JPS6029724Y2 - Emission spectrometer - Google Patents

Emission spectrometer

Info

Publication number
JPS6029724Y2
JPS6029724Y2 JP14690880U JP14690880U JPS6029724Y2 JP S6029724 Y2 JPS6029724 Y2 JP S6029724Y2 JP 14690880 U JP14690880 U JP 14690880U JP 14690880 U JP14690880 U JP 14690880U JP S6029724 Y2 JPS6029724 Y2 JP S6029724Y2
Authority
JP
Japan
Prior art keywords
spectrometer
condensing lens
optical
sample
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14690880U
Other languages
Japanese (ja)
Other versions
JPS5768548U (en
Inventor
孝志 杉原
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP14690880U priority Critical patent/JPS6029724Y2/en
Publication of JPS5768548U publication Critical patent/JPS5768548U/ja
Application granted granted Critical
Publication of JPS6029724Y2 publication Critical patent/JPS6029724Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

【考案の詳細な説明】 本考案は発光分光分析装置に係り、特に、真空ポンプを
用いた真空型分光装置に最適な発光分光分析装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical emission spectrometer, and particularly to an optical emission spectrometer that is most suitable for a vacuum spectrometer using a vacuum pump.

鉄鋼、銑鉄等の金属試料の炭素、燐、硫黄等の元素の定
量分析を行なう場合には、真空型分光分析装置が用いら
れる。
A vacuum spectrometer is used to quantitatively analyze elements such as carbon, phosphorus, and sulfur in metal samples such as steel and pig iron.

このような分光分析装置の一例を示したのが第1図であ
る。
FIG. 1 shows an example of such a spectroscopic analyzer.

発光部によって試料の表面に、例えばスパーク放電によ
り発光させ、この発光による試料励起光を集光レンズ2
により、分光器3内の回折格子31に集光腰該回折格子
31で回折させる。
The light emitting section causes the surface of the sample to emit light by, for example, spark discharge, and the sample excitation light from this emitted light is sent to the condenser lens 2.
As a result, the light is focused by the diffraction grating 31 in the spectrometer 3, and the light is diffracted by the diffraction grating 31.

このとき、紫外線領域のスペクトル線を有する元素を分
析する場合、そのスペクトル線は空気に吸収され、測定
が不可能になるので、これを防止するために真空ポンプ
32を用いて分光器3の内部を真空にする。
At this time, when analyzing an element having a spectral line in the ultraviolet region, the spectral line will be absorbed by the air and measurement will be impossible. Make a vacuum.

なお、スペクトルの測定は光電子増倍管等で構成される
検出器33で行なわれ、更に、図示しないデータ処理回
路を介して表示装置に出力される。
Note that the spectrum is measured by a detector 33 composed of a photomultiplier tube or the like, and is further output to a display device via a data processing circuit (not shown).

また、回折格子31の入側に入口スリット34が設けら
れ、回折格子31と検出器33との直線上にあって該検
出器33の近傍に出口スリット35が設けられている。
Further, an entrance slit 34 is provided on the entrance side of the diffraction grating 31, and an exit slit 35 is provided on the straight line between the diffraction grating 31 and the detector 33 and near the detector 33.

ところで第1図に示した装置では、真空ポンプは構成上
、不可欠のものであるが、かかるポンプの潤滑系にはオ
イルが用いられており、このためポンプ本体の発熱ある
いは分光器3の内圧とポンプ32の内圧との不均衡等に
より、上記オイルが分光器3内に蒸発、拡散する。
Incidentally, in the apparatus shown in FIG. 1, a vacuum pump is essential in its construction, but oil is used in the lubrication system of the pump, which causes heat generation in the pump body and internal pressure of the spectrometer 3. Due to an imbalance with the internal pressure of the pump 32, the oil evaporates and diffuses into the spectrometer 3.

分光器3は常時30±1℃の温度に保たれているが、集
光レンズ2の周辺は発光部10との接続部分に当るため
、外気と接触する構造となっている。
Although the spectroscope 3 is always kept at a temperature of 30±1° C., the periphery of the condenser lens 2 is connected to the light emitting unit 10 and is therefore in contact with the outside air.

このため、分光器3内に拡散た油蒸気が外気(22±1
℃)との差によって集光レンズ2面に結露が生じる。
Therefore, the oil vapor diffused inside the spectrometer 3 is absorbed by the outside air (22±1
Dew condensation occurs on the two surfaces of the condenser lens due to the difference in temperature (°C).

また、分析時の放電光によって焼き付きが生じて測定ス
ペクトル線(1,600A〜4.200A)の光が吸収
され、発光強度の低下を招くことになる。
In addition, burn-in occurs due to discharge light during analysis, and light in the measurement spectrum line (1,600A to 4.200A) is absorbed, resulting in a decrease in emission intensity.

特に、短波長(2,000A以下)側の光の吸収が顕著
に現われ、分析精度を低下させる重大な要因となってい
る。
In particular, absorption of light at short wavelengths (2,000 A or less) appears prominently, which is a significant factor in reducing analysis accuracy.

本考案の目的は、ポンプの潤滑オイル蒸気の集光レンズ
への結露および焼き付けを防止する分光分析装置を提供
するにある。
An object of the present invention is to provide a spectroscopic analyzer that prevents condensation and burn-in of lubricating oil vapor from a pump on a condensing lens.

本考案は、油蒸気の集光レンズへの結露及び焼き付きが
雰囲気の温度差によること、及び油蒸気が集光ガラス部
にまで侵入することに起因することに着目し、集光レン
ズ部を加熱すると共に集光レンズ部の入口に油蒸気を吸
着する吸着部材を設けるようにしたものである。
This invention focuses on the fact that condensation and burning of oil vapor on the condensing lens is caused by temperature differences in the atmosphere, and that oil vapor intrudes into the condensing glass, and heats the condensing lens. At the same time, an adsorption member for adsorbing oil vapor is provided at the entrance of the condensing lens section.

第2図は本考案の実施例を示す構成図である。FIG. 2 is a block diagram showing an embodiment of the present invention.

集光レンズ部にはニクロム線等の加熱器11a、llb
を設置し、加熱制御回路12により制御する。
Heaters 11a and llb such as nichrome wire are installed in the condensing lens part.
is installed and controlled by the heating control circuit 12.

加熱制御回路12の制御は集光レンズ部に取付けられた
温度検出器(サーミスタ)13により一定温度(例えば
35℃)になるように制御する。
The heating control circuit 12 is controlled to a constant temperature (for example, 35° C.) by a temperature detector (thermistor) 13 attached to the condenser lens.

一方、分光器3の集光レンズ2との接続面の内側に、筒
状に形成された吸着器36が分光器壁面に取付けられ、
この吸着器36の内部を集光レンズ2の出力光線が通過
するようにする。
On the other hand, a cylindrical absorber 36 is attached to the wall surface of the spectrometer 3 on the inside of the connection surface with the condensing lens 2 of the spectrometer 3.
The output light beam of the condensing lens 2 is made to pass through the interior of the adsorber 36.

吸着器36は、第3図及び第4図に示すように目の細か
い金網361(60メツシュ程度)を内側に張り、所定
の間隔て外筐362を設けた2層の筒状体とし、かつ、
その一部に突起部364(上部に金網365を有する)
を設けて、これらの、層間内部に油蒸気を吸着する吸着
剤363(例えば商品名モレキュラシーブ:2TrrI
nφ×5Trr!ILのペレット状物)を充填する。
As shown in FIGS. 3 and 4, the adsorber 36 is a two-layer cylindrical body with a fine wire mesh 361 (approximately 60 mesh) lined inside and an outer casing 362 provided at a predetermined interval. ,
A protrusion 364 (having a wire mesh 365 on the upper part)
An adsorbent 363 (for example, Molecular Sieve (trade name: 2TrrI)) is provided to adsorb oil vapor inside these layers.
nφ×5Trr! Fill with IL pellets).

以上の構成により、ポンプ潤滑油の油蒸気の吸着器36
内部への侵入は極く少量となるが、この侵入した少量の
油蒸気も吸着剤363によって吸収される。
With the above configuration, the oil vapor absorber 36 of the pump lubricating oil
Although only a small amount of oil vapor enters the interior, this small amount of oil vapor that enters is also absorbed by the adsorbent 363.

また、吸着器36で吸収されなかった油蒸気が集光レン
ズ2に到達したとしても、集光レンズ2は加熱されてお
り分光器3内部の温度との温度差は無いため、油蒸気の
結露の心配は無い。
Furthermore, even if the oil vapor that was not absorbed by the absorber 36 reaches the condensing lens 2, the condensing lens 2 is heated and there is no temperature difference with the temperature inside the spectrometer 3, so the oil vapor condenses. There is no need to worry.

なお、吸着器36に設けられた突起部363は、真空ポ
ンプ32稼動時に、スリット34の幅(20μX10m
m)が小さく吸着器36内部を真空にするのに時間の要
するのを避けるためであり、この突起部364の金網3
65面を介して急速に排気される。
Note that the protrusion 363 provided on the adsorber 36 has the width of the slit 34 (20 μ x 10 m) when the vacuum pump 32 is in operation.
This is to avoid the time it takes to create a vacuum inside the suction device 36 because m) is small, and the wire mesh 3 of this protrusion 364
It is rapidly evacuated through the 65 plane.

集光レンズの汚染度は次式で計算されるα値で評価され
る。
The degree of contamination of the condenser lens is evaluated by the α value calculated by the following formula.

一\Cさ包 (xx、−xJ 但し、 XIo :上部標準値は予め設定しである高含有域側の
標準値。
1\C sappo (xx, -xJ However, XIo: The upper standard value is a preset standard value on the high content range side.

Xjo二下部標準値は予め設定しである低含有域側の標
準値。
The standard value for the lower part of Xjo2 is a preset standard value for the low content area.

Xl:上部測定値は上部標準値を求めた試料を、任意時
間経過後に測定した分析値。
Xl: Upper measurement value is an analysis value measured after an arbitrary period of time of the sample for which the upper standard value was determined.

X、二下部測定値は上部標準値を求めた試料を、任意時
間経過後に測定した分析値。
X, The second lower measurement value is an analysis value measured after an arbitrary period of time of the sample from which the upper standard value was determined.

すなわち、例えば鉄鋼のCの分析の場合、ある鋼種のC
含有量が0.1〜1%までの範囲とすれば、上部標準は
C含有量1%の試料を分析装置が汚染されていない状態
で分析したときのスペクトル強度XIOで、また下部標
準値はC含有量が0.1%の試料を分析したときのスペ
クトル強度XJoであり、これらの上・下標準値は分析
装置が時間経過とともに汚染されるにしたがってそれぞ
れXIOからX、およびXjoからXjにスペクトル強
度が低下する。
In other words, for example, in the case of C analysis of steel, C of a certain steel type
If the content ranges from 0.1 to 1%, the upper standard is the spectral intensity XIO when a sample with 1% C content is analyzed with an uncontaminated analyzer, and the lower standard value is This is the spectral intensity XJo when analyzing a sample with a C content of 0.1%, and these upper and lower standard values change from XIO to X and from Xjo to Xj, respectively, as the analyzer becomes contaminated over time. Spectral intensity decreases.

これを図示すると第5図のようになり、汚染度αは上下
標準値を結ぶ直線と上下測定値を結ぶ直線の勾配比とし
て表わすことができる。
This is illustrated in FIG. 5, where the degree of contamination α can be expressed as the slope ratio of a straight line connecting the upper and lower standard values to a straight line connecting the upper and lower measured values.

このα値を本考案による実施結果とで比較した場合、従
来ではα=1.0〜1.3に達するまでの時間は10時
間程度にすぎなかったが、本考案によれば500時間程
度に延長できることが確認された。
When this α value is compared with the results of implementation according to the present invention, conventionally it took only about 10 hours to reach α = 1.0 to 1.3, but according to the present invention, it took about 500 hours. It has been confirmed that it can be extended.

以上、詳述したように本考案によれば、集光レンズに対
する結露及び焼き付けを防止できるので、具体的に次の
ような効果が得られる。
As described in detail above, according to the present invention, dew condensation and burn-in on the condenser lens can be prevented, and the following effects can be specifically obtained.

(1) 集光レンズの耐久時間が増大する。(1) The durability time of the condenser lens increases.

(2)同一条件で長時間に及ぶ分析が可能。(2) Analysis can be performed for a long time under the same conditions.

(3)発光強度の低下が無いため、分析精度の向上が図
れる。
(3) Since there is no decrease in emission intensity, analysis accuracy can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の分光分析装置を示す構成図、第2図は本
考案の実施例を示す構成図、第3図は本考案に係る吸着
器の側面部分断面図、第4図は該吸着器のIV−IV面
断面図であり、第5図はスペクトル強度と元素含有量の
関係を示す図である。 2・・・・・・集光レンズ、3・・・・・・分光器、1
0・・・発光部、lla、llb・・・・・・加熱器、
12・・・・・・加熱制御回路、13・・・・・・温度
検出器、31・・・・・・分光器、32・・・・・・真
空ポンプ、34,35・・・・・・スリット、36・・
・・・・吸着器。
Fig. 1 is a block diagram showing a conventional spectroscopic analyzer, Fig. 2 is a block diagram showing an embodiment of the present invention, Fig. 3 is a side partial cross-sectional view of an adsorber according to the present invention, and Fig. 4 is a block diagram showing the adsorption device according to the present invention. FIG. 5 is a cross-sectional view taken along the IV-IV plane of the vessel, and FIG. 5 is a diagram showing the relationship between spectral intensity and element content. 2...Condensing lens, 3...Spectroscope, 1
0... Light emitting part, lla, llb... Heater,
12... Heating control circuit, 13... Temperature detector, 31... Spectrometer, 32... Vacuum pump, 34, 35...・Slit, 36...
...Adsorption device.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 発光器よりの試料のスペクトル線を集光レンズを介して
真空にされた分光器内の回折格子に導き、該回折格子に
よって測定スペクトル線に分光し、該分光スペクトルを
測定するとにより前記試料の元素を分析する発光分光分
析装置において、前記集光レンズ部を少くとも前記分光
器内の温度に保持する加熱器と、前記集光レンズとの接
続面の前記分光器の内側で且つ内部を前記集光レンズの
光出力が通過しうるように設けられ、該内部に存在する
油蒸気を吸着する吸着器とを具備することを特徴とする
発光分光分析装置。
The spectral lines of the sample from the light emitter are guided through a condensing lens to a diffraction grating in a vacuum spectrometer, where the diffraction grating separates them into measurement spectral lines, and when the spectra are measured, the elements of the sample are detected. In the optical emission spectrometer for analyzing the spectrometer, a heater is provided to maintain the condensing lens part at least at a temperature within the spectrometer, and a heater is provided inside the spectrometer at a connection surface with the condensing lens, and the inside of the condenser is An optical emission spectrometer characterized by comprising an adsorber that is provided so that the optical output of the optical lens can pass therethrough, and that adsorbs oil vapor present inside the optical lens.
JP14690880U 1980-10-15 1980-10-15 Emission spectrometer Expired JPS6029724Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14690880U JPS6029724Y2 (en) 1980-10-15 1980-10-15 Emission spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14690880U JPS6029724Y2 (en) 1980-10-15 1980-10-15 Emission spectrometer

Publications (2)

Publication Number Publication Date
JPS5768548U JPS5768548U (en) 1982-04-24
JPS6029724Y2 true JPS6029724Y2 (en) 1985-09-07

Family

ID=29506445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14690880U Expired JPS6029724Y2 (en) 1980-10-15 1980-10-15 Emission spectrometer

Country Status (1)

Country Link
JP (1) JPS6029724Y2 (en)

Also Published As

Publication number Publication date
JPS5768548U (en) 1982-04-24

Similar Documents

Publication Publication Date Title
US5130544A (en) Optical gas analyzer
Van Dalen et al. Optimization of the microwave-induced plasma as an element-selective detector for non-metals
US5222389A (en) Multi-channel gas sample chamber
CN103776942B (en) Flame photometric detector
EP0916937A2 (en) Method for measuring the concentration of hydrogen peroxide vapor
Urba et al. A new sensitive and portable mercury vapor analyzer Gardis-1A
EP0557626B1 (en) Method and apparatus for measuring the amount of dissolved water in a liquid organic phase
JP2002511936A (en) Photothermal gas sensor manufactured by micromachining method
US20160231229A1 (en) Method and system for gas concentration measurement of gas dissolved in liquids
CA1261167A (en) Oxygen analysis employing absorption spectroscopy
US4755675A (en) Gas analyzer and a source of IR radiation therefor
JP2000241313A (en) Gas spectrochemical analysis device
JPS6029724Y2 (en) Emission spectrometer
WO1998010270A1 (en) Improvements in or relating to gas sensors
Fong et al. Near-infrared measurement of relative and absolute humidity through detection of water adsorbed on a silica gel layer
WO1998052020A1 (en) Self normalizing radiant energy monitor and apparatus for gain independent material quantity measurements
JPH07128229A (en) Method and device for measuring organic solvent gas concentration, and dry cleaning machine
WO2008107372A1 (en) Method and apparatus for measuring an elemental carbon content in an aerosol of soot particles
JP2006513431A (en) Infrared source and gas sensor
JP3742975B2 (en) Gas detection method and apparatus used for gas detection
JPH08201249A (en) Odor measuring instrument
JPH08220043A (en) Odor measuring instrument
JP3126759B2 (en) Optical analyzer
GB2116316A (en) Infrared radiation gas analyzer
US3503686A (en) Atomic absorption spectrophotometer