JPH0712722A - Method of judging food processing condition - Google Patents

Method of judging food processing condition

Info

Publication number
JPH0712722A
JPH0712722A JP15862893A JP15862893A JPH0712722A JP H0712722 A JPH0712722 A JP H0712722A JP 15862893 A JP15862893 A JP 15862893A JP 15862893 A JP15862893 A JP 15862893A JP H0712722 A JPH0712722 A JP H0712722A
Authority
JP
Japan
Prior art keywords
rice
food
noise
spectral data
near infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15862893A
Other languages
Japanese (ja)
Inventor
Sadakazu Fujioka
定和 藤岡
Taiichi Mori
泰一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP15862893A priority Critical patent/JPH0712722A/en
Publication of JPH0712722A publication Critical patent/JPH0712722A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To judge whether or not a stuff fed into a food processing device is suitable for food-processing and whether or not the food-processing is appropriate, by finding the stuff and the ingredients of food processed by the food processing device by means of near infrared analysis. CONSTITUTION:A part of polished rice is fed, as a sample, into a near infrared analyzer 15 during a process of washing and soaking the rice, and is therefore analyzed so as to obtain spectral data. Meanwhile, a part of cooked rice is sampled during dishing up the cooked rice as a food product, and is then fed to a near infrared analyzer 17 for analyzing it for obtaining spectral data. The results obtained by the analyzers 15, 17 are compared and displayed. That is, a computer 16 computes rates of ingredients from the spectral data obtained from the polished rice as a stuff so as to obtain a quality evaluation value alphaof the polished rice. Similarly, a computer 18 computes rate of the ingredints of the cooked rice from the spectral data of the cooked rice so as to obtain a quality evaluation value beta. Further, rates of the evaluation values are obtained, and then whether or not the evaluation values fall in predetermined ranges is indicated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、食品加工状態判定方
法に関し、例えば炊飯前の白米と炊飯後の米飯の状態判
定を行なう場合等に利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a food processing state determination method, and can be used, for example, when determining the state of polished rice before cooking rice and cooked rice after cooking rice.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】上記炊
飯の前後夫々における各成分分析によって米の良否判定
例えば食味値を測定するものは公知である。しかしなが
ら、食品原料前の状態と加工後の状態とを同一尺度で判
定することは試みられず、必ずしも正確でない。つまり
従来の食味測定は原料白米を炊飯して米飯として食する
ことを目標とし、あくまで適正な炊飯条件によって炊飯
したときの食味評価を行なうものである。従って、米飯
の評価としては例えば最良とされても炊飯条件の不備に
より、米飯の評価は不良になることもあり得る。
2. Description of the Related Art It is known to judge the quality of rice, for example, to measure the taste value by analyzing each component before and after cooking the rice. However, it is not attempted to judge the state before food material and the state after processing on the same scale, and it is not always accurate. In other words, the conventional taste measurement aims to cook the raw white rice and eat it as cooked rice, and evaluates the taste when cooked under appropriate rice cooking conditions. Therefore, for example, even if the cooked rice is evaluated as the best, the cooked rice may be evaluated poorly due to insufficient cooking conditions.

【0003】[0003]

【課題を解決するための手段】この発明は、例えば上記
白米での評価と米飯での評価を比較することで炊飯条件
の異常等を判定しようとするもので、食品加工装置に供
給する原料及びその食品加工装置で加工した加工品の成
分を近赤外分析によって求め、これら加工前後の成分値
等から品質評価値α,βを演算しこれらの比較を行ない
加工状態の適否を判定することを特徴とするものであ
る。
The present invention is intended to determine abnormalities in rice cooking conditions, for example, by comparing the above-mentioned evaluation with polished rice and evaluation with cooked rice. The components of the processed product processed by the food processing device are obtained by near-infrared analysis, and the quality evaluation values α and β are calculated from the component values before and after processing, and these are compared to determine the suitability of the processed state. It is a feature.

【0004】[0004]

【発明の作用効果】食品加工の前の原料と加工品の成分
が近赤外分析装置で分析され品質評価値α,βが求めら
れそれらが対比される。従って、当該食品加工に適した
原料であるか否かや、加工適正を判定することができ、
加工による変動状況が把握でき、従来熟練を要した加工
適正の判定あるいは加工方法に対する判定が容易とな
る。
The effects of the present invention are obtained by analyzing the components of raw materials and processed products before food processing with a near infrared analyzer to obtain quality evaluation values α and β and compare them. Therefore, whether or not it is a raw material suitable for food processing, it is possible to determine the processing appropriateness,
It is possible to grasp the variation state due to processing, and it becomes easy to determine the appropriateness of processing or the determination of the processing method, which conventionally requires skill.

【0005】[0005]

【実施例】この発明の一実施例を図面に基づき説明す
る。図1は炊飯加工工場における装置の概要を示し、複
数の貯留タンク1,1…、計量機2、浸漬タンク3,
3、蒸煮式炊飯装置4、米飯冷却装置5、盛り付け装置
6、及びこれらを接続する搬送エレベータ7,8やコン
ベア9,10,11,12等からなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an outline of an apparatus in a rice processing plant, which includes a plurality of storage tanks 1, 1, ..., A weighing machine 2, a dipping tank 3,
3, steam-boiled rice cooker 4, cooked rice cooler 5, arranging device 6, and transport elevators 7, 8 and conveyors 9, 10, 11, 12 and the like that connect them.

【0006】このうち、貯留タンク1,1…は異なる品
種の原料白米を貯留できる構成であり、必要量は図外制
御部からの搬送指令信号を受けてコンベア9,エレベー
タ8を経由して計量機2に供給される構成である。上記
計量機2の下方には洗米機13を設け、この洗米機13
は内部に撹拌機構を有した水タンク形態に設けるもの
で、洗米は水圧パイプ14,14を介して次段の浸漬タ
ンク3,3に供給される構成としている。
Of these, the storage tanks 1, 1 ... Have a structure capable of storing raw rice grains of different varieties, and the required amount is measured via the conveyor 9 and the elevator 8 in response to a conveyance command signal from the control unit outside the drawing. This is the configuration that is supplied to the machine 2. A rice washing machine 13 is provided below the weighing machine 2.
Is provided in the form of a water tank having an agitation mechanism inside, and the washing water is supplied to the immersion tanks 3, 3 of the next stage via the hydraulic pipes 14, 14.

【0007】なお、計量機2からの排出白米の一部は近
赤外分析装置15に供給される。16はその分析データ
を処理するコンピュータである。前記浸漬タンク3,3
内の米は、コンベア10を経て蒸煮式炊飯装置4に供給
される構成としている。該蒸煮式炊飯装置4内では、薄
層の米が連続的に図外コンベアにて移送される間に蒸気
による1次蒸煮,温湯槽での膨軟化,2次蒸煮を受けて
炊飯される構成である。
A part of the white rice discharged from the weighing machine 2 is supplied to the near infrared analysis device 15. A computer 16 processes the analysis data. The immersion tanks 3, 3
The rice inside is supplied to the steam-type rice cooker 4 via the conveyor 10. In the steam-type rice cooker 4, rice is cooked by being subjected to primary steaming with steam, expansion and softening in a hot water tank, and secondary steaming while thin-layered rice is continuously transferred by a conveyor outside the drawing. Is.

【0008】この炊飯装置4の出口にはコンベア11を
のぞませ、炊き上がり米飯を米飯冷却装置5に移送供給
できる構成とし、該冷却装置5内を通過しながら冷気を
浴びて所定温度以下に冷却される構成である。この冷却
装置5の出口側には盛り付け装置6を接続して製品とし
てコンベア12に載せて移送される構成である。なお、
盛り付け装置6には米飯の一部を受ける近赤外分析装置
17を接続し、あわせてその分析データを処理するコン
ピュータ18を設ける。
The conveyor 11 is looked into the outlet of the rice cooker 4 so that cooked cooked rice can be transferred and supplied to the cooked rice cooler 5, and while passing through the inside of the cooler 5, it is exposed to cold air to reach a predetermined temperature or lower. The structure is cooled. The arranging device 6 is connected to the outlet side of the cooling device 5 and the product is placed on the conveyor 12 and transferred. In addition,
A near infrared analysis device 17 for receiving a part of cooked rice is connected to the arranging device 6, and a computer 18 for processing the analysis data is also provided.

【0009】上記近赤外分析装置15,17は概ね次の
構成である。即ち、米等のサンプルに波長を連続的に変
化させて近赤外線を照射し、この米サンプルの透過光又
は反射光を検出するものであり、光源19と、反射鏡2
0と、回折格子駆動用モータ21により駆動する回折格
子22と、サンプルを充填したサンプルセル23を装着
するセルホルダ23’と、サンプルの透過光を検出する
透過光センサ24と、サンプルからの反射光を検出する
反射光センサ25とを図示のように配置する。
The near-infrared analyzers 15 and 17 are generally constructed as follows. That is, a sample such as rice is irradiated with near-infrared rays by continuously changing the wavelength, and the transmitted light or reflected light of this rice sample is detected. The light source 19 and the reflecting mirror 2 are used.
0, a diffraction grating 22 driven by a diffraction grating driving motor 21, a cell holder 23 ′ for mounting a sample cell 23 filled with a sample, a transmitted light sensor 24 for detecting transmitted light of the sample, and reflected light from the sample. And a reflected light sensor 25 for detecting

【0010】上記透過光センサ24や反射光センサ25
は、スペクトルデータ記憶部26,化学成分記憶部2
7,検量線作成部28等からなるコンピュータ16,1
8の制御部に接続されている。このうち検量線作成部1
2は、既知の化学成分に基づく特定波長の反射光乃至透
過光量の検出データを解析して所定に作成される。計量
機2からの排出白米や盛り付け装置6からの飯米など未
知サンプルは、これらの化学成分値が上記検量線に基づ
いて算出される。尚、サンプルは上記サンプルセルに手
作業で詰めこれをホルダ23’に手動装填し、あるいは
図外の自動サンプリング装置からの各サンプルを受けて
自動装填するものである。
The transmitted light sensor 24 and the reflected light sensor 25 described above.
Is the spectrum data storage unit 26, the chemical component storage unit 2
7. Computer 16, 1 comprising a calibration curve creation unit 28, etc.
8 control units. Of these, the calibration curve creation unit 1
2 is created in a predetermined manner by analyzing the detection data of the reflected light or transmitted light amount of a specific wavelength based on a known chemical component. For unknown samples such as white rice discharged from the weighing machine 2 and rice cooked from the arranging device 6, the chemical component values thereof are calculated based on the calibration curve. The sample is manually packed in the sample cell and manually loaded into the holder 23 ', or each sample is automatically loaded by receiving each sample from an automatic sampling device (not shown).

【0011】上例の作用について説明する。図外主操作
盤により炊飯に必要な原料白米の種類及び量を指定する
と、該当の貯留タンク1の排出口が開き、計量機2へ移
される。ここで上記指定の量に至ると貯留タンク1から
の供給を停止する。計量機2内白米は次いで洗米機13
に供給されて洗米され、浸漬タンク3,3に至って所定
時間浸漬処理される。
The operation of the above example will be described. When the type and amount of raw white rice necessary for cooking rice is specified by the main operation panel outside the drawing, the discharge port of the corresponding storage tank 1 is opened and transferred to the weighing machine 2. Here, when the specified amount is reached, the supply from the storage tank 1 is stopped. The white rice in the weighing machine 2 is then the rice washing machine 13
The rice is supplied to and washed with rice, reaches the dipping tanks 3 and 3, and is dipped for a predetermined time.

【0012】この洗米、浸漬の過程で白米一部はサンプ
ルとして近赤外分析装置15に供給され、スペクトルデ
ータの解析が行なわれている。所定時間の浸漬の後原料
白米は蒸煮式炊飯装置4内に投入され炊飯される。次い
で炊飯された米飯は冷却装置5内を通過するうちに所定
温度以下に冷却され盛り付け装置へと至り、所定量毎に
容器に盛り付けし、製品コンベア12から搬出される。
During this washing and soaking process, part of the white rice is supplied as a sample to the near-infrared analyzer 15 to analyze the spectrum data. After soaking for a predetermined time, the raw white rice is put into the steam-type rice cooker 4 to cook rice. Next, the cooked cooked rice is cooled to a predetermined temperature or lower while passing through the cooling device 5, reaches the arranging device, is arranged in a container in a predetermined amount, and is delivered from the product conveyor 12.

【0013】一方、製品として盛り付けする過程で米飯
の一部はサンプリングされ、近赤外分析装置17に供給
され、スペクトルデータの解析が行なわれている。前記
近赤外分析装置15と上記分析装置17との検出結果は
以下のように対比され表示されることとなる。即ち、原
料白米のスペクトルデータからコンピュータ16は白米
の成分割合を算出する。加えて所定成分の割合乃至複合
体から白米の品質評価値αを演算する。ここで、品質評
価値には例えばカレー用、ピラフ用、すし飯、雑炊用等
用途に応じた加工適正に該当する白米であるか否か及び
その適正評価値がある。同様に米飯のスペクトルデータ
からコンピュータ18は米飯の成分割合を算出し、同様
に品質評価値βを算出する。これらの評価値α,βの比
率γを求め、この比率γが予め設定した値δ1,δ2(δ
1<δ2)と比較し、品質評価値が所定値の範囲内か否か
を表示するものである。例えば、雑炊適正についてみる
と、雑炊適正90点の米を炊飯し、液状部を近赤外分析
装置で分析し雑炊の良否を判定する。ここでその結果が
70点であれば、雑炊の炊飯条件が不良であると判定し
ようとするものである。
On the other hand, part of the cooked rice is sampled in the process of serving as a product and supplied to the near-infrared analysis device 17 to analyze the spectrum data. The detection results of the near-infrared analyzer 15 and the analyzer 17 will be compared and displayed as follows. That is, the computer 16 calculates the component ratio of white rice from the spectrum data of the raw white rice. In addition, the quality evaluation value α of white rice is calculated from the ratio of predetermined components or the complex. Here, the quality evaluation value includes, for example, whether or not the white rice is suitable for processing according to the application such as curry, pilaf, sushi rice, porridge, and the appropriate evaluation value. Similarly, the computer 18 calculates the ingredient ratio of cooked rice from the spectrum data of cooked rice, and similarly calculates the quality evaluation value β. The ratio γ of these evaluation values α and β is calculated, and the ratio γ is set to a preset value δ 1 , δ 2
Compared with 12 ), it displays whether or not the quality evaluation value is within a predetermined value range. For example, regarding the suitability of porridge, 90 points of rice suitable for porridge are cooked, and the liquid portion is analyzed by a near-infrared analyzer to determine the quality of porridge. Here, if the result is 70 points, it is intended to determine that the rice-cooking conditions for porridge are poor.

【0014】品質評価値α,βの上記比率γが所定値以
内であればその原料白米のもつ品質能力に見合った浸
漬,炊飯,冷却の各加工処理が施されているものと推定
され、これが所定範囲外であると加工が適正でなく、あ
るいは加工方法に何らかの処置が必要と判断されるが、
こうした判断が熟練者の官能評価に頼っていた従来より
も簡単容易に実施できる。なお、品質評価値α,βの比
率γをもって比較したが、両者の差が所定値にあるか否
かで判定してもよい。
If the ratio γ of the quality evaluation values α and β is within a predetermined value, it is presumed that each of the dipping, cooking, and cooling processes corresponding to the quality capability of the raw white rice has been performed. If it is outside the specified range, it is judged that the processing is not proper, or that the processing method requires some treatment.
Such a judgment can be made more easily and easily than in the past where the expert's sensory evaluation was used. Although the comparison is made using the ratio γ of the quality evaluation values α and β, it may be determined whether or not the difference between the two is a predetermined value.

【0015】上記実施例では食品加工装置として炊飯加
工装置としたが、その他の構成でもよい。尚、前記近赤
外分析装置15,17について、サンプルセル23のガ
ラスは個々に透過率のばらつきがあり、また、このセル
ガラスは経時的にガラスをみがいたときのすりきずや汚
れの付着によっても透過率が変化し、このため、測定値
が変化し誤差の原因となり易いが、予め基準となるサン
プルセルガラスの吸光度スペクトルと、使用すべく準備
したサンプルセルガラスとの吸光度スペクトルの差分ス
ペクトルを求め、実測データに使用したサンプルセルガ
ラスの該差分スペクトルを加算して分析値を補正すべく
構成するとよい。このとき、基準スペクトルを測定する
際はセラミック板等の高反射体の素材を使用したレファ
レンス測定を行なう(図5)。
In the above embodiment, the rice processing apparatus is used as the food processing apparatus, but other configurations may be used. Regarding the near-infrared analyzers 15 and 17, the glass of the sample cell 23 has a variation in the transmittance, and the cell glass is susceptible to scratches and stains when the glass is polished over time. The transmittance also changes, so the measured value changes and is likely to cause an error, but the difference spectrum of the absorbance spectrum of the sample cell glass that is the reference and the absorbance spectrum of the sample cell glass prepared for use The difference spectrum of the sample cell glass used for the measured data and the measured data may be added to correct the analysis value. At this time, when measuring the reference spectrum, reference measurement is performed using a material of a high reflector such as a ceramic plate (FIG. 5).

【0016】又、測定に際し発生するノイズについては
次の処理により除去する。即ち、電源ノイズや外気湿度
の変化によって突発的に発生する一過性ノイズの防止
は、従来安定化電源や恒温湿度空間の確保によっている
がコストがかかり、このため、同一サンプルを複数回ス
キャニングしたデータを複数区のデータ集団に分割し、
その分割したデータ集団間の測定値差が予め定めた範囲
内でないとき、そのデータを除去処理する構成としたも
のである(図6)。つまり、通常レファレンスデータを
例えば32回スキャニングして取り込みこれをA,Bの
2回繰り返してその平均R0を求め、次いで同様の処理
でサンプルセル23内のサンプルにつきC,D2回のデ
ータを求め平均値R1を算出する(図7(イ))。こう
して、吸光度(OD)はOD=log(R0/R1)とし
て求められ、これで1回の測定が終了するが、この手順
のうち、スキャニング回数を5回程度に減じて複数区の
こまぎれデータ集団にしてA−BないしC−Dの値を規
定範囲内が否かを比べようとするものである(図7
(ロ))。尚、表示のみを行なう形態でもよい。
The noise generated during the measurement is removed by the following processing. In other words, it is costly to prevent transient noise that suddenly occurs due to power supply noise or changes in outside air humidity, but it is costly. Therefore, the same sample was scanned multiple times. Divide the data into multiple groups of data,
When the measured value difference between the divided data groups is not within a predetermined range, the data is removed (FIG. 6). That is, normal reference data is scanned, for example, 32 times, and this is repeated twice for A and B to obtain the average R 0 , and then C and D 2 times for the sample in the sample cell 23 by the same process. The average value R 1 is calculated (FIG. 7A). In this way, the absorbance (OD) is obtained as OD = log (R 0 / R 1 ), and this completes one measurement, but in this procedure, the number of scanning is reduced to about 5 and the It is intended to compare the values of A to B and C to D within the specified range as a mixed data group (FIG. 7).
(B)). It should be noted that the form in which only the display is performed may be used.

【0017】更に、電源投入して規定時間内に分析装置
としてノイズを計測させ、環境要因ノイズ(外気温、外
気湿度、センサの劣化,温度等によるノイズ)のうちの
電源投入時からの時間経過による安定化検出によって、
データに信頼性有りとするREADY信号、つまり測定
開始を行っても差し支えない旨の表示乃至音を発するな
ど、を出力することとする(図8)。また、このような
規定時間内ノイズ計測によって装置ノイズ(装置自体の
ノイズ発生条件によるノイズ)の経時的変動の事前発見
を行ない得る。
Further, after the power is turned on, noise is measured as an analyzer within a specified time, and the time elapses from the time when the power is turned on among environmental factor noise (noise due to outside air temperature, outside air humidity, sensor deterioration, temperature, etc.). Stabilization detection by
A READY signal indicating that the data is reliable, that is, a display or sound indicating that the measurement may be started may be output (FIG. 8). In addition, such noise measurement within the specified time period makes it possible to detect in advance a temporal change in device noise (noise due to the noise generation condition of the device itself).

【0018】次いで、測定データの異常データ検出方法
乃至異常診断について説明する。一般に近赤外分析装置
による成分分析において、例えば蛋白含量でその物質に
含まれるであろう上限値並びに下限値割合を予め設定し
ておき、その範囲外を異常データと判定するものであ
る。ところがこのような判定方法では、上下限範囲内に
ある限り測定上の誤差と判断され異常値データとはみな
さない。分光ノイズによる影響で差異が生じたか否かの
判定はオペレータの勘に頼らざるを得ない。
Next, a method of detecting abnormal data of measurement data or an abnormality diagnosis will be described. Generally, in component analysis by a near infrared analyzer, for example, the upper limit value and the lower limit value ratio that are likely to be contained in the substance in the protein content are set in advance, and the outside of the range is determined as abnormal data. However, in such a determination method, as long as it is within the upper and lower limit range, it is determined as an error in measurement and is not regarded as abnormal value data. It is inevitable to rely on the intuition of the operator to determine whether or not a difference has occurred due to the influence of spectral noise.

【0019】そこで、複数回の吸光度を測定してその平
均値を求めるときにi番目の吸光度とその前の(i−
1)番目の吸光度の差分スペクトルSn(図9)から分
光ノイズ評価指標を算出し、該ノイズ評価指標が規定レ
ベルにあるか否かによって異常データか否かを判定し、
必要に応じて警告を発するものである(図10)。ここ
で、ノイズ評価指標として、例えば測定波長間隔2nm
毎に存在するn個の差分吸光度d1〜dnの二乗平均を求
め、更にその平方根をRMSノイズ(SRMS)とする。
すなわち、 SRMS 2=(d1 2+d2 2+…+dn 2)/n によって求められる。こうして得られた分光ノイズが規
定レベルを逸脱しているときは異常値であることが分か
り、測定を行なっている時点で即座に再測定を促すこと
ができるし、あるいは再測定を何度行なっても異常値が
出るときは瞬時乃至一過性ノイズでないものと判定され
機器の調整を要することとなる。このように異常値を除
去できるので精度の向上がはかれる。
Therefore, when the absorbance is measured a plurality of times and the average value thereof is obtained, the i-th absorbance and the preceding (i-
1) The spectral noise evaluation index is calculated from the difference spectrum Sn (FIG. 9) of the first absorbance, and it is determined whether or not the noise evaluation index is abnormal data depending on whether the noise evaluation index is at a specified level,
A warning is issued if necessary (FIG. 10). Here, as the noise evaluation index, for example, the measurement wavelength interval is 2 nm.
The root mean square of the n differential absorbances d 1 to dn existing for each is obtained, and the square root thereof is defined as RMS noise (S RMS ).
That is, S RMS 2 = (d 1 2 + d 2 2 + ... + d n 2 ) / n. When the spectral noise obtained in this way deviates from the specified level, it is known to be an abnormal value, and re-measurement can be prompted immediately at the time of measurement, or re-measurement can be performed many times. If an abnormal value appears, it is determined that the noise is not instantaneous or transient noise, and the equipment needs to be adjusted. Since the abnormal value can be removed in this way, the accuracy can be improved.

【0020】尚、上記のノイズ指標算出の基準は前回と
今回の吸光度データとの差分を用いたが、(i−m)番
目から(i−1)番目までの平均吸光度と今回i番目の
吸光度とによって求めてもよい。又、吸光度データは、
セラミック板等のリファレンス測定,サンプルデータの
測定を繰り返すときは夫々の同種データを対象として上
記分光ノイズ指標を算出するもよく、混在データを比較
して分光ノイズ指標を算出してもよい。
The above-mentioned noise index calculation standard uses the difference between the absorbance data of the previous time and this time, but the average absorbance from the (im) to the (i-1) th and the absorbance of the i-th time this time are used. You may ask by and. Also, the absorbance data is
When the reference measurement of the ceramic plate or the like and the measurement of the sample data are repeated, the spectral noise index may be calculated for each data of the same type, or the spectral noise index may be calculated by comparing the mixed data.

【0021】又、前記分光ノイズのレベルを予めN段階
に分割しておき、その設定したレベルに基づいて1回の
測定に要するスキャニング回数を変え、あるいは測定回
数を変える構成とすることにより、分光ノイズが装置限
界に近い状態となっても検量線精度を安定維持できる
(図11〜図12)。次いで、異常診断システムについ
て説明する。
Further, the level of the spectral noise is divided into N levels in advance, and the number of times of scanning required for one measurement is changed or the number of times of measurement is changed based on the set level. The accuracy of the calibration curve can be stably maintained even when the noise is close to the device limit (FIGS. 11 to 12). Next, the abnormality diagnosis system will be described.

【0022】これまでノイズレベルが通常よりも大か小
かを判定する機能はあったが、その原因究明についての
技術がない。そこで、ノイズ発生を検出すると、少なく
とも、アンプ出力電圧、電源電圧、ノイズ発生パターン
をチェックすることにより、ノイズ発生の原因を判定す
ることとした(図13)。一例を示せば、(イ)「=
0,=1」ならばセンサ、アンプなどの検出器系に異
常がある。(ロ)=1,=1,=1,=1,
=0,=1ならば、アンプに異常がある。(ハ)=
0,=0,=1ならば外気湿度によってノイズ発生
している。(ニ)=1,=0,=0ならば電源ノ
イズが乗っている。(ホ)=1,=6,=0なら
ばモータに異常がある。このほか、電装系各波長にわた
ってランダムに発生している場合は電源ノイズと判断す
る、特定の波長域に多発している場合は外気湿度による
ノイズと判断する、スキャン波長域の両端に発生してい
る場合は装置内部の原因と判断する、等である。
Up to now, there was a function of judging whether the noise level is higher or lower than usual, but there is no technique for investigating the cause. Therefore, when noise generation is detected, at least the amplifier output voltage, the power supply voltage, and the noise generation pattern are checked to determine the cause of noise generation (FIG. 13). To give an example, (a) “=
If "0, = 1", there is an abnormality in the detector system such as the sensor or amplifier. (B) = 1, = 1, = 1, = 1,
If = 0 and = 1, the amplifier is abnormal. (C) =
If 0, = 0, = 1, noise is generated due to outside air humidity. If (d) = 1, = 0, = 0, power supply noise is present. If (e) = 1, = 6, = 0, the motor is abnormal. In addition, if it is randomly generated over each wavelength of the electrical system, it is judged as power noise, if it occurs frequently in a specific wavelength range, it is judged as noise due to outside humidity, and it is generated at both ends of the scan wavelength range. If so, it is determined that the cause is inside the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】フローチャートである。FIG. 1 is a flowchart.

【図2】装置概要説明図である。FIG. 2 is an explanatory diagram of an apparatus outline.

【図3】近赤外分析装置概要説明図である。FIG. 3 is a schematic explanatory view of a near infrared analysis device.

【図4】ブロック図である。FIG. 4 is a block diagram.

【図5】フローチャートである。FIG. 5 is a flowchart.

【図6】フローチャートである。FIG. 6 is a flowchart.

【図7】測定の概念図である。FIG. 7 is a conceptual diagram of measurement.

【図8】フローチャートである。FIG. 8 is a flowchart.

【図9】吸光度データ処理の概要説明図である。FIG. 9 is a schematic explanatory diagram of absorbance data processing.

【図10】フローチャートである。FIG. 10 is a flowchart.

【図11】時間−RMSノイズレベル発生状況説明図で
ある。
FIG. 11 is a time-RMS noise level generation status explanatory diagram.

【図12】フローチャートである。FIG. 12 is a flowchart.

【図13】ノイズ以上診断のフローチャートである。FIG. 13 is a flow chart of noise or more diagnosis.

【符号の説明】[Explanation of symbols]

1,1 貯留タンク 2 計量機 3,3 浸漬タンク 4 蒸煮式炊飯装置 5 米飯冷却装置 6 盛り付け装置 7,8 搬送エレベータ7,8 9,10,11,12 コンベア 13 洗米機 14,14 水圧パ
イプ 15 近赤外分析装置 16 コンピュータ 17 近赤外分析装置 18 コンピュータ 19 光源 20 反射鏡 21 回折格子駆動用モータ 22 回折格子 23 サンプルセル 24 透過光センサ 25 反射光センサ 26 スペクトルデ
ータ記憶部 27 化学成分記憶部 28 検量線作成部
1,1 Storage tank 2 Weighing machine 3,3 Immersion tank 4 Steam-type rice cooker 5 Cooked rice cooler 6 Arrangement device 7,8 Conveyor elevator 7,8 9,10,11,12 Conveyor 13 Rice washing machine 14,14 Hydraulic pipe 15 Near infrared analysis device 16 Computer 17 Near infrared analysis device 18 Computer 19 Light source 20 Reflector 21 Diffraction grating drive motor 22 Diffraction grating 23 Sample cell 24 Transmitted light sensor 25 Reflected light sensor 26 Spectral data storage unit 27 Chemical component storage unit 28 Calibration curve creation section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 食品加工装置に供給する原料及びその食
品加工装置で加工した加工品の成分を近赤外分析によっ
て求め、これら加工前後の成分値等から品質評価値α,
βを演算しこれらの比較を行ない加工状態の適否を判定
することを特徴とする食品加工状態判定方法。
1. A raw material supplied to a food processing apparatus and a component of a processed product processed by the food processing apparatus are obtained by near infrared analysis, and a quality evaluation value α,
A method for determining a food processing state, which comprises calculating β and comparing these to determine whether or not the processing state is appropriate.
JP15862893A 1993-06-29 1993-06-29 Method of judging food processing condition Pending JPH0712722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15862893A JPH0712722A (en) 1993-06-29 1993-06-29 Method of judging food processing condition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15862893A JPH0712722A (en) 1993-06-29 1993-06-29 Method of judging food processing condition

Publications (1)

Publication Number Publication Date
JPH0712722A true JPH0712722A (en) 1995-01-17

Family

ID=15675867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15862893A Pending JPH0712722A (en) 1993-06-29 1993-06-29 Method of judging food processing condition

Country Status (1)

Country Link
JP (1) JPH0712722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7836982B2 (en) 2005-10-27 2010-11-23 Yanmar Co., Ltd. Compact crawler type tractor
FR3071393A1 (en) * 2017-09-27 2019-03-29 Seb S.A. SYSTEM AND METHOD FOR COOKING RICE

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7836982B2 (en) 2005-10-27 2010-11-23 Yanmar Co., Ltd. Compact crawler type tractor
FR3071393A1 (en) * 2017-09-27 2019-03-29 Seb S.A. SYSTEM AND METHOD FOR COOKING RICE
WO2019063922A1 (en) * 2017-09-27 2019-04-04 Seb S.A. Device and method for cooking rice
CN111148455A (en) * 2017-09-27 2020-05-12 Seb公司 Rice cooking system and method
CN111148455B (en) * 2017-09-27 2021-04-27 Seb公司 Rice cooking system and method

Similar Documents

Publication Publication Date Title
Li et al. Optical chlorophyll sensing system for banana ripening
US5614718A (en) Apparatus and method for noninvasive assessment of pressurized container properties
KR910004140B1 (en) Rise quality valuation device
JP4104075B2 (en) Object calorie measuring method and object calorie measuring device
EP0511184A1 (en) Method and device for infrared analysis, especially with regard to food
McFarlane Automatic control of food manufacturing processes
CN108760647A (en) A kind of wheat content of molds line detecting method based on Vis/NIR technology
MXPA04011756A (en) A method and a spectrometer for quantitative determination of a constituent in a sample.
Belyakov et al. Control of bulk products’ humidity and grinding size by the photoluminescent method photoluminescent quality control
JPH0712722A (en) Method of judging food processing condition
JPH0627743B2 (en) Automatic analyzer
Büning‐Pfaue et al. Application of near infrared spectroscopy (NIRS) in the analysis of frying fats
JPH0690208B2 (en) Automatic analyzer
JPH06288907A (en) Evaluation of quality of unhulled rice
WO2014119435A1 (en) Automatic analyzer
JP2008122412A (en) Method of measuring calorie of food item, and device for measuring calorie of food item
JPH03160345A (en) Method of evaluating quality of boiled rice
JPH07104279B2 (en) Evaluation method of rice taste
JPH06229913A (en) Measuring method for content of component of grain and the like
JPS63175747A (en) Instrument for measuring content of amylose or amylopectin of rice
JPH0560685A (en) Temperature estimation method and protein content estimation method by means of near infrared spectral analysis
JPH0815140A (en) Grain evaluation system
JPH08152401A (en) Near infrared analyzer
JPS63188743A (en) Taste measuring instrument for rice
JP2000201528A (en) Determination of reaping time