JPH07125651A - Strengthening member - Google Patents

Strengthening member

Info

Publication number
JPH07125651A
JPH07125651A JP27550693A JP27550693A JPH07125651A JP H07125651 A JPH07125651 A JP H07125651A JP 27550693 A JP27550693 A JP 27550693A JP 27550693 A JP27550693 A JP 27550693A JP H07125651 A JPH07125651 A JP H07125651A
Authority
JP
Japan
Prior art keywords
corner
welding
strength
flange
effective width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27550693A
Other languages
Japanese (ja)
Other versions
JP3381336B2 (en
Inventor
Yuichi Kitagawa
裕一 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP27550693A priority Critical patent/JP3381336B2/en
Publication of JPH07125651A publication Critical patent/JPH07125651A/en
Application granted granted Critical
Publication of JP3381336B2 publication Critical patent/JP3381336B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To doubly increase a crash load and stabilize a crash mode by applying welding within a range of specified effective width in the width direction of a flange from the center of a corner part adjacent to the flange. CONSTITUTION:A first member 11 has a roughly hut section and flanges 13 are provided on both end parts in the width direction of the first member 11 through corner parts K1. The first member 11 has roughly constant thickness (t) and has the corner parts K1, K2 of n=4 pieces. A second member 12 has a plate shape of the same thickness (t), both of its end parts 12a in the width direction are put against the flanges 13 of the first member 11 and are welded 14 along the longitudinal direction. The welding 14 is wire welding, and it is carried out by radiating a laser beam, etc. Consequently, a strengthening member 30 has a wire welding part N at a position adjacent to the corner part K1 adjoining the flanges 13. The strengthening member 30 has the wire welding part N in a range of effective width (a)=16t<0.46> toward end parts in the width direction of the flanges 13 from the center (head part) of the corner part K1 adjoining the flanges 13.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は長さ方向の圧縮荷重を
受けることにより圧潰して衝突エネルギ等を吸収するフ
ロントサイドメンバ等の強度部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strength member such as a front side member which is crushed by receiving a compressive load in the longitudinal direction to absorb collision energy and the like.

【0002】[0002]

【従来の技術】従来の強度部材として、図23の自動車
100のフロントサイドメンバ103等に用いられる図
24に示すようなものがある(実開昭58−56654
号公報参照)。
2. Description of the Related Art As a conventional strength member, there is one as shown in FIG. 24 which is used for the front side member 103 of the automobile 100 shown in FIG.
(See the official gazette).

【0003】まず、図24(a)に示す強度部材10は
略一定板厚tのハット断面である第1の部材11と同じ
板厚tの略プレート状である第2の部材12とを突き当
てて溶接し、閉断面構造としている。すなわち、前記第
1の部材11は幅方向両端部に第1のフランジ13を有
し、第1のフランジ13に隣接した角部K1を加えると
n=4の角部K1,K2を有している。前記第2の部材
12は、第1の部材11の開口を閉じるように配置さ
れ、両端部12aがフランジ13に溶接14され、四角
形断面の長尺筒状の強度部材10が構成されている。溶
接14は点溶接、あるいは線溶接となっている。
First, the strength member 10 shown in FIG. 24 (a) projects a first member 11 having a hat cross section having a substantially constant plate thickness t and a second plate member 12 having a plate thickness t and having a substantially plate shape. It is applied and welded to form a closed cross-section structure. That is, the first member 11 has first flanges 13 at both ends in the width direction, and when a corner K1 adjacent to the first flange 13 is added, it has corners K1 and K2 of n = 4. There is. The second member 12 is arranged so as to close the opening of the first member 11, and both end portions 12a are welded 14 to the flange 13 to form a long tubular strength member 10 having a quadrangular cross section. The welding 14 is spot welding or line welding.

【0004】図24(b)に示す強度部材20はn=4
個の角部K1,K2を有する第1の部材11を一対備
え、フランジ13相互を溶接14することにより略四角
形断面の長尺筒状の強度部材20を構成している。
The strength member 20 shown in FIG. 24 (b) has n = 4.
A pair of the first members 11 having the individual corners K1 and K2 are provided, and the flanges 13 are welded 14 together to form a long tubular strength member 20 having a substantially quadrangular cross section.

【0005】そして、これらの強度部材10,20を図
23のように車輌100のフロントサイドメンバ103
とした場合、車輌衝突時に衝突エネルギを吸収する。す
なわち、前方から車輌100に衝突荷重Fが作用しその
荷重が大きいと、フロントサイドメンバ103は図22
に示すように長さ方向に所定ピッチ(以下「圧潰ピッ
チ」と称する)で蛇腹状に圧潰し、衝突エネルギを吸収
する。
Then, the strength members 10 and 20 are connected to the front side member 103 of the vehicle 100 as shown in FIG.
In this case, the collision energy is absorbed when the vehicle collides. That is, if the collision load F acts on the vehicle 100 from the front and the load is large, the front side member 103 will be
As shown in (3), it is crushed into a bellows shape at a predetermined pitch (hereinafter referred to as “crush pitch”) in the length direction to absorb collision energy.

【0006】[0006]

【発明が解決しようとする課題】ところで、衝突エネル
ギを吸収する場合の圧潰荷重Pと圧潰ストロークSとの
関係を図26に示す。通常、圧潰荷重Pは、衝突当初に
最大値(Pmax )となり、圧潰ストロークSの増加と共
に減衰する。このとき衝突エネルギの吸収量は、Pの積
分値として求めることができ、この値は圧潰荷重の平均
値(平均圧潰荷重)Pave に比例する。従って、衝突エ
ネルギの吸収のためには平均圧潰荷重Pav e を大きくす
ることが肝要である。
FIG. 26 shows the relationship between the crush load P and the crush stroke S when absorbing collision energy. Usually, the crush load P has the maximum value (P max ) at the beginning of the collision, and decreases as the crush stroke S increases. At this time, the amount of collision energy absorbed can be obtained as an integrated value of P, and this value is proportional to the average value of the crush load (average crush load) P ave . Therefore, for the absorption of the collision energy is important to increase the average crush load P av e.

【0007】一方、フロントサイドメンバ103として
用いた強度部材10の圧潰時のある断面を見ると、図2
7に示すように角部K1,K2が延びるように塑性変形
している。この塑性変形により衝突エネルギを吸収する
が、特に角部K1,K2の塑性変形で大部分のエネルギ
を吸収することが解明されている。
On the other hand, looking at a cross section of the strength member 10 used as the front side member 103 at the time of crushing, FIG.
As shown in FIG. 7, the corners K1 and K2 are plastically deformed so as to extend. It has been clarified that the collision energy is absorbed by this plastic deformation, but most of the energy is absorbed by the plastic deformation of the corners K1 and K2.

【0008】しかし、図24のような溶接構造の場合、
第1の部材11と第2の部材12との溶接14の箇所が
角部K1に対して最適化されておらず、特に角部K1か
ら遠い位置に溶接14の箇所があると角部K1の変形が
容易となり、そのままでは平均圧潰荷重Pave の増加に
限界がある。
However, in the case of a welded structure as shown in FIG.
The location of the weld 14 between the first member 11 and the second member 12 is not optimized for the corner K1, and if the location of the weld 14 is located far from the corner K1, the corner K1 will be Deformation becomes easy, and there is a limit to increase the average crush load P ave as it is.

【0009】ここで部材の板厚を増加すれば角部K1の
剛性も高まり平均圧潰荷重Pave はそれだけ大きくなる
が、単に板厚を増すと重量増を招くことになり得策では
ない。
Here, if the plate thickness of the member is increased, the rigidity of the corner portion K1 is also increased and the average crush load P ave is increased accordingly. However, simply increasing the plate thickness causes an increase in weight, which is not a good measure.

【0010】また、特開昭60−454854号公報に
記載のように、部材の角部に補強材を設ける手段もある
が、これも補強材を設ける分、重量増を招きかつ補強材
を固定するための工程が新たに必要となり、やはり得策
ではない。
Further, as described in Japanese Patent Laid-Open No. 454854/1985, there is a means for providing a reinforcing member at the corner of the member, but this also causes the weight increase and the fixing of the reinforcing member because the reinforcing material is provided. A new process is required to do so, which is still not a good idea.

【0011】さらに、部材を熱処理して材料の強度アッ
プを図る手段が検討されている。しかし、部材を全面的
に熱処理すると、全体の剛性が増加して圧潰ピッチが長
くなり、圧潰モードが不安定になって、衝突エネルギの
吸収設定が難しくなる恐れがある。
Further, means for heat treating the member to increase the strength of the material have been studied. However, if the member is entirely heat-treated, the rigidity of the entire member increases, the crushing pitch becomes long, the crushing mode becomes unstable, and it is difficult to set the collision energy absorption.

【0012】そこでこの発明は、溶接範囲の特定により
圧潰荷重の増加と圧潰モードの安定との両立を図ること
のできる強度部材の提供を目的とする。
Therefore, an object of the present invention is to provide a strength member capable of achieving both an increase in a crush load and a stable crush mode by specifying a welding range.

【0013】[0013]

【課題を解決するための手段】上記問題を解決するため
に請求項1の発明は、フランジとn個の角部とを有し、
板厚tの第1の部材と、前記フランジに突き当てられて
長手方向に沿って溶接される第2の部材とからなる長尺
筒状の強度部材において、前記フランジに隣接する前記
角部の中央からフランジの幅方向に有効幅a=4nt
0.46の範囲内で前記溶接を施したことを特徴とする。
In order to solve the above problems, the invention of claim 1 has a flange and n corners,
In a long tubular strength member composed of a first member having a plate thickness t and a second member that is abutted against the flange and welded along the longitudinal direction, the corner portion adjacent to the flange Effective width a = 4nt from center to flange width direction
The welding is performed within the range of 0.46 .

【0014】請求項2の発明は、請求項1記載の強度部
材であって、前記フランジに隣接する角部は、曲率rを
有し、前記有効幅aが前記曲率rの角部の中央から曲率
中心を基準とした円周として与えられ、前記溶接を、角
部の中央からπr/4以上の位置に施したことを特徴と
する。
The invention of claim 2 is the strength member according to claim 1, wherein the corner portion adjacent to the flange has a curvature r, and the effective width a is from the center of the corner portion having the curvature r. It is given as a circumference based on the center of curvature, and the welding is performed at a position of πr / 4 or more from the center of the corner.

【0015】請求項3の発明は、請求項1、又は請求項
2記載の強度部材であって、前記溶接に、所定ピッチの
非溶接部を確保したことを特徴とする。
A third aspect of the present invention is the strength member according to the first or second aspect, characterized in that a non-welded portion having a predetermined pitch is secured in the welding.

【0016】請求項4の発明は、請求項3記載の強度部
材であって、前記非溶接部を、前記フランジに所定ピッ
チでビードを設けて形成したことを特徴とする。
The invention according to claim 4 is the strength member according to claim 3, wherein the non-welded portion is formed by providing beads on the flange at a predetermined pitch.

【0017】[0017]

【作用】上記手段の請求項1の発明では、第1の部材の
フランジに隣接する角部の中央からフランジの幅方向に
有効幅a=4nt0.46の範囲内で長手方向に沿って溶接
を施したため、フランジに隣接する角部の強度を前記有
効幅aで向上させることができる。また、溶接箇所を有
効幅aに特定することで角部の強度を向上させるから全
体的な強度アップは必要がなくなる。
According to the invention of claim 1 of the above-mentioned means, welding is performed along the longitudinal direction within the effective width a = 4nt 0.46 from the center of the corner adjacent to the flange of the first member in the width direction of the flange. Therefore, the strength of the corner portion adjacent to the flange can be improved by the effective width a. In addition, since the strength of the corner portion is improved by specifying the welding location as the effective width a, it is not necessary to increase the overall strength.

【0018】請求項2の発明では、有効幅aが曲率rの
角部の中央から曲率中心を基準とした周長として与えら
れ、フランジの溶接を角部の中央からπr/4以上の位
置に施したため、溶接が角部の曲率rの影響を受けるこ
とがなくなる。
According to the second aspect of the invention, the effective width a is given as the circumference from the center of the corner of the curvature r with the center of curvature as a reference, and the flange welding is performed at a position πr / 4 or more from the center of the corner. Since the welding is performed, the welding is not affected by the curvature r of the corner.

【0019】請求項3の発明では、請求項1、又は請求
項2記載の発明の作用の他、所定ピッチの非溶接部の存
在によって強度の高い部分と相対的に低い部分とが所定
ピッチで交互に並ぶことになる。従って、相対的に強度
の低い部分を腹として変形が進行する。
According to the invention of claim 3, in addition to the effect of the invention of claim 1 or 2, the presence of the non-welded portion having a predetermined pitch allows the high strength portion and the relatively low strength portion to have a predetermined pitch. It will be lined up alternately. Therefore, the deformation proceeds with the relatively low strength portion as the antinode.

【0020】請求項4の発明では、請求項3の発明の作
用の他、非溶接部がビードによって形成されているので
第1の部材にビードを一体的に形成することができ、こ
れによって非溶接部を容易に設けることが可能となる。
According to the invention of claim 4, in addition to the effect of the invention of claim 3, since the non-welded portion is formed by the bead, the bead can be integrally formed on the first member, and thereby the non-welded portion can be formed. The welded portion can be easily provided.

【0021】[0021]

【実施例】以下、この発明の実施例を説明する。Embodiments of the present invention will be described below.

【0022】図1はこの発明の第1実施例としての強度
部材30の斜視図である。この強度部材30は図24
(a)に示した強度部材10と同様に、第1の部材11
と第2の部材12とを溶接接合することによって略四角
形断面の長尺筒状に形成されている。
FIG. 1 is a perspective view of a strength member 30 as a first embodiment of the present invention. This strength member 30 is shown in FIG.
Similar to the strength member 10 shown in (a), the first member 11
And the second member 12 are welded and joined together to form a long tubular shape having a substantially quadrangular cross section.

【0023】前記第1の部材11は略ハット断面を呈し
ている。第1の部材11の幅方向両端部には角部K1を
介してフランジ13を有している。また、第1の部材1
1は略一定板厚tでありn=4個の角部K1,K2を有
している。
The first member 11 has a substantially hat cross section. The first member 11 has flanges 13 at both ends in the width direction via corners K1. Also, the first member 1
1 is a substantially constant plate thickness t, and has n = 4 corner portions K1 and K2.

【0024】前記第2の部材12は同じ板厚tのプレー
ト状を呈し、幅方向両端部12aが第1の部材11のフ
ランジ13に突き当てられ、長手方向に沿って溶接14
されている。前記溶接14は線溶接であり、レーザビー
ムを照射することなどによって行なわれている。従っ
て、強度部材30はフランジ13に隣接する角部K1に
近接した位置に線溶接部Nを有している。更に説明する
と強度部材30は図2に示すようにフランジ13に隣接
する角部K1の中央(頂部)よりフランジ13の幅方向
端部に向って有効幅a=16t0.46の範囲に線溶接部N
を有している。
The second member 12 has a plate shape having the same plate thickness t, and both widthwise end portions 12a are abutted against the flange 13 of the first member 11 and welded along the longitudinal direction.
Has been done. The welding 14 is line welding and is performed by irradiating a laser beam. Therefore, the strength member 30 has the line welded portion N at a position close to the corner K1 adjacent to the flange 13. To further explain, as shown in FIG. 2, the strength member 30 has a line welded portion N within the range of effective width a = 16t 0.46 from the center (top) of the corner K1 adjacent to the flange 13 toward the end in the width direction of the flange 13.
have.

【0025】ここで有効幅aの根拠を以下に述べる。The basis of the effective width a will be described below.

【0026】先に述べたように、複数の角部を有する部
材が長手方向の圧縮荷重により圧潰する場合、角部がエ
ネルギ吸収に重要な役割を果たす。
As described above, when a member having a plurality of corners is crushed by a compressive load in the longitudinal direction, the corners play an important role in energy absorption.

【0027】今、図3に示すような四角形断面のモデル
1について考えてみる。このモデル1は、n=4個の角
部Kと4つの辺Hを持つ矩形筒状断面である。ここで
は、縦の辺の長さをd、横の辺の長さ(幅)をb、板厚
をtとし、部材長さが断面寸法b、dに比較して十分大
きいものとする。
Now, consider a model 1 having a rectangular cross section as shown in FIG. The model 1 has a rectangular tubular cross section having n = 4 corners K and four sides H. Here, the length of the vertical side is d, the length (width) of the horizontal side is b, and the plate thickness is t, and the member length is sufficiently larger than the cross-sectional dimensions b and d.

【0028】このモデル1について、幅bの横の辺Hの
応力分布を、シミュレーションによって求めたところ、
図4に示すような結果が得られた。この結果によれば、
角部Kから有効幅aの範囲で、応力が略降伏応力σy以
上になり、それ以外の部分(辺Hの中央部)で応力が降
伏応力σy以下になっている。
For this model 1, the stress distribution on the side H on the side of the width b was determined by simulation.
The results shown in FIG. 4 were obtained. According to this result,
In the range from the corner portion K to the effective width a, the stress is substantially equal to or higher than the yield stress σy, and the stress is equal to or lower than the yield stress σy in the other portion (the central portion of the side H).

【0029】この結果から、「モデル1が軸方向の衝突
荷重を受けて圧潰するとき、衝突エネルギは、主に角部
Kの頂部から有効幅aの範囲が塑性変形することによっ
て吸収される。」と言うことができる。この有効幅aの
範囲とは、図5に示すモデル1の斜線部分であり、この
部分がエネルギ吸収に有効に寄与する部分である。
From this result, "When the model 1 is crushed by the axial collision load, the collision energy is absorbed mainly by the plastic deformation in the range of the effective width a from the top of the corner K. Can be said. The range of the effective width a is a shaded portion of the model 1 shown in FIG. 5, and this portion is a portion that effectively contributes to energy absorption.

【0030】次に、モデル1の断面寸法b(以下、これ
を「断面幅」という。)や板厚tが圧潰荷重の変化にど
う影響するかについて検討してみる。
Next, let us consider how the cross-sectional dimension b of the model 1 (hereinafter referred to as “cross-sectional width”) and the plate thickness t affect the change in the crush load.

【0031】従ってここでは、モデル1の断面幅bを変
化させた場合、あるいは板厚tを変化させた場合につい
て、圧潰荷重の変化を調べた。併せて、最大応力σmax
、有効幅aについても調べた。
Therefore, here, the change in the crush load was examined when the cross-sectional width b of the model 1 was changed or the plate thickness t was changed. In addition, the maximum stress σmax
The effective width a was also examined.

【0032】この結果を図6、図7に示す。図6が断面
幅を変えた場合、図7が板厚を変えた場合の結果であ
る。この結果から、平均圧潰荷重Pave や有効幅aは板
厚tには依存するが、断面幅bにほとんど依存しないこ
とが分かった。
The results are shown in FIGS. 6 and 7. 6 shows the results when the cross-sectional width was changed, and FIG. 7 shows the results when the plate thickness was changed. From this result, it was found that the average crush load P ave and the effective width a depend on the plate thickness t, but hardly depend on the sectional width b.

【0033】これらのことから、有効幅aと平均圧潰荷
重Pave との関係を、次の式で定めることができる。
From these facts , the relationship between the effective width a and the average crush load P ave can be defined by the following equation.

【0034】 Pave =8atσmax … この式の「8at」は、図5の斜線で示す断面積に略相
当する。この式は、断面積×最大応力(σmax )=平均
圧潰荷重を根拠にしている。
P ave = 8at σmax ... “8at” in this equation substantially corresponds to the cross-sectional area shown by the diagonal lines in FIG. This formula is based on the cross-sectional area x maximum stress (σmax) = average crush load.

【0035】一方、図7の結果より、平均圧潰荷重P
ave と板厚tとの間にはある関数が成立することが分か
る。この関数を求めてみると、 Pave =128t1.46σmax … であった。
On the other hand, from the result of FIG. 7, the average crush load P
It can be seen that a certain function holds between ave and the plate thickness t. When this function is obtained, P ave = 128t 1.46 σmax.

【0036】よって、前記、の2つの式から、 a=16t0.46 … が求められる。前述したように式の「8」は四角形の
場合の値であるから、四角形以外の多角形を対象にし
て、式を一般化すると、 a=4nt0.46 … が得られる。
Therefore, a = 16t 0.46 ... Is obtained from the above two equations. As described above, since “8” in the equation is a value in the case of a quadrangle, a = 4nt 0.46 ... Is obtained by generalizing the equation for polygons other than the quadrangle.

【0037】すなわち、衝突エネルギの大部分は、この
有効幅a内の材料の塑性変形によって吸収されると言う
ことができる。
That is, it can be said that most of the collision energy is absorbed by the plastic deformation of the material within the effective width a.

【0038】次に、有効幅aを実証するためにモデル1
の角部の有効幅aを、熱処理しない場合と、熱処理した
場合とで、圧潰時の応力を調べたところ、図8の結果を
得た。なお、熱処理は有効幅aを補強するものである。
熱処理しない場合は、図8(a)に示すように材料その
ものの降伏応力σyは均一であり、有効幅aの領域が降
伏応力以上になることで、圧潰が進行した。これに対
し、有効幅aの範囲を熱処理した場合は、図8(b)に
示すように、その領域の降伏応力σy’が局部的に増大
する。そして、有効幅aの降伏応力が増大することによ
り、圧潰時の応力が全体的に増大した。即ち、平均圧潰
荷重Pave が増大した。
Next, in order to demonstrate the effective width a, the model 1
The effective width “a” of the corner portion was examined for stress during crushing with and without heat treatment, and the results shown in FIG. 8 were obtained. The heat treatment reinforces the effective width a.
When the heat treatment was not performed, the yield stress σy of the material itself was uniform as shown in FIG. 8A, and the region of the effective width a was equal to or higher than the yield stress, and the crushing proceeded. On the other hand, when the heat treatment is performed in the range of the effective width a, the yield stress σy ′ in that region locally increases as shown in FIG. 8 (b). Then, as the yield stress of the effective width a increased, the stress during crushing increased overall. That is, the average crush load P ave increased.

【0039】次に、上記理論を裏付けるため、モデル1
を用い、熱処理の有効幅aを変化させた場合の平均圧潰
荷重Pave の変化を調べた。
Next, in order to support the above theory, the model 1
Was used to examine the change in the average crush load P ave when the effective width a of the heat treatment was changed.

【0040】図9(a)はモデル1を示している。ここ
では、板厚t=2.0mm、各辺Hの長さは共に100
mmとし、熱処理の有効幅aを0mm〜50mmの間で
変化させて平均圧潰荷重Pave の変化を調べ、同図(b)
の結果を得た。なお、0mmは熱処理なし、50mmは
全面熱処理を示す。
FIG. 9A shows the model 1. Here, the plate thickness t = 2.0 mm, and the length of each side H is 100
mm, the effective width a of the heat treatment was changed between 0 mm and 50 mm, and the change of the average crush load P ave was examined.
Got the result. Note that 0 mm indicates no heat treatment, and 50 mm indicates whole surface heat treatment.

【0041】図9(b)に示す結果から、熱処理の有効
幅aを0mmから増やすに従い、平均圧潰荷重Pave
増大し、ある幅を越えたところでPave が一定となっ
た。この「ある幅」が、前述した有効幅aに相当する。
よって、この有効幅aの範囲を熱処理すれば、平均圧潰
荷重を効果的に増大させることができる。
From the results shown in FIG. 9 (b), the average crush load P ave increased as the effective width a of the heat treatment was increased from 0 mm, and P ave became constant at a certain width. This "certain width" corresponds to the above-mentioned effective width a.
Therefore, if the range of the effective width a is heat-treated, the average crush load can be effectively increased.

【0042】因みに、厚さt=2.0mmの場合、前述
の理論によればa=16t0.46=22mmとなり、図9
(b) の結果とよく一致することが確認できた。
Incidentally, when the thickness t = 2.0 mm, a = 16t 0.46 = 22 mm according to the above theory.
It was confirmed that the results agree well with those in (b).

【0043】次に圧潰ピッチについて検討してみる。モ
デル1の圧潰ピッチは、角部Kの強度と辺Hの中央の強
度との比により、図10に示す変化をする。従って、角
部Kの強度が辺Hの中央の強度よりも大きい方が、圧潰
ピッチは小さくなることが確認できた。従って、角部K
のみの補強によりモデル1の圧潰ピッチを小さくするこ
とができる。
Next, the crushing pitch will be examined. The crushing pitch of the model 1 changes as shown in FIG. 10 depending on the ratio between the strength of the corner K and the strength of the center of the side H. Therefore, it was confirmed that the crushing pitch was smaller when the strength of the corner portion K was higher than the strength of the center of the side H. Therefore, the corner K
The crushing pitch of the model 1 can be reduced by the reinforcement of the chisel.

【0044】以上のことを根拠にして図11に示す第1
の部材11について考える。
Based on the above, the first shown in FIG.
Consider the member 11 of FIG.

【0045】この場合も角部K1が衝突エネルギを吸収
する上で重要な役割を果たすことは同じであるから前記
の有効幅aの考えをこの第1の部材11に適用すること
に無理はない。従って、斜線で示す範囲が衝突エネルギ
を吸収する大きな部分であるということができる。
In this case as well, since the corner portion K1 plays the same important role in absorbing the collision energy, it is natural to apply the idea of the effective width a to the first member 11. . Therefore, it can be said that the shaded area is a large portion that absorbs the collision energy.

【0046】ここで、図12のようにこの第1の部材1
1にプレート状の第2の部材12を溶接する場合を考え
てみる。
Here, as shown in FIG. 12, this first member 1
Consider the case where the plate-shaped second member 12 is welded to 1.

【0047】図12(a),(b)は第1の部材11に
プレート状の第2の部材12を線溶接した強度部材30
A,30Bをそれぞれ示している。同図(a)の強度部
材30Aでは線溶接の位置Uが有効幅aの外側にあり、
同図(b)に示す強度部材30Bでは線溶接の位置Uが
有効幅aの内側にある。両者を比較すると強度部材30
Aでは有効幅aの補強の意味が薄く、角部K1の補強効
果は弱い。強度部材30Bでは有効幅aの補強効果が高
い。従って、図13(a)のように強度部材30Aは圧
潰時に角部K1が容易に変形して圧潰荷重が相対的に低
くなる。一方、同図(b)の強度部材30Bは角部K1
の抗力が高く、圧潰荷重が相対的に高くなる。
12A and 12B show a strength member 30 in which the plate-shaped second member 12 is line-welded to the first member 11.
A and 30B are shown respectively. In the strength member 30A of FIG. 10A, the position U of the line welding is outside the effective width a,
In the strength member 30B shown in FIG. 7B, the position U of line welding is inside the effective width a. Comparing the two, the strength member 30
In A, the meaning of reinforcement of the effective width a is small, and the reinforcement effect of the corner portion K1 is weak. The strength member 30B has a high effect of reinforcing the effective width a. Therefore, as shown in FIG. 13A, the corner portion K1 of the strength member 30A is easily deformed during crushing, and the crushing load is relatively low. On the other hand, the strength member 30B of FIG.
And the crushing load is relatively high.

【0048】以上のことから図1、図2のように前記強
度部材30が角部K1の中央より有効幅a内に線溶接部
Nを有していることは平均圧潰荷重Pave の増加に大き
く寄与することとなる。もちろん有効幅a内でも角部K
1の中央に近い位置を線溶接すればより強度が高まる。
From the above, the fact that the strength member 30 has the line welded portion N within the effective width a from the center of the corner K1 as shown in FIGS. 1 and 2 increases the average crush load P ave . It will make a big contribution. Of course, even within the effective width a, the corner K
If line welding is performed at a position close to the center of 1, the strength will be further increased.

【0049】以上より、図1の強度部材30を例えばフ
ロントサイドメンバとして用いた場合、その圧潰により
角部K1,K2が効果的に働き十分なエネルギ吸収を行
うことができる。また、フランジ13での線溶接部Nを
有効幅a内とするだけであるから重量増を規制できる。
更に強度部材30を全体的に熱処理するのではないた
め、圧潰ピッチが短く安定した圧潰モードとなり吸収エ
ネルギの設定も容易となる。
As described above, when the strength member 30 shown in FIG. 1 is used as a front side member, for example, the corner portions K1 and K2 can effectively work due to the crushing and can sufficiently absorb energy. Further, since the line-welded portion N on the flange 13 is merely within the effective width a, the weight increase can be restricted.
Further, since the strength member 30 is not entirely heat-treated, the crushing pitch is short and the crushing mode is stable, and the absorbed energy can be easily set.

【0050】次に第2実施例を説明する。Next, a second embodiment will be described.

【0051】図14は第2実施例の強度部材40の要部
を示している。この第2実施例では角部K1が曲率rを
有している。そしてこの実施例では有効幅aを角部K1
の曲率中心Oを基準とした中央K1Cからの周長として
与えている。線溶接部Nは、角部K1の中央K1Cから
の周長がπr/4以上で有効幅aの範囲すなわち図14
のbの範囲に設けている。なお、δはフランジ13と縁
部12aとの隙間である。このような範囲に特定するの
は次の理由による。
FIG. 14 shows the essential parts of the strength member 40 of the second embodiment. In this second embodiment, the corner K1 has a curvature r. In this embodiment, the effective width a is set to the corner K1.
It is given as a perimeter from the center K1C with the center of curvature O as the reference. The line welded portion N has a peripheral length from the center K1C of the corner portion K1 of πr / 4 or more and a range of the effective width a, that is, FIG.
It is provided in the range of b. In addition, δ is a gap between the flange 13 and the edge portion 12a. The reason for specifying such a range is as follows.

【0052】すなわち、角部K1が曲率rを有している
場合には角部K1では第1の部材11と第2の部材12
との隙間δが大きくなり、レーザビームの照射などによ
る溶接の強度が低下するが、上記の範囲bで溶接すれば
溶接強度をほぼ最大に保つことができるからである。
That is, when the corner portion K1 has the curvature r, the first member 11 and the second member 12 at the corner portion K1.
The reason is that the gap δ between and becomes large, and the welding strength due to laser beam irradiation and the like decreases. However, if the welding is performed in the above range b, the welding strength can be maintained at the maximum.

【0053】図15は線溶接部Nの位置による部材強度
の違いを調べた結果を示している。角部K1の中央K1
Cからの距離πr/4以内に線溶接部Nがある場合は強
度が低く、bの範囲にある場合は最大強度を示し、有効
幅aを越えると再び強度が低下することが確認できた。
FIG. 15 shows the result of examining the difference in member strength depending on the position of the line welded portion N. Center K1 of corner K1
It was confirmed that the strength is low when the line welded portion N is within the distance πr / 4 from C, the maximum strength is exhibited when the wire welded portion N is in the range of b, and the strength is reduced again when the effective width a is exceeded.

【0054】従って、このような第2実施例の強度部材
40の場合は、圧潰時に第1実施例同様にエネルギ吸収
等を行うことができ、かつより適確にエネルギ吸収の増
大を図ることができる。
Therefore, in the case of such a strength member 40 of the second embodiment, it is possible to perform energy absorption and the like when crushing as in the first embodiment, and to increase energy absorption more accurately. it can.

【0055】次に第3実施例を説明する。Next, a third embodiment will be described.

【0056】第2実施例のように第1の部材11の角部
K1が曲率rをもって構成されている場合、線溶接部N
の位置は曲率rによって規制され、角部K1の中央K1
C側へ寄せることに限界がある。そこで、図16の第3
実施例の強度部材50では第2の部材12の幅方向中央
部12bを強度部材50の内側に突出させ、第2の部材
12を角部K1に沿った形状にしている。すなわち、図
17、図18のように第1の部材11の角部K1の曲率
1 より若干大きな曲率r2 の曲面12cを第2の部材
12に設定し、角部K1の中央K1Cに至るまで第1の
部材11と第2の部材12との隙間が広がらないように
している。この場合、図17のように線溶接部Nは角部
K1の中央K1Cに設けられている。
When the corner K1 of the first member 11 has a curvature r as in the second embodiment, the line welded portion N
Position is regulated by the curvature r, and the center K1 of the corner K1
There is a limit to how close to C side. Then, the third of FIG.
In the strength member 50 of the embodiment, the width direction central portion 12b of the second member 12 is projected to the inside of the strength member 50, and the second member 12 is shaped along the corner K1. That is, as shown in FIGS. 17 and 18, a curved surface 12c having a curvature r 2 slightly larger than the curvature r 1 of the corner K1 of the first member 11 is set in the second member 12 and reaches the center K1C of the corner K1. Until then, the gap between the first member 11 and the second member 12 is prevented from widening. In this case, the line welded portion N is provided at the center K1C of the corner portion K1 as shown in FIG.

【0057】従ってこの第3実施例では第2実施例と同
様な作用効果を奏する他、線溶接部Nが角部K1の中央
K1Cに存在することで角部K1周辺強度がより向上
し、平均圧潰荷重Pave をより増大することができる。
Therefore, in this third embodiment, in addition to the same effects as in the second embodiment, since the line welded portion N is present in the center K1C of the corner portion K1, the peripheral strength of the corner portion K1 is further improved, and the average strength is improved. The crush load P ave can be further increased.

【0058】次に第4実施例を説明する。Next, a fourth embodiment will be described.

【0059】図19は第4実施例の強度部材60の斜視
図を示している。この実施例では線溶接部Nに溶接しな
い部分である非溶接部Mを所定ピッチで設けている。こ
の所定ピッチは圧潰ピッチλであり実験や数値解析等に
より求めている。強度部材60では前端側となる長さ方
向一端60aから最初は1/2λ、次からはλのピッチ
で非溶接部Mが設けられている。
FIG. 19 shows a perspective view of the strength member 60 of the fourth embodiment. In this embodiment, the non-welded portions M which are not welded to the line welded portions N are provided at a predetermined pitch. This predetermined pitch is a crushing pitch λ and is obtained by experiments, numerical analysis, or the like. In the strength member 60, the non-welded portions M are provided at a pitch of ½λ from the one end 60a in the length direction, which is the front end side, and then λ.

【0060】従って、この実施例では第1実施例と同様
な作用効果を奏する他、強度部材60が強度の低い非溶
接部Mを腹とし、図20で示すように略理想的な圧潰ピ
ッチで圧潰することとなる。従って、圧潰モードが安定
し、吸収する衝突エネルギの設定が極めて容易となる。
Therefore, in this embodiment, in addition to the same effects as the first embodiment, the strength member 60 has the non-welded portion M of low strength as the antinode, and as shown in FIG. 20, at a substantially ideal crush pitch. It will be crushed. Therefore, the crushing mode is stable, and it is extremely easy to set the absorbed collision energy.

【0061】次に第5実施例を説明する。Next, a fifth embodiment will be described.

【0062】図21は第5実施例に係る強度部材70の
要部斜視図を示している。この実施例でも線溶接部Nに
所定ピッチで非溶接部Mを設けている。この実施例で
は、第1の部材11側のフランジ13に所定ピッチでビ
ード71を設け、このビード71の部分で第2の部材1
2の端部12aとの間に隙間72が形成されるようにし
ている。そして、レーザビームの照射等により線溶接し
た場合、ビード71の部分が溶接されず、非溶接部Mと
して残る。
FIG. 21 is a perspective view showing the main part of the strength member 70 according to the fifth embodiment. Also in this embodiment, the non-welded portions M are provided in the line welded portion N at a predetermined pitch. In this embodiment, the beads 13 are provided on the flange 13 on the first member 11 side at a predetermined pitch, and the bead 71 is used to form the second member 1.
A gap 72 is formed between the second end 12a. When line welding is performed by laser beam irradiation or the like, the portion of the bead 71 is not welded and remains as the non-welded portion M.

【0063】従って、この実施例においても第4実施例
と略同様な作用効果を奏する他、レーザビームの照射を
連続的に行なっても非溶接部Mが形成されるので作業性
が向上する。
Therefore, in this embodiment as well, substantially the same operation and effect as in the fourth embodiment can be obtained, and the workability is improved because the non-welded portion M is formed even if the laser beam is continuously irradiated.

【0064】なお、強度部材としては図24(b)のよ
うな第1の部材相互を溶接する構造のもの等にも適用す
ることができる。
As the strength member, it is possible to apply it to a structure in which the first members are welded to each other as shown in FIG. 24 (b).

【0065】[0065]

【発明の効果】以上より明らかなように請求項1の発明
によれば、溶接の範囲を特定するだけで角部を強度アッ
プすることができ、平均圧潰荷重の増大により、大きな
エネルギ吸収を行なうことができる。また、全面熱処理
して剛性を向上させるものではなく、圧潰モードも安定
し吸収エネルギの設定も容易となる。
As is apparent from the above, according to the invention of claim 1, the strength of the corner portion can be increased only by specifying the welding range, and a large energy absorption is achieved by increasing the average crush load. be able to. Moreover, the entire surface is not heat-treated to improve the rigidity, and the crushing mode is stable and the absorbed energy can be easily set.

【0066】請求項2の発明によれば、請求項1の効果
に加え、角部が曲率rを有していても最大限に角部の強
度を向上させることができ、平均圧潰荷重の増大により
大きな衝突エネルギを確実に吸収することができる。
According to the invention of claim 2, in addition to the effect of claim 1, even if the corner portion has the curvature r, the strength of the corner portion can be maximized, and the average crush load is increased. As a result, a large collision energy can be reliably absorbed.

【0067】請求項3の発明によれば、請求項1の効果
に加え、所定ピッチで圧潰を進行させることができ、圧
潰モードの安定を図ることができる。従って、圧潰時の
吸収エネルギの設定が極めて容易となる。
According to the invention of claim 3, in addition to the effect of claim 1, crushing can be advanced at a predetermined pitch, and the crushing mode can be stabilized. Therefore, it becomes extremely easy to set the absorbed energy during crushing.

【0068】請求項4の発明によれば、請求項3の効果
に加え、ビードの作用により普通の線溶接を行うだけで
自動的に非溶接部が所定ピッチで確保され、製造が極め
て容易となる。
According to the invention of claim 4, in addition to the effect of claim 3, the non-welded portion is automatically secured at a predetermined pitch only by performing ordinary wire welding by the action of the bead, which makes the manufacturing extremely easy. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1実施例の斜視図である。FIG. 1 is a perspective view of a first embodiment of the present invention.

【図2】第1実施例の正面図である。FIG. 2 is a front view of the first embodiment.

【図3】作用説明に用いる部材のモデルを示す斜視図で
ある。
FIG. 3 is a perspective view showing a model of a member used for explaining the operation.

【図4】同モデルのある辺における応力分布を示すグラ
フである。
FIG. 4 is a graph showing a stress distribution on a side of the model.

【図5】同モデルにおける有効幅の概念を説明する断面
図である。
FIG. 5 is a cross-sectional view illustrating the concept of effective width in the model.

【図6】同モデルの断面幅を変えた場合の圧潰荷重の変
化を調べた結果を示すもので、(a)は表、(b)はグ
ラフである。
6A and 6B show the results of examining the change in crush load when the cross-sectional width of the model is changed, where FIG. 6A is a table and FIG. 6B is a graph.

【図7】同モデルの板厚を変えた場合の圧潰荷重の変化
を調べた結果を示すもので、(a)は表、(b)はグラ
フである。
7A and 7B show the results of examining the change in crush load when the plate thickness of the model is changed, and FIG. 7A is a table and FIG. 7B is a graph.

【図8】同モデルの応力分布を比較して示す図であり、
(a)は熱処理しない場合の応力分布を示す図、(b)
は熱処理した場合の応力分布を示す図である。
FIG. 8 is a diagram showing a comparison of stress distributions of the same model,
(A) is a diagram showing a stress distribution without heat treatment, (b)
[Fig. 3] is a diagram showing a stress distribution when heat-treated.

【図9】熱処理幅を変えた場合の平均圧潰荷重の変化を
調べた結果を示すもので、(a)はモデルを示す斜視
図、(b)は熱処理幅と平均圧潰荷重との関係を示すグ
ラフである。
9A and 9B show the results of examining changes in the average crush load when the heat treatment width is changed. FIG. 9A is a perspective view showing a model, and FIG. 9B shows the relationship between the heat treatment width and the average crush load. It is a graph.

【図10】圧潰ピッチと強度との関係を示すグラフであ
る。
FIG. 10 is a graph showing the relationship between crushing pitch and strength.

【図11】第1の部材を示す断面図である。FIG. 11 is a cross-sectional view showing a first member.

【図12】溶接位置を示す断面図であり、(a)は有効
幅a外に溶接位置がある場合、(b)は有効幅a内に溶
接位置がある場合を示す。
12A and 12B are cross-sectional views showing a welding position, where FIG. 12A shows a welding position outside the effective width a, and FIG. 12B shows a welding position inside the effective width a.

【図13】圧潰時の断面変形を示し、(a)は有効幅a
外に溶接位置がある場合、(b)は有効幅a内に溶接位
置がある場合を示す図である。
FIG. 13 shows a cross-sectional deformation during crushing, where (a) is an effective width a.
When there is a welding position outside, (b) is a diagram showing a case where the welding position is within the effective width a.

【図14】第2実施例の要部拡大図である。FIG. 14 is an enlarged view of a main part of the second embodiment.

【図15】第2実施例の効果を示す特性図である。FIG. 15 is a characteristic diagram showing the effect of the second embodiment.

【図16】第3実施例の斜視図である。FIG. 16 is a perspective view of a third embodiment.

【図17】第3実施例の要部拡大図である。FIG. 17 is an enlarged view of a main part of the third embodiment.

【図18】同要部拡大概略図である。FIG. 18 is an enlarged schematic view of the main part.

【図19】第4実施例の斜視図である。FIG. 19 is a perspective view of a fourth embodiment.

【図20】同圧潰時の様子を示す側面図である。FIG. 20 is a side view showing a state when the same is crushed.

【図21】第5実施例の要部斜視図である。FIG. 21 is a perspective view of a main part of the fifth embodiment.

【図22】同要部側面図である。FIG. 22 is a side view of the relevant part.

【図23】フロントサイドメンバを示す自動車の前部概
略斜視図である。
FIG. 23 is a schematic front perspective view of a vehicle showing front side members.

【図24】強度部材の例を示す斜視図である。FIG. 24 is a perspective view showing an example of a strength member.

【図25】強度部材の圧潰の状態を示す斜視図である。FIG. 25 is a perspective view showing a crushed state of the strength member.

【図26】圧潰荷重と圧潰ストロークとの関係を示すグ
ラフである。
FIG. 26 is a graph showing a relationship between a crush load and a crush stroke.

【図27】圧潰時の断面変化を示す概略図である。FIG. 27 is a schematic view showing a cross-sectional change at the time of crushing.

【符号の説明】[Explanation of symbols]

11 第1の部材 12 第2の部材 13 フランジ 30,40,50,60,70 強度部材 71 ビード K1,K2 角部 K1C 角部の中央 N 線溶接部(溶接) M 非溶接部 11 1st member 12 2nd member 13 Flange 30, 40, 50, 60, 70 Strength member 71 Bead K1, K2 Corner part K1C Center part of corner part N line welding part (welding) M Non-welding part

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 フランジとn個の角部とを有する板厚t
の第1の部材と、 前記フランジに突き当てられて長手方向に沿って溶接さ
れる第2の部材とからなる長尺筒状の強度部材におい
て、 前記フランジに隣接する前記角部の中央からフランジの
幅方向に有効幅a=4nt0.46の範囲内で前記溶接を施
したことを特徴とする強度部材。
1. A plate thickness t having a flange and n corners.
A long member having a first member and a second member that is abutted against the flange and welded in the longitudinal direction, the flange being located from the center of the corner adjacent to the flange. The strength member is characterized in that the welding is applied within the effective width a = 4 nt 0.46 in the width direction.
【請求項2】 請求項1記載の強度部材であって、 前記フランジに隣接する角部は、曲率rを有し、 前記有効幅aが前記曲率rの角部の中央から曲率中心を
基準とした周長として与えられ、 前記溶接を、角部の中央からπr/4以上の位置に施し
たことを特徴とする強度部材。
2. The strength member according to claim 1, wherein a corner portion adjacent to the flange has a curvature r, and the effective width a is based on a center of curvature from a center of the corner portion having the curvature r. The strength member is characterized in that the welding is applied at a position of πr / 4 or more from the center of the corner portion.
【請求項3】 請求項1、又は請求項2記載の強度部材
であって、 前記溶接に、所定ピッチの非溶接部を確保したことを特
徴とする強度部材。
3. The strength member according to claim 1 or 2, wherein a non-welded portion having a predetermined pitch is secured in the welding.
【請求項4】 請求項3記載の強度部材であって、 前記非溶接部を、前記フランジに所定ピッチでビードを
設けて形成したことを特徴とする強度部材。
4. The strength member according to claim 3, wherein the non-welded portion is formed by providing beads on the flange at a predetermined pitch.
JP27550693A 1993-11-04 1993-11-04 Strength member Expired - Fee Related JP3381336B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27550693A JP3381336B2 (en) 1993-11-04 1993-11-04 Strength member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27550693A JP3381336B2 (en) 1993-11-04 1993-11-04 Strength member

Publications (2)

Publication Number Publication Date
JPH07125651A true JPH07125651A (en) 1995-05-16
JP3381336B2 JP3381336B2 (en) 2003-02-24

Family

ID=17556437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27550693A Expired - Fee Related JP3381336B2 (en) 1993-11-04 1993-11-04 Strength member

Country Status (1)

Country Link
JP (1) JP3381336B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199960A (en) * 1997-09-29 1999-04-13 Mazda Motor Corp Reinforced assembled body of vehicle body and reinforcing assembling method
JP2003200852A (en) * 2001-10-25 2003-07-15 Toyota Motor Corp Hollow structural body
JP2006009904A (en) * 2004-06-24 2006-01-12 Sumitomo Metal Ind Ltd Impact absorbing member
JP2006027366A (en) * 2004-07-13 2006-02-02 Kawasaki Heavy Ind Ltd Structure for railroad car
JP2006142917A (en) * 2004-11-17 2006-06-08 Nippon Steel Corp Shock absorbing member having excellent shock absorbing property and welding method therefor
EP1724132A1 (en) * 2005-05-18 2006-11-22 Benteler Automobiltechnik GmbH Axle components
JP2007137217A (en) * 2005-11-17 2007-06-07 Kawasaki Heavy Ind Ltd Body structure for railroad vehicle
JP2009179318A (en) * 2009-05-18 2009-08-13 Kawasaki Heavy Ind Ltd Structure for rolling stock
JP2011073674A (en) * 2010-12-29 2011-04-14 Kawasaki Heavy Ind Ltd Railroad vehicle structure
WO2012161043A1 (en) * 2011-05-24 2012-11-29 Jfeスチール株式会社 Automobile frame
CN105501300A (en) * 2015-12-16 2016-04-20 上汽通用五菱汽车股份有限公司 Single cap type polygonal front longitudinal beam
JP2017030647A (en) * 2015-08-05 2017-02-09 Jfeスチール株式会社 Skeleton component for automobile and method for manufacturing skeleton component for automobile
JP2019206246A (en) * 2018-05-29 2019-12-05 Jfeスチール株式会社 Method for determining shape of collision energy absorption component for automobile and spot welding position
US11235417B2 (en) 2017-10-31 2022-02-01 Nippon Steel Corporation Structural member

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1199960A (en) * 1997-09-29 1999-04-13 Mazda Motor Corp Reinforced assembled body of vehicle body and reinforcing assembling method
JP2003200852A (en) * 2001-10-25 2003-07-15 Toyota Motor Corp Hollow structural body
JP4543778B2 (en) * 2004-06-24 2010-09-15 住友金属工業株式会社 Shock absorbing member
JP2006009904A (en) * 2004-06-24 2006-01-12 Sumitomo Metal Ind Ltd Impact absorbing member
JP2006027366A (en) * 2004-07-13 2006-02-02 Kawasaki Heavy Ind Ltd Structure for railroad car
JP2006142917A (en) * 2004-11-17 2006-06-08 Nippon Steel Corp Shock absorbing member having excellent shock absorbing property and welding method therefor
EP1724132A1 (en) * 2005-05-18 2006-11-22 Benteler Automobiltechnik GmbH Axle components
JP2007137217A (en) * 2005-11-17 2007-06-07 Kawasaki Heavy Ind Ltd Body structure for railroad vehicle
JP4703743B2 (en) * 2009-05-18 2011-06-15 川崎重工業株式会社 Railcar structures
JP2009179318A (en) * 2009-05-18 2009-08-13 Kawasaki Heavy Ind Ltd Structure for rolling stock
JP2011073674A (en) * 2010-12-29 2011-04-14 Kawasaki Heavy Ind Ltd Railroad vehicle structure
WO2012161043A1 (en) * 2011-05-24 2012-11-29 Jfeスチール株式会社 Automobile frame
JP2012240118A (en) * 2011-05-24 2012-12-10 Jfe Steel Corp Automobile frame component
CN103547406A (en) * 2011-05-24 2014-01-29 杰富意钢铁株式会社 Automobile frame
EP2716399A1 (en) * 2011-05-24 2014-04-09 JFE Steel Corporation Automobile frame
EP2716399A4 (en) * 2011-05-24 2015-01-07 Jfe Steel Corp Automobile frame
US10486752B2 (en) 2011-05-24 2019-11-26 Jfe Steel Corporation Automobile frame component
JP2017030647A (en) * 2015-08-05 2017-02-09 Jfeスチール株式会社 Skeleton component for automobile and method for manufacturing skeleton component for automobile
CN105501300A (en) * 2015-12-16 2016-04-20 上汽通用五菱汽车股份有限公司 Single cap type polygonal front longitudinal beam
US11235417B2 (en) 2017-10-31 2022-02-01 Nippon Steel Corporation Structural member
JP2019206246A (en) * 2018-05-29 2019-12-05 Jfeスチール株式会社 Method for determining shape of collision energy absorption component for automobile and spot welding position

Also Published As

Publication number Publication date
JP3381336B2 (en) 2003-02-24

Similar Documents

Publication Publication Date Title
JP3381336B2 (en) Strength member
JPH07119892A (en) High strength member
JP3335781B2 (en) Closed cross-sectional structure around the center pillar of a vehicle
JPH08337183A (en) Structure of strength member
US20040130166A1 (en) Profile for an automobile structural element and corresponding chassis
GB2295358A (en) Horizontally opposed asymmetric notches in an automotive crumple beam
JP2008261493A (en) Shock absorbing member and its manufacturing method
JP6566174B1 (en) Vehicle skeleton member and vehicle
US20170136971A1 (en) Bumper reinforcement
US10689035B2 (en) Side rail and manufacturing method of side rail
JP4393874B2 (en) Y-shaped gusset structure for vehicle support frame
JP2002079388A (en) Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
US4413840A (en) Mechanism to control axial collapse of an open cross-section beam
JP5131810B2 (en) Crash box and manufacturing method thereof
JP3381477B2 (en) Reinforcement structure for body strength members
JPH11342862A (en) Reinforcing structure for strength member of vehicle
JP6973517B2 (en) Structural members for vehicles
JP3633477B2 (en) Body frame structure
JPH08183473A (en) Strength member for vehicle
JP2005178710A (en) Shock absorbing member
JP3452441B2 (en) Joined structural members
JP3124399B2 (en) Vehicle frame member and beam welding method thereof
JPH0880873A (en) Hood for automobile
JP2003095135A (en) Body front structure of automobile
US20240097256A1 (en) Battery case of automobile and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees