photomultiplier)) is used as the light receiver. Yes] is used to increase sensitivity, resolution, and responsiveness. Fused quartz is used as the optical window material to reduce the cost. When a low-pressure mercury lamp with a phosphor is used, the emission wavelength 254 μm of the low-pressure mercury lamp can be converted to another wavelength by the phosphor. Furthermore, depending on the emission wavelength, it is possible to use a low-cost optical window material such as BK7 or crown glass, which can be dealt with without making a large change in the device configuration. By keeping the temperature of the entire sensing unit at 50 ° C, the emission intensity of the light source is stabilized, the adhesion of water vapor inside the sensing unit is suppressed, and according to the sensing cycle, outside air is put into the sensor when it is not sensed This has the effect of accelerating the time for cleaning the adhered gas and water vapor.

【0010】[0010]

【実施例】以下本発明を図面の実施例について説明す
る。先ず有機溶剤ガス濃度計測装置について説明する。
ガス濃度計測装置の検出部100は図1に示す様に、投
光手段110、受光手段120、ガス導入手段130よ
り成る。なお、前記受光手段120は、受光器120
a,120b,120cを総称している。投光手段11
0は、光源111としてオゾンレス低圧水銀灯を用いて
いる(これは低圧水銀灯のガラス部にバイコールガラス
を用いて185nm の光の反射を抑えてある水銀灯のことで
ある)。受光手段120には光源の発光強度を参照する
為に参照用の受光器120cが設置してある。これは一
光路式で使う場合に用いる。低圧水銀灯111の光をガ
ス流路131の腕部134,135及び底部136に入
射する為に2つの窓113a,113bが設けてあり、
窓には溶融石英ガラスを用いたフィルタ112a,11
2bを設け、コストと185nm の光を抑えてある。ガス流
路131はU字形の流路をしており、窓112aから出
た光は光路長L 1 (140a)の間隔をおいて受光器1
20aで受光され、同様に窓112bから出た光は光路
長L2 (140b)の間隔をおいて受光器120bで受
光される。そしてこの投光手段110,受光手段12
0、ガス流路部131の全体は、図2に示す如くヒータ
ー161によって巻かれており、温度調節器162によ
って温度調節されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments of the drawings.
It First, the organic solvent gas concentration measuring device will be described.
As shown in FIG. 1, the detection unit 100 of the gas concentration measuring device is arranged as follows.
The light means 110, the light receiving means 120, and the gas introducing means 130
Consists of In addition, the light receiving means 120 is a light receiver 120.
a, 120b, 120c are collectively referred to. Projecting means 11
0 uses an ozoneless low-pressure mercury lamp as the light source 111
(This is Vycor glass in the glass part of the low pressure mercury lamp.
Is a mercury lamp that suppresses the reflection of 185 nm light using
is there). The light receiving means 120 refers to the light emission intensity of the light source.
Therefore, a reference light receiver 120c is installed. This is one
Used when using the optical path type. The light from the low-pressure mercury lamp 111 is
Enter into the arm portions 134 and 135 and the bottom portion 136 of the flow passage 131.
There are two windows 113a and 113b for shooting,
Filters 112a and 11 using fused silica glass for the windows
2b is provided to reduce the cost and the light of 185nm. Gas flow
The path 131 has a U-shaped flow path, and is output from the window 112a.
The light path length L 1Light receiver 1 with an interval of (140a)
The light received by 20a and similarly emitted from the window 112b is in the optical path.
Long L2The light receiver 120b receives the light at an interval of (140b).
Be illuminated. Then, the light projecting means 110 and the light receiving means 12
0, the entire gas flow path 131 is a heater as shown in FIG.
-161 and wound by the temperature controller 162.
The temperature is regulated.

【0011】次にガス濃度計測装置200の構成を図2
に示すと、同装置はガスと外気(清浄空気)とを切り換
える3方弁201、吸い込み空気から埃や水滴等を除去
する為のメンブレンテフロンメッシュフィルタ204、
センシング部全体を保温するヒータ161及びヒータ内
温度の温度調整を行う温度調節手段162からなる保温
手段160、受光器120a,120b,120cから
の電流を電圧に変換するプリアンプ部151、この信号
をデジタル変換するA/Dコンバータ部152、ガスを
吸引する為のサンプリングポンプ202、吸い込み空気
流量を調整するフローメータ付きレギュレータ203、
A/Dコンバータ部152からの光信号を取り込み濃度
を演算する回路153aと、3方弁201を切り換え制
御する制御回路153bより成る信号処理回路153か
ら構成される。前記プリアンプ部151、A/Dコンバ
ータ部152、信号処理回路153により濃度演算制御
手段150を構成している。さて前処理として全ての電
源を投入し、サンプリングポンプ202を運転させ、温
度調節器162に対して所定の温度を設定し、温度が安
定するまで待つ(光源その他のもののウォームアップ時
間を考慮し約30分程度待つ)。ここでは、センシング
部内部での結露防止の為、センシング部全体をドライク
リーニング機械処理槽内部のガス温度とほぼ同じ約50
℃とする。フローメータ付きレギュレータ203で吸い
込み空気流量を所定の流量に調整する。この時3方弁2
01は外気側にする。
Next, the structure of the gas concentration measuring device 200 is shown in FIG.
3, the device is a three-way valve 201 for switching between gas and outside air (clean air), a membrane Teflon mesh filter 204 for removing dust, water droplets, etc. from the sucked air,
A heater 161 that keeps the temperature of the entire sensing unit and a temperature keeping unit 160 that adjusts the temperature inside the heater, a preamplifier unit 151 that converts the current from the light receivers 120a, 120b, and 120c into a voltage, and this signal is digital. An A / D converter unit 152 for conversion, a sampling pump 202 for sucking gas, a regulator 203 with a flow meter for adjusting the intake air flow rate,
The signal processing circuit 153 is composed of a circuit 153a that takes in an optical signal from the A / D converter unit 152 and calculates the density, and a control circuit 153b that controls switching of the three-way valve 201. The preamplifier section 151, the A / D converter section 152, and the signal processing circuit 153 constitute the density calculation control means 150. Now, as a pretreatment, all the power supplies are turned on, the sampling pump 202 is operated, a predetermined temperature is set for the temperature controller 162, and the temperature is stabilized (the warm-up time of the light source and others is taken into consideration. Wait about 30 minutes). Here, in order to prevent dew condensation inside the sensing unit, the entire sensing unit is set to about 50%, which is almost the same as the gas temperature inside the dry cleaning machine processing tank.
℃. The regulator 203 with a flow meter adjusts the intake air flow rate to a predetermined flow rate. 3 way valve 2 at this time
01 is on the outside air side.

【0012】次に検出ルーチンについて説明すると、ガ
ス濃度を検出しない時は外気を吸い込める様に3方弁2
01を切り換え、ガス導入手段130に外気を導入す
る。機械の運転サイクルに合わせてガス検出タイミング
に3方弁201を機械側に切り換える。ガスはU字状流
路131内に運ばれ、この時光路長L1 により吸光され
た光量を受光器120aにて計測し、光路長L2 により
吸光された光量を受光器120bにて計測する。これら
の信号はプリアンプ部151で電圧変換され、A/Dコ
ンバータ部152にてデジタル化された後、信号処理回
路153に取り込まれる。
Next, the detection routine will be explained. When the gas concentration is not detected, the three-way valve 2 is used so that the outside air can be sucked in.
01 is switched to introduce the outside air into the gas introducing means 130. The three-way valve 201 is switched to the machine side at the gas detection timing according to the machine operation cycle. The gas is carried into the U-shaped flow path 131, at which time the amount of light absorbed by the optical path length L 1 is measured by the light receiver 120a, and the amount of light absorbed by the optical path length L 2 is measured by the light receiver 120b. . These signals are subjected to voltage conversion by the preamplifier section 151, digitized by the A / D converter section 152, and then taken into the signal processing circuit 153.

【0013】ここで計測値の高精度化を図る為の2光路
方式を利用したガス濃度計測方法を説明する。この計測
では2つの異なる光路長を用いて吸光度計測する事によ
り計測値を補正する。 なお、a:ガスの吸光計数(1/ppm/mm) C:ガス濃度(ppm) K11,K12:光路1,光路2における光源や光学系、汚
れによって決まる定数 L1,2 :光路1,光路2の光路長(L2 >L1 ) I1,2 :光路1,光路2の光路を通った後の光の強度 であり、計測値の便宜上、ガスの吸光係数aは前記の単
体系を用いた。一般的には1/(mpl/l)/cm が用いられて
いる。光の吸収はランバート・ビア(Lambart-beer) の
法則に従うと仮定すると、
Here, a gas concentration measuring method using the two-optical path method for improving the accuracy of the measured value will be described. In this measurement, the measured value is corrected by measuring the absorbance using two different optical path lengths. Here, a: absorption coefficient of gas (1 / ppm / mm) C: gas concentration (ppm) K 11 , K 12 : constants determined by light source and optical system in optical path 1 and optical path 2 and dirt L 1, L 2 : optical path 1, the optical path length of the optical path 2 (L 2 > L 1 ) I 1, I 2 : is the intensity of the light after passing through the optical paths of the optical path 1 and the optical path 2, and for the convenience of the measured value, the absorption coefficient a of the gas is Was used. Generally, 1 / (mpl / l) / cm 2 is used. Assuming that the absorption of light follows Lambart-beer's law,

【数1】 I01=L0 ・K11・e-acL1 ・・・(1)[ Equation 1] I 01 = L 0 · K 11 · e -acL1 ... (1)

【数2】 I02=L0 ・K12・e-acL2 ・・・(2) となる。ここで(1) 、(2) 式を変形し、透過率比Rpと
ると、
[ Equation 2] I 02 = L 0 · K 12 · e −acL2 (2) Here, by transforming the equations (1) and (2) to obtain the transmittance ratio Rp,

【数3】 よって、K11,K12が一定又は一様に汚れると仮定する
とK11/K12は、一定の装置定数として取り扱えること
になる。従って濃度Cは、
[Equation 3] Therefore, assuming that K 11 and K 12 are constantly or uniformly soiled, K 11 / K 12 can be treated as a constant device constant. Therefore, the concentration C is

【数4】 となる。ことろで、実際にはガス濃度が非常に濃い場合
や薄い場合には、計測誤差が生じ易い。この様な場合
は、一光路計測によりガス濃度を(1) 、(2) 式を用いて
算出する。つまりガス濃度が低い場合は、長いセル長L
2 側で計測し、ガス濃度が濃い場合は短いセル長L1
で計測する。こうする事によりガス濃度計測範囲を広げ
る事ができ、中間濃度域は前記(4) 式を用いて計測す
る。
[Equation 4] Becomes In fact, when the gas concentration is extremely high or low, a measurement error is likely to occur. In such a case, the gas concentration is calculated using equations (1) and (2) by one-path measurement. That is, when the gas concentration is low, the long cell length L
Measurement is performed on the 2 side, and when the gas concentration is high, measurement is performed on the short cell length L 1 side. By doing so, the gas concentration measurement range can be expanded, and the intermediate concentration range is measured using the above equation (4).

【0014】また有機溶剤は2重結合や芳香族環状基を
もつものが多く、紫外光域に吸光特性を示すものが多
い。例えば、パークロロエチレンの吸光特性を図3に示
す。このため前記の有機溶剤では紫外光域(200〜400nm)
におけるC-CL,C=Cによる吸収があるため、紫外光の吸収
を利用して吸光度計測を行う。また本装置における投光
手段の光源にはオゾンレス低圧水銀灯(低圧水銀灯の管
材質にバイコールや合成石英、溶融石英の様な200nm 以
下の波長を透過させることの出来ない材質を用いて、低
圧水銀灯の185nm の光の放出を抑えたランプである)を
用いている。低圧水銀灯は図4に示す様に254nm に強い
光を持つ紫外光源であり、図5に示す様に発光強度は約
50℃においては温度が変化してもあまり変化しない。
光源側の窓には溶融石英のような200nm 以下の波長を透
過させることが出来ない材質を用いており、更に紫外光
透過フィルタ(350nm 以下)やバンドパスフィルタ(BP
F) を用いれば、更に高精度を維持する事ができる。ま
たガラス内壁に蛍光体を塗布した低圧水銀灯を用いてい
る。更に窓の汚れや光源の劣化に対処する為に、2光路
方式を採用している。ガスのサンプリング系は、3方弁
によりサンプル側と外気側を任意に切り換えて吸い込め
る空気回路であり、衣類等から生じる埃を除去する為に
メンブレンテフロンメッシュフィルタを用いている。
Many organic solvents have a double bond or an aromatic cyclic group, and most of them show absorption characteristics in the ultraviolet region. For example, the absorption characteristics of perchlorethylene are shown in FIG. Therefore, in the above organic solvent, the ultraviolet light range (200-400 nm)
Since there is absorption by C-CL and C = C in, the absorbance is measured using the absorption of ultraviolet light. For the light source of the projector in this device, an ozone-less low-pressure mercury lamp (a material of a low-pressure mercury lamp that cannot transmit a wavelength of 200 nm or less, such as Vycor, synthetic quartz, or fused quartz) is used. It is a lamp that suppresses the emission of 185 nm light). The low-pressure mercury lamp is an ultraviolet light source having a strong light at 254 nm as shown in FIG. 4, and the emission intensity does not change much at about 50 ° C. even if the temperature changes as shown in FIG.
The window on the light source side is made of a material such as fused silica that cannot transmit a wavelength of 200 nm or less. Furthermore, an ultraviolet light transmission filter (350 nm or less) or a bandpass filter (BP
If F) is used, higher accuracy can be maintained. In addition, a low pressure mercury lamp in which a phosphor is applied to the inner wall of the glass is used. Furthermore, in order to deal with dirt on the window and deterioration of the light source, a two-optical path system is adopted. The gas sampling system is an air circuit in which the sample side and the outside air side are arbitrarily switched by a three-way valve and can be sucked in, and a membrane Teflon mesh filter is used to remove dust generated from clothes and the like.

【0015】次に、例えば光路長L1 =10mm、光路長
2 =100mm、低圧水銀灯100mW、フォトダイオー
ドを用いた計測例について説明する。信号処理回路15
3では、先ず光路長L1 側の透過率が0.01以下かど
うか判断する。透過率が0.01以下であれば次式にて
光路長L1 側の透過率でガス濃度を判定する。
Next, a measurement example using an optical path length L 1 = 10 mm, an optical path length L 2 = 100 mm, a low pressure mercury lamp 100 mW, and a photodiode will be described. Signal processing circuit 15
In step 3, first, it is determined whether the transmittance on the optical path length L 1 side is 0.01 or less. If the transmittance is 0.01 or less, the gas concentration is determined by the transmittance on the optical path length L 1 side according to the following equation.

【数5】 透過率が0.01以上であれば、2つの信号から次式に
てガス濃度を決定する。
[Equation 5] If the transmittance is 0.01 or more, the gas concentration is determined by the following equation from the two signals.

【数6】 透過率が0.99以上であれば、次式にて光路長L2
の透過率でガス濃度を判定する。
[Equation 6] If the transmittance is 0.99 or more, the gas concentration is determined by the transmittance on the optical path length L 2 side according to the following equation.

【数7】 この透過率判定の閾値はシステムによって異なる。[Equation 7] The threshold value for determining the transmittance differs depending on the system.

【0016】次に前記ガス濃度計測装置200とドライ
クリーニング機械との関係を説明する。本発明のガス濃
度計を用いたドライクリーニング機械の要部断面図を図
8に、工程説明図を図9に示す。先ずここでは従来技術
で説明した工程を(1) 〜 (7)まで行う。また脱臭工程に
なるまでは、ガス濃度計測装置200の3方弁101は
外気側にし、外気導入している。次に脱臭工程の開始一
定時間後(この時間は機械の能力に応じて変化する)、
3方弁101を機械側に切り換える。次いで前記ガス濃
度計測工程に従い、有機溶剤ガス濃度を計測する。この
時ガス濃度がある一定濃度以下になるまで脱臭工程を続
け、それまではドアをロックして開かないようにし、ガ
ス濃度がある一定濃度以下になったらドアロックを解除
し、衣料出しを行える様にする。
Next, the relationship between the gas concentration measuring device 200 and the dry cleaning machine will be described. FIG. 8 shows a sectional view of a main part of a dry cleaning machine using the gas concentration meter of the present invention, and FIG. 9 is a process explanatory view. First, steps (1) to (7) described above are performed here. Until the deodorizing step, the three-way valve 101 of the gas concentration measuring device 200 is placed on the outside air side and the outside air is introduced. Next, after a certain period of time from the start of the deodorizing process (this time depends on the capacity of the machine),
The 3-way valve 101 is switched to the machine side. Then, the organic solvent gas concentration is measured according to the gas concentration measuring step. At this time, the deodorizing process is continued until the gas concentration falls below a certain concentration, and until then the door is locked so that it does not open. When the gas concentration falls below a certain concentration, the door lock is unlocked and clothes can be taken out. Like

【0017】[0017]

【発明の効果】以上詳細に説明した如く本発明は、ガス
濃度計測装置を用いる事により、有機溶剤のガス濃度を
高応答(1秒以下)で、かつ安価に数ppm まで計測する
事が出来る。また本発明のガス濃度計測装置を用いる事
により、衣類の乾燥不足や脱臭不足等の問題が生じて
も、ガス濃度を監視しながらドアを開け、衣料出しが出
来る様になるので、ドライクリーナの運転時間の短縮に
寄与出来、効率を上げることが出来る。また運転中のガ
ス濃度の変動も監視する事が出来、活性炭の吸着能力オ
ーバーもチェックできると共に、取り出した衣料中に含
まれるパークロロエチレンのガス濃度をチェックするこ
とにより、ドライクリーナの運転状態を判断する事がで
きる。
As described above in detail, according to the present invention, by using the gas concentration measuring device, the gas concentration of the organic solvent can be measured with high response (1 second or less) and at low cost up to several ppm. . Further, by using the gas concentration measuring device of the present invention, even if problems such as insufficient drying of clothes or insufficient deodorization occur, it is possible to open the door and take out clothes while monitoring the gas concentration. It can contribute to the reduction of operating time and increase efficiency. In addition, it is possible to monitor changes in gas concentration during operation, check the adsorption capacity of activated carbon over, and check the gas concentration of perchlorethylene contained in the taken out clothing to check the operating condition of the dry cleaner. You can judge.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る有機溶剤ガス濃度測定装
置に検出部における要部の断面図である。
FIG. 1 is a cross-sectional view of a main part of a detection unit in an organic solvent gas concentration measuring device according to an embodiment of the present invention.

【図2】本発明の実施例に係るガス濃度測定装置のブロ
ック図である。
FIG. 2 is a block diagram of a gas concentration measuring device according to an embodiment of the present invention.

【図3】パークロロエチレンの紫外光域から赤外光域ま
での透過率スペクトル図である。
FIG. 3 is a transmittance spectrum diagram of perchlorethylene from an ultraviolet light region to an infrared light region.

【図4】低圧水銀灯の発光スペクトル図である。FIG. 4 is an emission spectrum diagram of a low-pressure mercury lamp.

【図5】低圧水銀灯の発光強度と温度の関係を示す線図
である。
FIG. 5 is a diagram showing the relationship between the emission intensity and the temperature of a low-pressure mercury lamp.

【図6】半導体ガスセンサのパークロロエチレンに対す
る感度特性図である。
FIG. 6 is a sensitivity characteristic diagram of a semiconductor gas sensor with respect to perchlorethylene.

【図7】半導体ガスセンサのパークロロエチレンに対す
る応答性線図である。
FIG. 7 is a response diagram of a semiconductor gas sensor to perchlorethylene.

【図8】本発明に係るガス濃度計を用いたドライクリー
ニング機械の系統図である。
FIG. 8 is a system diagram of a dry cleaning machine using a gas concentration meter according to the present invention.

【図9】本発明に係るガス濃度計を用いたドライクリー
ニング機械の工程説明図である。
FIG. 9 is a process explanatory view of a dry cleaning machine using the gas concentration meter according to the present invention.

【図10】従来のドライクリーニング機械の系統図であ
る。
FIG. 10 is a system diagram of a conventional dry cleaning machine.

【図11】従来のドライクリーニング機械の工程説明図
である。
FIG. 11 is a process explanatory view of a conventional dry cleaning machine.

【符号の説明】[Explanation of symbols]

2 衣料 3,3a 溶剤収納タンク 4,4a 溶剤 5,5a 専用バルブ 8,8a フィルタ 10 処理槽 11 処理ドラム 15 蒸留器 17 エアクーラ 23,23a,31 溶剤配管 30 溶剤分離器 32,41 逆止弁 33,33a 三方切換弁 100 検出部 110 投光手段(光源部) 111 低圧水銀灯 112,112a,112b 光学フィルタ 113 窓の総称符号 113a,113b,113c 窓 120 受光手段 120a,120b,120c 受光手段(受光器) 130 ガス導入手段 131 ガス流路(U字状形) 132 ガス入口 133 ガス出口 134.135 腕部 136 底部 140 光路の総称符号 140a,140b 光路 150 濃度演算制御手段 151 プリアンプ部 152 A/Dコンバータ部 153 信号処理回路 153a 濃度演算回路 153b 制御回路 160 温度調節手段 161 ヒータ 162 温度調節器 200 ガス濃度計測装置 201 3方弁 202 サンプリング・ポンプ 203 フローメータ付レギュレータ 204 メンブレンテフロンメッシュフィルタ 2 Clothing 3, 3a Solvent storage tank 4, 4a Solvent 5, 5a Special valve 8, 8a Filter 10 Processing tank 11 Processing drum 15 Distiller 17 Air cooler 23, 23a, 31 Solvent piping 30 Solvent separator 32, 41 Check valve 33 , 33a Three-way switching valve 100 Detection unit 110 Light projecting means (light source section) 111 Low-pressure mercury lamp 112, 112a, 112b Optical filter 113 General name of windows 113a, 113b, 113c Window 120 Light receiving means 120a, 120b, 120c Light receiving means (light receiver) ) 130 gas introduction means 131 gas flow path (U-shaped) 132 gas inlet 133 gas outlet 134.135 arms 136 bottom 140 general term of optical path 140a, 140b optical path 150 concentration calculation control means 151 preamplifier section 152 A / D converter 153 Signal processing circuit 53a density arithmetic circuit 153b control circuit 160 temperature adjusting means 161 heater 162 temperature controller 200 gas concentration measuring apparatus 201 three-way valve 202 sampling pump 203 flow meter with regulator 204 membrane Teflon mesh filter

フロントページの続き (72)発明者 萩原 春雄 名古屋市中村区岩塚町字高道1番地 三菱 重工業株式会社名古屋機器製作所内Continued Front Page (72) Inventor Haruo Hagiwara 1 Takamichi, Iwazuka-cho, Nakamura-ku, Nagoya City Mitsubishi Heavy Industries, Ltd. Nagoya Machinery Works

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 検査対象ガスに、紫外光域の波長よりな
る検査光を照射するとともに、検査対象ガスに対する検
査光の発光強度と透過光強度を測定して、予め測定した
検査対象ガスに対する濃度と検査光のガス吸収特性に基
づき、検査対象ガスの濃度を測定することを特徴とする
有機溶剤ガス濃度測定方法。
1. The concentration of the gas to be inspected, which is measured in advance, by irradiating the gas to be inspected with an inspection light having a wavelength in the ultraviolet region and measuring the emission intensity and the transmitted light intensity of the inspection light to the gas to be inspected. And a method for measuring the concentration of an organic solvent gas, which comprises measuring the concentration of the gas to be inspected based on the gas absorption characteristics of the inspection light.
【請求項2】 紫外光域の波長光を照射する投光手段
と、同投光手段からの光を受光する受光手段と、投光手
段と受光手段の光路内にガス流路部を有するガス導入手
段と、検査対象ガスに対する既知の吸光特性に基づく濃
度演算制御(信号処理回路)手段を具え、ガス流路に導
入される検査対象ガス濃度を測定することを特徴とする
有機溶剤ガス濃度測定装置。
2. A gas having a light projecting means for irradiating light having a wavelength in the ultraviolet range, a light receiving means for receiving light from the light projecting means, and a gas flow path part in an optical path of the light projecting means and the light receiving means. Organic solvent gas concentration measurement characterized by measuring the concentration of the gas to be inspected introduced into the gas flow path, comprising an introducing means and a concentration calculation control (signal processing circuit) means based on a known absorption characteristic for the gas to be inspected. apparatus.
【請求項3】 前記投光手段は低圧水銀灯と光フィルタ
からなり、低圧水銀灯はオゾンレスタイプを用い、光学
フィルタは少なくとも200nm以下の光を遮光できる
ものを用いてオゾン発生を抑えたことを特徴とする請求
項2記載の有機溶剤ガス濃度測定装置。
3. The light projecting means comprises a low-pressure mercury lamp and an optical filter, the low-pressure mercury lamp is an ozoneless type, and the optical filter is one capable of blocking light of at least 200 nm or less to suppress ozone generation. The organic solvent gas concentration measuring device according to claim 2.
【請求項4】 前記投光手段及び受光手段並びにガス流
路の外周に、ヒータとヒータ内温度の温度制御を行う温
度調節手段からなる保温手段を設けたことを特徴とする
請求項2又は請求項3記載の有機溶剤ガス濃度測定装
置。
4. A heat insulating means comprising a heater and a temperature adjusting means for controlling the temperature inside the heater is provided on the outer periphery of the light projecting means, the light receiving means, and the gas flow path. Item 3. The organic solvent gas concentration measuring device according to item 3.
【請求項5】 前記ガス流路は、入口から出口にかけて
2つの腕部と底部からなる略U字状通路をなすことを特
徴とする請求項4記載の有機溶剤ガス濃度測定装置。
5. The organic solvent gas concentration measuring device according to claim 4, wherein the gas flow path forms a substantially U-shaped passage having two arms and a bottom from an inlet to an outlet.
【請求項6】 前記受光手段は、投光手段に対して少な
くとも長さの異なる2つの光路長を有するように設置さ
れた2つの受光手段とで構成してなることを特徴とする
請求項4又は請求項5記載の有機溶剤ガス濃度測定装
置。
6. The light receiving means is constituted by two light receiving means installed so as to have at least two optical path lengths different from the light projecting means. Alternatively, the organic solvent gas concentration measuring device according to claim 5.
【請求項7】 前記異なる2つの光路長の出力をガス濃
度に応じて使い分けることができるようにしたことを特
徴とする請求項6記載の有機溶剤ガス濃度測定装置。
7. The organic solvent gas concentration measuring device according to claim 6, wherein the outputs of the two different optical path lengths can be selectively used according to the gas concentration.
【請求項8】 前記受光手段はU字状流路の一方の腕部
の直径方向に光路L 1 だけ隔てた位置に設け、受光手段
はU字状流路の底部の軸方向に光路L2 だけ隔てた位置
に設けたことを特徴とする請求項6記載の有機溶剤ガス
濃度測定装置。
8. The light receiving means is one arm of a U-shaped flow path.
Optical path L in the diameter direction of 1Provided at positions separated by only
Is the optical path L in the axial direction of the bottom of the U-shaped channel2Only separated position
7. The organic solvent gas according to claim 6, characterized in that
Concentration measuring device.
【請求項9】 前記ガス流路部の入口と出口に3方弁を
有し、濃度演算手段からの信号によりセンシング部内に
測定対象ガスを閉じ込めることができるようにしたこと
を特徴とする請求項2乃至請求項8記載の有機溶剤ガス
濃度測定装置。
9. The gas flow path section is provided with a three-way valve at an inlet and an outlet so that a gas to be measured can be confined in a sensing section by a signal from a concentration calculating means. The organic solvent gas concentration measuring device according to any one of claims 2 to 8.
【請求項10】 前記ガス流路部の入口側に3方弁を介
して、外気(清浄空気)側と測定対象ガス側とを濃度演
算制御手段からの信号により切り換え可能にしたことを
特徴とする請求項2乃至請求項9記載の有機溶剤ガス濃
度測定装置。
10. The inlet side of the gas flow path portion can be switched between the outside air (clean air) side and the measurement target gas side by a signal from the concentration calculation control means via a three-way valve. The organic solvent gas concentration measuring device according to any one of claims 2 to 9.
【請求項11】 紫外光投光手段は低圧水銀灯と光学フ
ィルタからなり、同低圧水銀灯はガラス内壁に蛍光体を
塗布したものを用いてなることを特徴とする請求項2乃
至請求項10記載の有機溶剤ガス濃度測定装置。
11. The ultraviolet light projecting means comprises a low-pressure mercury lamp and an optical filter, and the low-pressure mercury lamp comprises a glass inner wall coated with a phosphor. Organic solvent gas concentration measuring device.
【請求項12】 有機溶剤を使用して衣料等を洗浄する
ドライクリーニング機械において、同機械の処理槽部に
請求項2乃至請求項11記載の有機溶剤ガス濃度測定装
置を備えたことを特徴とするドライクリーニング機械。
12. A dry cleaning machine for cleaning clothes and the like using an organic solvent, wherein the processing tank portion of the machine is equipped with the organic solvent gas concentration measuring device according to claim 2. Dry cleaning machine.
【請求項13】 有機溶剤を使用して衣料等を洗浄する
ドライクリーニング機械において、同機械の排気口部に
請求項2乃至請求項11記載の有機溶剤ガス濃度測定装
置を備えたことを特徴とするドライクリーニング機械。
13. A dry cleaning machine for cleaning clothes and the like using an organic solvent, wherein the exhaust port of the machine is equipped with the organic solvent gas concentration measuring device according to any one of claims 2 to 11. Dry cleaning machine.
【請求項14】 前記ドライクリーニング機械は、サン
プリング管又はホットボックスを有し、ドライクリーニ
ング機械で洗浄した衣料内残留有機溶剤ガス濃度をサン
プリング管又はホットボックスにおいて計測することを
特徴とする請求項12又は請求項13記載のドライクリ
ーニング機械。
14. The dry cleaning machine has a sampling tube or a hot box, and the residual organic solvent gas concentration in the clothes washed by the dry cleaning machine is measured in the sampling tube or the hot box. Alternatively, the dry cleaning machine according to claim 13.
JP27551793A 1993-11-04 1993-11-04 Method and device for measuring organic solvent gas concentration, and dry cleaning machine Pending JPH07128229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27551793A JPH07128229A (en) 1993-11-04 1993-11-04 Method and device for measuring organic solvent gas concentration, and dry cleaning machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27551793A JPH07128229A (en) 1993-11-04 1993-11-04 Method and device for measuring organic solvent gas concentration, and dry cleaning machine

Publications (1)

Publication Number Publication Date
JPH07128229A true JPH07128229A (en) 1995-05-19

Family

ID=17556575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27551793A Pending JPH07128229A (en) 1993-11-04 1993-11-04 Method and device for measuring organic solvent gas concentration, and dry cleaning machine

Country Status (1)

Country Link
JP (1) JPH07128229A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048708A (en) * 2000-07-31 2002-02-15 Mitsui Mining & Smelting Co Ltd Warming-up method for vegetable and fruit internal quality evaluating device
JP2002131218A (en) * 2000-10-20 2002-05-09 Mitsui Mining & Smelting Co Ltd Warm-up method for device for evaluating internal quality of fresh product
JP2009042217A (en) * 2007-08-07 2009-02-26 Korea Research Inst Of Standards & Science Spectrum analyzer capable of performing real-time process diagnosis
CN103097876A (en) * 2010-08-27 2013-05-08 韩国标准科学研究院 Multichannel ozone-measuring apparatus
CN106018310A (en) * 2016-05-17 2016-10-12 广东电网有限责任公司电力科学研究院 Gas component detection method and device based on ultraviolet spectroscopy
CN108956513A (en) * 2018-08-03 2018-12-07 西安工业大学 Portable ultraviolet spectrum flue gas analyzer and analysis method
CN111458304A (en) * 2020-04-10 2020-07-28 海信(山东)冰箱有限公司 Fluorescent whitening agent detection system of washing machine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048708A (en) * 2000-07-31 2002-02-15 Mitsui Mining & Smelting Co Ltd Warming-up method for vegetable and fruit internal quality evaluating device
JP2002131218A (en) * 2000-10-20 2002-05-09 Mitsui Mining & Smelting Co Ltd Warm-up method for device for evaluating internal quality of fresh product
JP2009042217A (en) * 2007-08-07 2009-02-26 Korea Research Inst Of Standards & Science Spectrum analyzer capable of performing real-time process diagnosis
CN103097876A (en) * 2010-08-27 2013-05-08 韩国标准科学研究院 Multichannel ozone-measuring apparatus
CN103097876B (en) * 2010-08-27 2016-04-13 韩国标准科学研究院 Hyperchannel ozone measurement mechanism
CN106018310A (en) * 2016-05-17 2016-10-12 广东电网有限责任公司电力科学研究院 Gas component detection method and device based on ultraviolet spectroscopy
CN108956513A (en) * 2018-08-03 2018-12-07 西安工业大学 Portable ultraviolet spectrum flue gas analyzer and analysis method
CN111458304A (en) * 2020-04-10 2020-07-28 海信(山东)冰箱有限公司 Fluorescent whitening agent detection system of washing machine
CN111458304B (en) * 2020-04-10 2023-04-18 海信冰箱有限公司 Fluorescent whitening agent detection system of washing machine

Similar Documents

Publication Publication Date Title
US4023929A (en) Process for determining traces of mercury in liquids
JP3771849B2 (en) Infrared gas analysis method and apparatus
US8302461B2 (en) Gas detector having an acoustic measuring cell and selectively adsorbing surface
JPH07128229A (en) Method and device for measuring organic solvent gas concentration, and dry cleaning machine
JP2002168776A (en) Environment monitoring method and device and semiconductor manufacturing device
US20010034065A1 (en) Method and device for detecting mercury
JP2018532120A (en) Gas detection using gas modulation
JP4025702B2 (en) Method and apparatus for analyzing sulfur component by ultraviolet fluorescence method
JP2000241313A (en) Gas spectrochemical analysis device
JP2001033362A (en) Foul odor-measuring device
GB2571999A (en) Dry wick indicator
JP6124436B2 (en) Mercury concentration measuring device
WO2008107372A1 (en) Method and apparatus for measuring an elemental carbon content in an aerosol of soot particles
JP2001194297A (en) Method and apparatus for measuring environment
Pusfitasari et al. Vertical profiles of volatile organic compounds and fine particles in atmospheric air by using an aerial drone with miniaturized samplers and portable devices
JP4042638B2 (en) Infrared gas analyzer
JPS625641Y2 (en)
JPH06242097A (en) Organic carbon measuring equipment
JP2005512052A (en) Method and apparatus for detecting the presence of ammonium nitrate and sugars or hydrocarbons
EP1099949A1 (en) Device for measuring gases with odors
JPS6029724Y2 (en) Emission spectrometer
JP2001013047A (en) Odor measuring apparatus
JP2001194359A (en) Apparatus and method for measuring organic matter
JPH02122237A (en) Method and apparatus for sampling and analyzing fluid hydrocarbon as sample
JP3941679B2 (en) Infrared gas analyzer

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030805