JPH07126815A - Permanent magnet material - Google Patents

Permanent magnet material

Info

Publication number
JPH07126815A
JPH07126815A JP5270804A JP27080493A JPH07126815A JP H07126815 A JPH07126815 A JP H07126815A JP 5270804 A JP5270804 A JP 5270804A JP 27080493 A JP27080493 A JP 27080493A JP H07126815 A JPH07126815 A JP H07126815A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetic
crystal
feco
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5270804A
Other languages
Japanese (ja)
Inventor
Akimasa Sakuma
昭正 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5270804A priority Critical patent/JPH07126815A/en
Publication of JPH07126815A publication Critical patent/JPH07126815A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/068Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder having a L10 crystallographic structure, e.g. [Co,Fe][Pt,Pd] (nano)particles

Abstract

PURPOSE:To develop a permanent magnet having excellent magnetic properties without using expensive rate earth elements by forming the crystal structure of a permanent magnet essentially consisting of Fe, Co and specified metals into a specified body-centered tetragonal structural body. CONSTITUTION:High purity Fe, Co and Pd or Pt is subjected to arc melting in an inert atmosphere of Ar or the like into an alloy having a compsn. of FeCo1-xPdx or FeCo1-xPtx (where x satisfies 0.2<=x<=0.9), and the slab is subjected to heat treatment, e.g. at 1100 deg.C for 20hr in a magnetic field and is thereafter rapidly cooled to a room temp. The permanent magnet in which a CuAu type body-centered tetragonal structural body embracing Co, Pd and Pt at the body-centered position forms a main phase, the C axis is used as an easily-magnetized axis and the crystal magnetic anisotropy energy at a room temp. is regulated to >=10<5>J/m<3> and excellent in magnetic properties can be obtd. without using easily oxidizable expensive rare earth elements.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスピーカー、VCM、回
転器等に使用される永久磁石材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet material used for a speaker, a VCM, a rotator and the like.

【0002】[0002]

【従来の技術】現在実用化されている希土類磁石は大別
してSm−Co系とNd−Fe−B系がある。前者は保
磁力は高く温度特性にも優れているが、飽和磁化Mが低
いという難点があった。これは元来Mの大きいFeをベ
ースに用いたNd−Fe−B系の開発によって解決さ
れ、高価なCoを含まないことも手伝って、産業的には
Nd−Fe−B系磁石に移行しつつある。しかしなが
ら、Nd−Fe−B系はキュリー温度は低く、また酸化
され易いという問題点を抱えており、現在でもその対策
のための開発が進められている。特に、酸化の問題は耐
食性のみならず磁気特性そのものにも悪影響を与えてお
り、製造過程における酸素の低減は製造コストにも大き
く影響してくる。これはFeを使用していることの他に
希土類を原料としていることの宿命ともいえる問題であ
り、希土類磁石一般の問題といえる。
2. Description of the Related Art Rare earth magnets currently in practical use are roughly classified into Sm-Co type and Nd-Fe-B type. The former has a high coercive force and excellent temperature characteristics, but has a drawback that the saturation magnetization M is low. This was originally solved by the development of an Nd-Fe-B system using Fe with a large M as a base, and since it also did not contain expensive Co, it was industrially shifted to an Nd-Fe-B system magnet. It's starting. However, the Nd-Fe-B system has a problem that it has a low Curie temperature and is easily oxidized, and development is currently underway as a countermeasure against it. In particular, the problem of oxidation adversely affects not only the corrosion resistance but also the magnetic properties themselves, and the reduction of oxygen in the manufacturing process greatly affects the manufacturing cost. This is a problem that can be said to be the fate of using rare earths as a raw material in addition to the use of Fe, and can be said to be a general problem of rare earth magnets.

【0003】[0003]

【発明が解決しようとする課題】本発明は、高価で酸化
の問題を抱える希土類元素を用いることなく、かつ高い
磁気特性を有する優れた永久磁石材料を提供するもので
ある。
DISCLOSURE OF THE INVENTION The present invention provides an excellent permanent magnet material having high magnetic characteristics without using a rare earth element which is expensive and has a problem of oxidation.

【0004】[0004]

【課題を解決するための手段】本発明者は正方晶に歪ん
だCuAu型構造(図1)を持つFePdやFePtの
PdやPtの一部をCoで置換してもなお正方晶構造が
保たれ、しかも結晶磁気異方性エネルギ−は置換前より
大きくなり磁化も増大することを見いだし、本発明に至
った。以下で、本発明に至る経緯と内容を説明する。
The present inventor has found that even if a part of Pd or Pt of FePd or FePt having a CuAu type structure distorted in a tetragonal structure (FIG. 1) is replaced with Co, the tetragonal structure is maintained. Moreover, it was found that the crystalline magnetic anisotropy energy was larger than that before substitution and the magnetization was also increased, and the present invention was completed. The background and contents of the present invention will be described below.

【0005】永久磁石に要求される磁気特性のなかで磁
化と一軸性の結晶磁気異方性は最も重要かつ不可欠な特
性である。磁化についてみると、磁性材料の主役である
3d遷移金属の合金ではスレーター・ポーリング曲線に
みられるようにbcc−FeCo合金で大きな値を示す
が、結晶構造はCo単体を除いて何れも立方晶であり、
一軸異方性を示すものはhcp−Co以外にない。一
方、3d遷移金属と4d遷移金属の規則合金ではCoP
tやFePd、FePt等のようにc軸が伸びたCuA
u構造あるいはL10で記述される正方晶構造を持ち、
強い一軸の結晶磁気異方性を有するものが知られてい
る。しかし、PdやPtは殆ど磁気モーメントを持たな
いため、これらの平均の磁気モーメントあるいは磁化は
FeやCo金属の半分近くになる。
Among the magnetic properties required for a permanent magnet, magnetization and uniaxial crystal magnetic anisotropy are the most important and indispensable properties. Regarding the magnetization, in the alloy of 3d transition metal which is the main role of the magnetic material, a large value is shown in the bcc-FeCo alloy as seen in the Slater-Pauling curve, but the crystal structure is cubic except for Co alone. Yes,
Only hcp-Co exhibits uniaxial anisotropy. On the other hand, in the ordered alloy of 3d transition metal and 4d transition metal, CoP
CuA with extended c-axis like t, FePd, FePt, etc.
has a u structure or a tetragonal structure described by L1 0 ,
Those having strong uniaxial magnetocrystalline anisotropy are known. However, since Pd and Pt have almost no magnetic moment, their average magnetic moment or magnetization is close to half that of Fe or Co metal.

【0006】ところが、CuAu構造の体心位置を占め
るPtやPdの一部をCoで置換すれば系はCoが持つ
磁気モーメントの分だけ増加し、もし正方晶構造が保た
れれば、この系は大きな磁気異方性を持ちつつ且つ高い
磁化を有する材料となることが期待される。そこで、本
発明者は、局所密度汎関数近似に基づくバンド計算か
ら、FeCo1-XPdX(X=1,0.5)の永久磁石と
しての可能性について検討を行った。
However, if a part of Pt or Pd occupying the body-centered position of the CuAu structure is replaced with Co, the system increases by the magnetic moment of Co, and if the tetragonal structure is maintained, this system is maintained. Is expected to be a material having high magnetic anisotropy and high magnetization. Therefore, the present inventor examined the possibility of FeCo 1-X Pd X (X = 1,0.5) as a permanent magnet from band calculation based on the local density functional approximation.

【0007】図2はCuAu構造のFeCo0.5Pd0.5
において格子定数比をc/a=1.0,1.2および
1.3とした場合の系の全エネルギ−を格子定数に対応
するWigner-Seitz 半径rWSの関数としてプロットした
ものである。c/a=1.0よりc/a=1.2の場合
の方がエネルギ−極小を与えるrWSでの系のエネルギ−
は低くなることから、少なくともこの系はc/a=1.
0の立方晶よりc/a>1の正方晶のほうが安定となる
ことが期待される。図3はFePdとFeCo0.5Pd
0.5の磁化のc/a依存性の計算結果である。FePd
の実際の格子定数比c/a=1.3576においてPd
の半分をCoで置換したFeCo0.5Pd0.5では確かに
磁化が増大するのが分かる。しかし、FeCo0.5Pd
0.5の場合、エネルギ−的に安定と思われるc/a=
1.2においては更に磁化は増大することがわかる。従
って、PdをCoで置換した場合、単に原子の置換によ
る影響だけでなくc/aの縮みによっても磁化は増大す
ることが期待される。図4はFePdとFeCo0.5
0.5の結晶磁気異方性エネルギ−Kuのc/a依存性
の計算結果である。FePdの実際の格子定数比c/a
=1.3576におけるKuは約25×105J/m3
あり計算値は良い一致を示している。c/aが減少する
とFePd、FeCo0.5Pd0.5の何れの場合もKuが
減少するのは、これらが対称性の高い立方晶に近づくこ
とを反映した結果として容易に理解される。ここで注目
すべきことは、FePdよりFeCo0.5Pd0.5の方が
異方性エネルギ−が大きいことである。もともとFeP
dやFePtが強い磁気異方性を示すのは、PdやPt
がFeやCoに比べて非常に大きなスピン軌道相互作用
エネルギーを持つことが主な原因であるが、これをCo
で一部置換したことで磁気異方性が更に強くなるのは大
変興味深い結果である。これは、磁気異方性にはスピン
軌道相互作用と交換相互作用の両者が関与しており、C
oの置換は交換分裂を助長することで磁気異方性にも影
響を与えているためと解釈される。以上の結果はFeP
tにおいても定性的に同じであり、Ptの一部をCoで
置換することで磁化のみならず磁気異方性エネルギーも
増大するという計算結果が得られた。
FIG. 2 shows a CuAu structure FeCo 0.5 Pd 0.5.
Is a plot of the total energy of the system when the lattice constant ratio is c / a = 1.0, 1.2 and 1.3 as a function of the Wigner-Seitz radius r WS corresponding to the lattice constant. The energy of the system at r WS which gives the minimum energy in the case of c / a = 1.2 than in c / a = 1.0
Is low, so at least this system has c / a = 1.
It is expected that the tetragonal crystal with c / a> 1 will be more stable than the cubic crystal with 0. Figure 3 shows FePd and FeCo 0.5 Pd
It is a calculation result of c / a dependence of magnetization of 0.5 . FePd
Pd at the actual lattice constant ratio c / a of 1.3576
It can be seen that the magnetization is certainly increased in FeCo 0.5 Pd 0.5 in which half of the above is replaced by Co. However, FeCo 0.5 Pd
In the case of 0.5 , c / a = which seems to be stable in terms of energy
It can be seen that the magnetization is further increased in 1.2. Therefore, when Pd is replaced by Co, it is expected that the magnetization is increased not only by the effect of atom replacement but also by the contraction of c / a. Figure 4 shows FePd and FeCo 0.5 P
It is a calculation result of c / a dependence of crystal magnetic anisotropy energy-Ku of d 0.5 . Actual lattice constant ratio c / a of FePd
= 1.3576, the Ku is about 25 × 10 5 J / m 3 , and the calculated values show a good agreement. It is easily understood that Ku decreases in both FePd and FeCo 0.5 Pd 0.5 when c / a decreases, as a result of the fact that they approach a highly symmetric cubic crystal. What should be noted here is that FeCo 0.5 Pd 0.5 has a larger anisotropic energy than FePd. Originally FeP
It is Pd and Pt that d and FePt show strong magnetic anisotropy.
Has a very large spin-orbit interaction energy compared to Fe and Co.
It is a very interesting result that the magnetic anisotropy becomes stronger by substituting a part with. This is because both spin-orbit interaction and exchange interaction are involved in magnetic anisotropy.
It is interpreted that the substitution of o promotes exchange splitting and thus affects the magnetic anisotropy. The above results are FeP
It was qualitatively the same at t, and the calculation result was obtained that not only the magnetization but also the magnetic anisotropy energy increased by substituting a part of Pt with Co.

【0008】本発明者は上記の計算結果に基づきFeC
1-XPdXおよびFeCo1-XPtを作成し、磁気特
性の評価を行ったところ、0.2≦X≦0.9の範囲に
おいて磁化の増大と良好な一軸異方性が確認された。X
<0.2では系は立方晶になってしまい、一軸異方性は
得られない。また、X>0.9ではCo置換の効果は認
められず良好な特性は得られなかった。
Based on the above calculation results, the inventor has found that FeC
o 1-X Pd X and FeCo 1-X Pt X were prepared and magnetic properties were evaluated. As a result, an increase in magnetization and good uniaxial anisotropy were confirmed in the range of 0.2 ≦ X ≦ 0.9. Was done. X
When <0.2, the system becomes cubic and uniaxial anisotropy cannot be obtained. Further, when X> 0.9, the effect of Co substitution was not recognized and good characteristics were not obtained.

【0009】[0009]

【実施例】以下、実施例により本発明を説明する。純度
99.9%の鉄と純度99.9%のCoおよび純度9
9.7%のPdをAr雰囲気中でアーク溶解し、FeC
1−XPdX(X=0.3,0.4,0.5,0.
6)の不規則合金を得た。その後、磁場中1100℃で
20h熱処理し、室温まで徐冷する事によって規則相の
単相を得た。表1に得られた磁気特性を示す。
EXAMPLES The present invention will be described below with reference to examples. Purity 99.9% iron and purity 99.9% Co and purity 9
9.7% Pd is arc-melted in Ar atmosphere to produce FeC
o 1-X Pd X (X = 0.3, 0.4, 0.5, 0.
A disordered alloy of 6) was obtained. After that, heat treatment was performed at 1100 ° C. for 20 hours in a magnetic field, and the mixture was gradually cooled to room temperature to obtain a regular single phase. Table 1 shows the obtained magnetic characteristics.

【0010】[0010]

【表1】 M:磁化(室温)、Tc:キュリー温度、Ku:結晶磁
気異方性エネルギー(室温)
[Table 1] M: Magnetization (room temperature), Tc: Curie temperature, Ku: Crystal magnetic anisotropy energy (room temperature)

【0011】表2には同様の方法で得られたFeCo
1-XPtX(X=0.3,0.4,0.5,0.6)の磁
気特性を示す。
Table 2 shows FeCo obtained by a similar method.
The magnetic characteristics of 1-X Pt X (X = 0.3, 0.4, 0.5, 0.6) are shown.

【0012】[0012]

【表2】 M:磁化(室温)、Tc:キュリー温度、Ku:結晶磁
気異方性エネルギー(室温)
[Table 2] M: Magnetization (room temperature), Tc: Curie temperature, Ku: Crystal magnetic anisotropy energy (room temperature)

【0013】[0013]

【発明の効果】本発明の特定合金組成によれば希土類元
素を使用することなしに優れた磁気特性を有する永久磁
石材料が得られる。
According to the specific alloy composition of the present invention, a permanent magnet material having excellent magnetic properties can be obtained without using a rare earth element.

【図面の簡単な説明】[Brief description of drawings]

【図1】CuAu型規則合金の結晶構造を示す図。FIG. 1 is a diagram showing a crystal structure of a CuAu type ordered alloy.

【図2】FeCo0.5Pd0.5の各格子定数比における結
晶エネルギーのWigner-Seitz半径rWS(原子単位)依存
性を示すグラフである。
FIG. 2 is a graph showing the Wigner-Seitz radius r WS (atomic unit) dependence of the crystal energy at each lattice constant ratio of FeCo 0.5 Pd 0.5 .

【図3】FePdとFeCo0.5Pd0.5の磁化Mの格子
定数比c/a依存性を示すグラフである。
FIG. 3 is a graph showing the dependence of the magnetization M of FePd and FeCo 0.5 Pd 0.5 on the lattice constant ratio c / a.

【図4】FePdとFeCo0.5Pd0.5の結晶磁気異方
性エネルギーのc/a依存性を示すグラフである。
FIG. 4 is a graph showing the c / a dependence of crystal magnetic anisotropy energy of FePd and FeCo 0.5 Pd 0.5 .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 7/02 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01F 7/02 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Fe,Co,およびM(M:Pd、Pt
の少なくとも一種)を含み、CoおよびMを体心位置に
擁するCuAu型の体心正方晶構造体が主相をなすこと
を特徴とする永久磁石材料。
1. Fe, Co, and M (M: Pd, Pt)
A permanent magnet material containing a CuAu-type body-centered tetragonal structure having Co and M at the body-centered position as a main phase.
【請求項2】 FeCo1-XX(ただし、0.2≦x≦
0.9)の組成を有する請求項1に記載の永久磁石材
料。
2. FeCo 1-X M X (where 0.2 ≦ x ≦
The permanent magnet material according to claim 1, having a composition of 0.9).
【請求項3】 c軸を磁化容易軸とし、室温における結
晶磁気異方性エネルギ−が105J/m3以上である請求
項1または請求項2に記載の永久磁石。
3. The permanent magnet according to claim 1, wherein the c-axis is the axis of easy magnetization and the magnetocrystalline anisotropy energy at room temperature is 10 5 J / m 3 or more.
JP5270804A 1993-10-28 1993-10-28 Permanent magnet material Pending JPH07126815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270804A JPH07126815A (en) 1993-10-28 1993-10-28 Permanent magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270804A JPH07126815A (en) 1993-10-28 1993-10-28 Permanent magnet material

Publications (1)

Publication Number Publication Date
JPH07126815A true JPH07126815A (en) 1995-05-16

Family

ID=17491254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270804A Pending JPH07126815A (en) 1993-10-28 1993-10-28 Permanent magnet material

Country Status (1)

Country Link
JP (1) JPH07126815A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226878A2 (en) * 2001-01-24 2002-07-31 Matsushita Electric Industrial Co., Ltd. Aligned fine particles, method for producing the same and device using the same
JP2012195327A (en) * 2011-03-15 2012-10-11 Taiyo Yuden Co Ltd Magnetic thin film, method of manufacturing the same, magnetic characteristic control method, and thin film magnetic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1226878A2 (en) * 2001-01-24 2002-07-31 Matsushita Electric Industrial Co., Ltd. Aligned fine particles, method for producing the same and device using the same
EP1226878A3 (en) * 2001-01-24 2003-08-13 Matsushita Electric Industrial Co., Ltd. Aligned fine particles, method for producing the same and device using the same
US7220482B2 (en) 2001-01-24 2007-05-22 Matsushita Electric Industrial Co., Ltd. Aligned fine particles, method for producing the same and device using the same
JP2012195327A (en) * 2011-03-15 2012-10-11 Taiyo Yuden Co Ltd Magnetic thin film, method of manufacturing the same, magnetic characteristic control method, and thin film magnetic device

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JPS6032306A (en) Permanent magnet
JPS60131949A (en) Iron-rare earth-nitrogen permanent magnet
US5800728A (en) Permanent magnetic material made of iron-rare earth metal alloy
JP2774372B2 (en) Permanent magnet powder
JPS60176202A (en) Iron-rare earth-nitrogen permanent magnet
JPH07126815A (en) Permanent magnet material
JPH01290744A (en) Fe-base soft-magnetic alloy
KR0168495B1 (en) Ñß-FE BASE RE-FE-B NM CRYSTAL ALLOY AND ITS PRODUCING METHOD AND USE
JP3073807B2 (en) Iron-rare earth permanent magnet material and method for producing the same
JPH07142220A (en) Material for permanent magnet
JP3360938B2 (en) Permanent magnet material
JP3558350B2 (en) Fe-based soft magnetic alloy and manufacturing method
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPS60187662A (en) Ferromagnetic alloy
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JPH0521216A (en) Permanent magnet alloy and its production
JPH0869907A (en) Material for permanent magnet and material for bonded magnet using the same
JPH0257683B2 (en)
JPH07335416A (en) Material for permanent magnet
JPH10340806A (en) Rare earth-iron magnetic material and manufacture thereof
JP2809946B2 (en) Iron-rare earth-nitrogen permanent magnet powder
JPH0533095A (en) Permanent magnet alloy and its production
JPH04177806A (en) Iron-rare earth element-nitrogen based permanent magnet and manufacture thereof