JP2006142917A - Shock absorbing member having excellent shock absorbing property and welding method therefor - Google Patents

Shock absorbing member having excellent shock absorbing property and welding method therefor Download PDF

Info

Publication number
JP2006142917A
JP2006142917A JP2004333645A JP2004333645A JP2006142917A JP 2006142917 A JP2006142917 A JP 2006142917A JP 2004333645 A JP2004333645 A JP 2004333645A JP 2004333645 A JP2004333645 A JP 2004333645A JP 2006142917 A JP2006142917 A JP 2006142917A
Authority
JP
Japan
Prior art keywords
absorbing member
welding
hat
impact
shock absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004333645A
Other languages
Japanese (ja)
Inventor
Seiji Furusako
誠司 古迫
Akihiro Uenishi
朗弘 上西
Hiroshi Yoshida
博司 吉田
Yasunobu Miyazaki
康信 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004333645A priority Critical patent/JP2006142917A/en
Publication of JP2006142917A publication Critical patent/JP2006142917A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shock absorbing member having an excellent shock absorbing property by optimizing a shape of a laser welding part in the light of a collapse form and welding strength of a shock absorbing member applied to an automobile or the like, and a welding method therefor. <P>SOLUTION: In a shock absorbing member having a closed cross sectional structure in which at least one side is formed by a hat-shaped cross sectional shape steel plate, a ratio (L/λ) of a welding length L to a welding pitch λ per one spot of a welding bead intermittently formed along the longitudinal direction of a flange part made of the hat-shaped cross sectional shape steel plate is 0.2 to 0.95. In addition, the ratio (W/t) of a welding width W to a plate thickness t on the lapped face of the flange part is 1.0 to 3.0. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車用部材等に用いられる衝撃吸収特性に優れた衝撃吸収部材およびその溶接方法に関する。特に、衝撃吸収特性を向上させた溶接部材およびその衝撃吸収特性の向上方法に関する溶接方法に関する。   The present invention relates to an impact-absorbing member excellent in impact-absorbing characteristics used for automobile members and the like, and a welding method thereof. In particular, the present invention relates to a welding member having improved shock absorption characteristics and a welding method related to a method for improving the shock absorption characteristics.

現在、自動車業界は、自動車の衝突における乗員の安全確保を目的とし、衝突安全性に優れた車体の開発に取り組んでいる。優れた衝突安全性とは、自動車が走行時に持っていた運動エネルギを、乗員の操縦空間を大きく損なうことなく、周囲の骨格部材が大変形を起こし、ひずみエネルギや熱エネルギに効率良く変換できる性能と言える。例えば車体前部の両側には、エンジンを挟む形で閉断面構造の衝撃吸収部材があり、これはフロントサイドメンバと称される。一例としてフロントサイドメンバ斜視図を図1に示す。図1に示すフロントサイドメンバは、ハット形状に曲げ加工された鋼板1と鋼板2が重ね合わされたフランジ部3に溶接部4が形成され接合された部材長手方向に垂直な断面で閉断面構造の部材形状をなす。このフロントサイドメンバは自動車が物体に正面から衝突する際、部材長手方向に蛇腹状に潰れ、衝撃のエネルギを効率よく吸収する。一般に衝突の際にフロントサイドメンバが途中で横倒れを起こしたり、溶接部で容易に破断したりすると、部材長手方向で規則的な蛇腹状の圧潰は生じないため、衝撃吸収特性は著しく劣化してしまう。   Currently, the automobile industry is working on the development of car bodies with excellent collision safety for the purpose of ensuring the safety of passengers in car collisions. Excellent collision safety means that the kinetic energy that the car had while driving can be converted into strain energy and heat energy efficiently without causing significant damage to the occupant's maneuvering space and by causing large deformation of the surrounding skeleton members It can be said. For example, on both sides of the front part of the vehicle body, there is an impact absorbing member having a closed cross section structure sandwiching the engine, which is called a front side member. As an example, a front side member perspective view is shown in FIG. The front side member shown in FIG. 1 has a closed cross-sectional structure in a cross section perpendicular to the longitudinal direction of a member in which a welded portion 4 is formed and joined to a flange portion 3 in which a steel plate 1 and a steel plate 2 bent into a hat shape are overlapped. Form the member shape. When the automobile collides with an object from the front, the front side member is crushed like a bellows in the longitudinal direction of the member, and efficiently absorbs the energy of impact. In general, if the front side member falls down in the middle of a collision or breaks easily at the weld, regular bellows-like crushing does not occur in the longitudinal direction of the member. End up.

従来、抵抗スポット溶接を用いて衝撃吸収部材を製造する場合の衝撃吸収特性を向上させる方法として、スポット溶接の溶接間隔を縮める、もしくは高張力鋼板を使用することが有効であることが知られている。通常抵抗スポット溶接部の間隔は通常25〜60mmの範囲内とし、抵抗スポット溶接部のサイズは3t0.5〜6t0.5(t=板厚)の範囲にすることで、衝突時に溶接部が容易に破断せず、部材自体が衝撃を吸収することが可能となる。しかし、抵抗スポット溶接はそもそも点状の溶接部を形成することを前提とするプロセスであり、間隔を縮め、多数の抵抗スポット溶接点を形成することは生産効率の点で好ましくない。さらに、溶接部間隔を縮めると先に形成された溶接部に電流が流れる分流現象が生じ、溶接部サイズの制御が困難となる。 Conventionally, it has been known that it is effective to reduce the welding interval of spot welding or use a high-tensile steel plate as a method of improving the impact absorbing characteristics when manufacturing an impact absorbing member using resistance spot welding. Yes. Usually, the distance between the resistance spot welds is within the range of 25-60 mm, and the size of the resistance spot weld is within the range of 3t 0.5 to 6t 0.5 (t = plate thickness), so that the weld is easily broken at the time of collision. The member itself can absorb the impact. However, resistance spot welding is a process that presupposes the formation of spot-like welds, and it is not preferable in terms of production efficiency to reduce the interval and form a number of resistance spot welding points. Further, when the interval between the welded portions is shortened, a shunt phenomenon in which current flows through the previously formed welded portion occurs, making it difficult to control the welded portion size.

一方、自動車用部品を溶接する際に自動車車体の軽量化、剛性や衝突安全性の向上を狙い、抵抗スポット溶接に代わってレーザ溶接の適用が拡大しつつある。レーザ溶接は抵抗スポット溶接に比べて狭いビード幅で良好な溶け込み深さが得られるため、溶接部を形成するフランジ幅の短縮や高速での連続溶接による生産性向上が可能であるなどの特徴が挙げられる。   On the other hand, the application of laser welding in place of resistance spot welding is expanding with the aim of reducing the weight of automobile bodies and improving the rigidity and collision safety when welding automotive parts. Laser welding provides a good penetration depth with a narrow bead width compared to resistance spot welding, and therefore features such as shortening the flange width forming the weld and improving productivity by continuous welding at high speeds. Can be mentioned.

レーザ溶接などにより衝撃吸収部材(溶接部材)を製造する際に、当該溶接部材の衝撃吸収特性の改善方法が知られている(例えば、特許文献1〜4参照)。   When manufacturing an impact-absorbing member (welding member) by laser welding or the like, methods for improving the impact-absorbing characteristics of the welding member are known (for example, see Patent Documents 1 to 4).

即ち、車体パネルとハットセクション部材とで閉断面に形成された車体フレーム構造において、ハットセクション部材のフランジ部の長手方向に多数の切り欠き部を並設し、衝突時に切欠部で順次変形させることで規則的に蛇腹変形させ、衝撃吸収特性を向上させる方法が知られている(例えば、特許文献1参照)。   That is, in a vehicle body frame structure formed in a closed cross section with a vehicle body panel and a hat section member, a large number of notches are arranged in parallel in the longitudinal direction of the flange portion of the hat section member, and are sequentially deformed at the notches at the time of a collision. A method is known in which the bellows are regularly deformed to improve the shock absorption characteristics (see, for example, Patent Document 1).

また、パネルとハット状フレーム部材のフランジ部とを溶接して閉断面を形成するフレーム構造において、フランジ部の幅方向の側縁端をレーザなどの高エネルギービーム溶接によりフランジ部の長手方向に断続的に溶接する方法が知られている(例えば、特許文献2参照)。   Also, in the frame structure in which the panel and the flange portion of the hat-shaped frame member are welded to form a closed cross section, the side edge in the width direction of the flange portion is intermittently connected in the longitudinal direction of the flange portion by high energy beam welding such as laser. In general, a method of welding is known (see, for example, Patent Document 2).

また、フランジとn個の角部とを有する板厚tの第1部材と第2部材とからなる長尺筒状の溶接強度部材においてフランジに隣接する角部の中央からフランジの幅方向に有効幅a=4nt0.46の範囲内に溶接部を設け、溶接部はフランジの長手方向に所定ピッチ(間隔)で断続的に形成することによって、衝撃吸収特性を向上させる方法が記載されている(例えば、特許文献3参照)。 Effective in the width direction of the flange from the center of the corner adjacent to the flange in the long tubular weld strength member composed of the first member and the second member of the plate thickness t having the flange and n corners. A method is described in which a welded portion is provided in the range of width a = 4 nt 0.46 , and the welded portion is intermittently formed at a predetermined pitch (interval) in the longitudinal direction of the flange to improve the shock absorption characteristics (for example, And Patent Document 3).

しかし、これらの方法は、圧潰モード制御の観点からフランジ部の長手方向の溶接部位における溶接長と溶接ピッチ(間隔)やフランジ部の幅方向の溶接部位における溶融(ビード)幅を最適化する方法ではなく、圧潰時に横倒れや溶接部の破断を抑制し、規則的な圧潰形態を維持することにより従来に比べて衝撃吸収特性を安定して向上させることは困難であった。   However, these methods are methods for optimizing the weld length and weld pitch (interval) at the welded part in the longitudinal direction of the flange part and the melt (bead) width at the welded part in the widthwise direction of the flange part from the viewpoint of crushing mode control. However, it has been difficult to stably improve the shock absorption characteristics compared to the conventional art by suppressing the lateral collapse and fracture of the welded portion during crushing and maintaining a regular crushing configuration.

ハット断面形状の鋼板とフラット形状の鋼板またはハット断面形状の鋼板とをフランジ部でレーザ溶接した衝撃吸収部材において、フランジ部に形成する溶接部の幅方向の溶融幅が板厚の1.4〜3.0倍になるようにフランジ端部の長手方向を連続溶接することで衝撃吸収特性を向上させる方法も知られている(例えば、特許文献4参照)。この方法はフランジ部に長手方向に連続した溶接部を形成し接合強度を高めることにより衝撃吸収特性の向上を図るものである。しかし、本発明者らの圧潰試験結果によれば、フランジ部をレーザで連続溶接した衝撃吸収部材は、衝突時に座屈進展途中で部材が横倒れを引き起こす確率が高くなるため、安定して優れた衝撃吸収特性が得られないことが判った。   In an impact absorbing member obtained by laser welding a steel plate with a hat cross-sectional shape and a flat steel plate or a steel plate with a hat cross-sectional shape at the flange portion, the melt width in the width direction of the weld portion formed on the flange portion is 1.4 to There is also known a method of improving impact absorption characteristics by continuously welding the longitudinal direction of the flange end so as to be 3.0 times (see, for example, Patent Document 4). This method is intended to improve the shock absorption characteristics by forming a welded portion continuous in the longitudinal direction on the flange portion to increase the joint strength. However, according to the results of the crush test by the present inventors, the shock absorbing member in which the flange portion is continuously welded with the laser has a high probability of causing the member to fall down during the buckling progress at the time of collision. It was found that the shock absorption characteristics could not be obtained.

上記のように、従来から溶接方法や溶接部形状(溶融幅や長さ)を変更することで、衝撃吸収部材の衝撃吸収特性を向上させる方法が種々提案されている。しかし、いずれも圧潰モード制御と溶接部強度の観点から十分に溶接部形状が適正化されておらず、レーザ溶接を利用した衝撃吸収部材の衝撃吸収特性を飛躍的にかつ安定して向上することは困難であった。   As described above, various methods for improving the impact absorbing characteristics of the impact absorbing member by changing the welding method and the welded portion shape (melting width and length) have been proposed. However, in all cases, the shape of the welded part is not adequately optimized from the viewpoint of crushing mode control and welded part strength, and the shock absorbing characteristics of the shock absorbing member using laser welding can be improved dramatically and stably. Was difficult.

ますます要求が高まっている自動車の衝突安全性向上を推し進めていくには、衝撃吸収部材の構造とともに、衝撃吸収部材の圧潰形態に大きな影響を及ぼす溶接部の強度およびそれを決める溶接部形状の最適化技術の実用化が強く望まれている。   In order to further improve the collision safety of automobiles, which are increasingly demanded, the structure of the shock absorbing member, the strength of the welded part that greatly affects the crushing form of the shock absorbing member, and the shape of the welded part that determines it are determined. The practical application of optimization technology is strongly desired.

特開昭58−116268号公報JP 58-116268 A 特開平6−170568号公報JP-A-6-170568 特開平7−125651号公報JP-A-7-125651 特開2002−079388号公報Japanese Patent Laid-Open No. 2002-079388

本発明は、前述のような従来技術の現状に鑑みて、自動車などに適用される衝撃吸収部材の圧潰形態及び溶接強度との観点からレーザ溶接部形状の最適化を図り、衝撃吸収特性に優れた衝撃吸収部材およびその溶接方法を提供することを目的とする。   In view of the current state of the prior art as described above, the present invention optimizes the shape of a laser weld from the viewpoint of the crushing form and welding strength of an impact absorbing member applied to automobiles and the like, and is excellent in impact absorbing characteristics. Another object is to provide a shock absorbing member and a welding method thereof.

本発明は上記課題を解決するものであり、その要旨とするところは以下のとおりである。   The present invention solves the above-mentioned problems, and the gist thereof is as follows.

(1) 少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材において、前記ハット型断面形状鋼板のフランジ部の長手方向に沿って断続的に形成された溶接ビードの1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)が0.2以上0.95以下であり、かつ前記フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)が1.0以上、3.0以下であることを特徴とする衝撃吸収特性に優れた衝撃吸収部材。   (1) In an impact-absorbing member having a closed cross-section structure in which at least one is made of a hat-shaped cross-sectional steel plate, per weld bead formed intermittently along the longitudinal direction of the flange portion of the hat-shaped cross-sectional steel plate The ratio (L / λ) of the welding length L and the welding pitch λ is 0.2 or more and 0.95 or less, and the ratio (W / t) of the melt width W and the plate thickness t on the overlapping surface of the flange portion. Is an impact-absorbing member excellent in impact-absorbing characteristics, characterized by being 1.0 or more and 3.0 or less.

(2) 前記フランジ部の板厚tに対して、前記溶接ビードは、前記ハット型断面形状鋼板の縦壁部からフランジ幅方向の距離d=12×t0.5だけ離れた範囲内に形成したことを特徴とする(1)に記載の衝撃吸収特性に優れた衝撃吸収部材。 (2) The weld bead is formed within a distance d = 12 × t 0.5 in the flange width direction from the vertical wall portion of the hat-shaped cross-sectional steel plate with respect to the plate thickness t of the flange portion. The shock absorbing member having excellent shock absorbing characteristics as described in (1).

(3) 前記ハット型断面形状鋼板における、フランジ部の板厚tと、ハット型断面の幅方向の長さaと高さ方向の長さbとの平均長さD=(a+b)/2との比(t/D)が0.020以下であることを特徴とする(1)または(2)に記載の衝撃吸収特性に優れた衝撃吸収部材。   (3) In the hat-shaped cross-sectional steel plate, the average length D = (a + b) / 2 of the thickness t of the flange portion, the length a in the width direction of the hat-shaped cross section, and the length b in the height direction, The ratio (t / D) is 0.020 or less, and the shock absorbing member having excellent shock absorbing characteristics according to (1) or (2).

(4) 少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材を溶接する方法において、1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)が0.2以上0.95以下であり、かつ前記フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)が1.0以上、3.0以下となるように、レーザ溶接により前記ハット型断面形状鋼板のフランジ部の長手方向に沿って溶接ビードを断続的に形成することを特徴とする衝撃吸収特性に優れた衝撃吸収部材の溶接方法。   (4) In the method of welding a shock absorbing member having a closed cross-sectional structure, at least one of which is a hat-shaped cross-section steel plate, the ratio (L / λ) of the welding length L to the welding pitch λ per point is 0.2 or more and 0 The hat is formed by laser welding so that the ratio (W / t) of the melt width W to the plate thickness t on the overlapping surface of the flange portion is 1.0 or more and 3.0 or less. A welding method for an impact-absorbing member excellent in impact-absorbing characteristics, wherein a weld bead is intermittently formed along the longitudinal direction of a flange portion of a steel plate having a cross-sectional shape.

(5) 前記フランジ部の板厚tに対して、前記溶接ビードは、前記ハット型断面形状鋼板の縦壁部からフランジ幅方向の距離d=12×t0.5だけ離れた範囲内に形成することを特徴とする(5)に記載の衝撃吸収特性に優れた衝撃吸収部材の溶接方法。 (5) The welding bead is formed within a range of a distance d = 12 × t 0.5 in the flange width direction from the vertical wall portion of the hat-shaped cross-sectional steel plate with respect to the plate thickness t of the flange portion. A method for welding an impact-absorbing member having excellent impact-absorbing characteristics as described in (5).

(6) 前記ハット型断面形状鋼板における、フランジ部の板厚tと、ハット型断面の幅方向の長さaと高さ方向の長さbとの平均長さD=(a+b)/2との比(t/D)が0.020以下であることを特徴とする(4)または(5)に記載の衝撃吸収特性に優れた衝撃吸収部材の溶接方法。   (6) An average length D = (a + b) / 2 of the thickness t of the flange portion, the length a in the width direction of the hat-shaped cross section, and the length b in the height direction in the hat-shaped cross-sectional steel plate. The ratio (t / D) is 0.020 or less. The method for welding an impact-absorbing member having excellent impact-absorbing characteristics according to (4) or (5).

本発明によれば、レーザ溶接を用いて製造した衝撃吸収部材の圧潰形態と溶接強度を適正化し、従来に比べて優れた衝撃吸収特性を有する衝撃吸収部材およびその溶接方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the crushing form and welding strength of the impact-absorbing member manufactured using laser welding are optimized, and the impact-absorbing member which has the outstanding impact-absorbing characteristic compared with the past, and its welding method can be provided. .

本発明の自動車などに用いられる衝撃吸収部材への適用によって、自動車部品などの溶接構造体の信頼性と安全性とを一層向上させ、また、溶接効率に優れたレーザ溶接により生産性も改善することが可能となるため、自動車分野など産業への貢献は大きい。   Application of the present invention to an impact absorbing member used for automobiles and the like further improves the reliability and safety of welded structures such as automobile parts, and also improves productivity by laser welding with excellent welding efficiency. This makes it possible to contribute greatly to industries such as the automobile field.

以下に本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

なお、以下の説明において、本発明の要旨を逸脱せず、本発明の目的や作用効果を達成する限りにおいて、以下の実施形態や条件に限定されるものではないことは言うまでもない。   In the following description, it goes without saying that the present invention is not limited to the following embodiments and conditions as long as the objects and effects of the present invention are achieved without departing from the gist of the present invention.

本発明は、例えば、図1に示すような実施形態で実施される。ハット型に曲げ加工されたハット型断面形状鋼板1と平面状の鋼板2を重ね合わせ、フランジ3の重ね合わせ部分に対して、レーザビーム(図示せず)を鋼板面と概ね垂直な方向に照射し、少なくとも鋼板重ね合わせ面を含む厚み領域を溶融し、凝固させることによりビード4を形成し接合する。その結果、部材長手方向に垂直な断面でハット形状の閉断面構造を有する衝撃吸収部材を製造することができる。なお、フランジ3の重ね合わせ部分におけるレーザ溶接によるビード4の形成は、例えば、レーザビーム(図示せず)の集光光学系(図示せず)を所定速度でフランジ3表面上の狙い位置を溶接線方向に沿って移動させることで形成される。このレーザ溶接時には、集光光学系と共に移動するロール状のクランプ、あるいはフランジと面接触する形状の非移動式クランプで押さえる(図示せず)ことにより、フランジ3における鋼板重ね合わせ面の隙間が大きい場合の溶融部の落ち込み発生を防止し、健全な溶接部が形成できるため好ましい。   The present invention is implemented, for example, in an embodiment as shown in FIG. A hat-shaped cross-section steel plate 1 bent into a hat shape and a flat steel plate 2 are overlapped, and a laser beam (not shown) is irradiated in a direction substantially perpendicular to the steel plate surface to the overlapping portion of the flange 3. Then, the bead 4 is formed and joined by melting and solidifying at least the thickness region including the steel plate overlapping surface. As a result, an impact-absorbing member having a hat-shaped closed cross-sectional structure with a cross section perpendicular to the longitudinal direction of the member can be manufactured. The formation of the bead 4 by laser welding at the overlapping portion of the flange 3 is performed by welding a target position on the surface of the flange 3 with a laser beam (not shown) focusing optical system (not shown) at a predetermined speed, for example. It is formed by moving along the line direction. At the time of laser welding, a gap between the steel plate overlapping surfaces in the flange 3 is large by pressing with a roll-shaped clamp that moves with the condensing optical system or a non-movable clamp that is in surface contact with the flange (not shown). In this case, it is preferable because the melted portion can be prevented from dropping and a sound welded portion can be formed.

図1では、ハット型断面形状鋼板1のフランジ3と平面状の鋼板2を重ね合わせてレーザ溶接し衝撃吸収部材を製造する実施形態を示したが、図2の(b)に示すように、2つのハット型断面形状鋼板1のフランジ3同士を重ね合わせてレーザ溶接し衝撃吸収部材を製造する実施形態も採用できる。   In FIG. 1, an embodiment in which the flange 3 of the hat-shaped cross-sectional steel plate 1 and the flat steel plate 2 are overlapped and laser-welded to manufacture the shock absorbing member is shown, but as shown in FIG. Embodiments in which the flanges 3 of the two hat-shaped cross-sectional steel plates 1 are overlapped with each other and laser-welded to manufacture an impact absorbing member can also be adopted.

本発明は、上記実施形態に示すようなレーザ溶接を用いて製造する衝撃吸収部材およびその溶接方法に適用されることを前提とする。   The present invention is premised on being applied to an impact absorbing member manufactured by using laser welding as shown in the above embodiment and a welding method thereof.

レーザ溶接は、抵抗スポット溶接、マッシュシーム溶接などのように一対の電極で重ね合わせた鋼板を面側から挟んだ後、通電し重ね合わせ面間に溶接部を形成する方法と比較して、重ね合わせた鋼板の何れか片側から高エネルギ密度レーザビームの照射により、狭いビード幅でも良好な溶け込み深さを維持し、かつ溶接変形を小さくでき、高速での連続溶接や溶接用フランジ幅の極小化が可能となる。本発明では、後述する衝撃吸収部材の衝撃吸収特性の向上とともに、レーザ溶接の上記利点を活かし、衝撃吸収部材の軽量化および生産性向上を実現するために、衝撃吸収部材を製造する際に溶接方法として、レーザ溶接を適用する。   Laser welding is compared to a method in which a steel plate overlapped with a pair of electrodes is sandwiched from the surface side, such as resistance spot welding and mash seam welding, and then energized to form a weld between the overlapping surfaces. Irradiation of high energy density laser beam from one side of the combined steel sheets can maintain a good penetration depth even with a narrow bead width, reduce welding deformation, minimize high-speed continuous welding and welding flange width Is possible. In the present invention, in order to realize the weight reduction and productivity improvement of the shock absorbing member by taking advantage of the above-mentioned advantages of laser welding together with the improvement of shock absorbing characteristics of the shock absorbing member described later, welding is performed when manufacturing the shock absorbing member. Laser welding is applied as a method.

また、本発明では、後述する衝撃吸収部材の衝撃吸収特性向上のための主要構成要件として、少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材において、前記ハット型断面形状鋼板のフランジ部の長手方向に沿って断続的に形成された溶接ビードの1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)が0.2以上0.95以下であり、かつ前記フランジ部の重ね合わせ面での溶融幅Wが板厚tの1.0倍以上、3.0倍以下であることを特徴とする。   Further, in the present invention, as a main component for improving the impact absorbing characteristics of the impact absorbing member described later, at least one of the shock absorbing members having a closed cross-sectional structure made of a hat-shaped cross-sectional steel plate, The ratio (L / λ) of the weld length L to the weld pitch λ per portion of the weld beads formed intermittently along the longitudinal direction of the flange portion is 0.2 or more and 0.95 or less, and the flange The melt width W at the overlapping surface of the portions is 1.0 to 3.0 times the plate thickness t.

なお、溶接ビードの1箇所当たりの溶接長Lは、図3に示すハット型断面形状鋼板のフランジ部の長手方向に沿って断続的に形成された各溶接ビードの溶接長の平均値であり、溶接ピッチλは、図3に示す隣接する各溶接ビード中心間の間隔の平均値として求められる。   In addition, the weld length L per one place of the weld bead is an average value of the weld length of each weld bead formed intermittently along the longitudinal direction of the flange portion of the hat-shaped cross-sectional steel plate shown in FIG. Welding pitch λ is obtained as an average value of the distance between adjacent weld bead centers shown in FIG.

また、衝撃吸収部材の衝撃吸収特性は、例えば、衝撃吸収部材の長手方向(軸方向)に荷重を付加する圧潰試験における荷重および変位の測定値を基に図4に示すような荷重―変位曲線(実線)を作成し、荷重―変位曲線の所定変位範囲における荷重の積分値として求められる、衝撃吸収エネルギを基に評価できる。つまり、衝撃吸収部材の圧潰試験における吸収エネルギの測定値の大小により、衝撃吸収部材の衝撃吸収特性の良・不良を評価できる。   Further, the shock absorbing characteristic of the shock absorbing member is, for example, a load-displacement curve as shown in FIG. 4 based on measured values of load and displacement in a crush test in which a load is applied in the longitudinal direction (axial direction) of the shock absorbing member. (Solid line) can be created and evaluated based on the impact absorption energy obtained as the integrated value of the load in the predetermined displacement range of the load-displacement curve. In other words, whether the shock absorbing member is good or bad can be evaluated by the magnitude of the measured value of the absorbed energy in the crushing test of the shock absorbing member.

このような本発明の作用によりレーザ溶接された衝撃吸収部材の衝撃吸収特性を十分かつ安定して向上させるためには、以下の条件を規定する必要がある。以下に本発明で規定する条件の限定理由について説明する。   In order to sufficiently and stably improve the shock absorbing characteristics of the shock absorbing member laser-welded by such an action of the present invention, it is necessary to define the following conditions. The reasons for limiting the conditions defined in the present invention will be described below.

(溶接長Lと溶接ピッチλの比(L/λ)   (Ratio of welding length L to welding pitch λ (L / λ)

本発明者らは、少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材をレーザ溶接する際に、ハット型断面形状鋼板のフランジ部の長手方向に沿って断続的に形成された溶接ビードの1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)が衝撃吸収部材の衝撃吸収特性に与える影響について詳細に検討した。   The inventors of the present invention intermittently formed along the longitudinal direction of the flange portion of the hat-shaped cross-sectional steel plate when laser-welding a shock-absorbing member having a closed cross-sectional structure made of a steel plate having a hat-shaped cross-sectional shape. The influence of the ratio (L / λ) of the weld length L to the weld pitch λ (L / λ) per location on the weld bead on the impact absorbing characteristics of the impact absorbing member was examined in detail.

図7に衝撃吸収部材の溶接ビードにおける溶接長Lと溶接ピッチλの比(L/λ)と衝撃吸収エネルギの関係を示す。   FIG. 7 shows the relationship between the ratio of the weld length L to the weld pitch λ (L / λ) and the shock absorption energy in the weld bead of the shock absorbing member.

なお、衝撃吸収部材の衝撃吸収特性は、図4に示すような衝撃吸収部材の圧潰試験結果における荷重―変位曲線(実線)から衝撃吸収エネルギを求め、溶接長Lと溶接ピッチλの比(L/λ)が0.1の条件における衝撃吸収部材の衝撃吸収エネルギの測定値(基準=1.0)に対する相対比として評価した。   Note that the shock absorbing characteristics of the shock absorbing member are obtained by calculating the shock absorbing energy from the load-displacement curve (solid line) in the result of the crushing test of the shock absorbing member as shown in FIG. 4, and the ratio of the welding length L to the welding pitch λ (L / Λ) was evaluated as a relative ratio to the measured value (reference = 1.0) of the impact absorption energy of the impact absorbing member under the condition of 0.1.

また、衝撃吸収部材の溶接ビードにおける溶融幅Wと板厚tの比(W/t)が1.5とした。   The ratio (W / t) of the melt width W to the plate thickness t in the weld bead of the impact absorbing member was 1.5.

溶接長Lと溶接ピッチλの比(L/λ)が0.2未満の場合には、衝撃吸収部材の圧潰時に非溶接部が開きながら座屈が進展し、衝撃吸収部材の一部に変形しない直線状の部分が残り、即ちフランジの座屈抵抗の減少と加工硬化領域(変形領域)減少に伴う部材強度上昇代の低減に起因し衝撃吸収エネルギを十分に向上することはできない。この原因は、局所的に変形応力が低下することで、衝撃吸収部材の平均圧潰荷重が低下し衝撃吸収エネルギも減少したと考えられる。   When the ratio (L / λ) of the weld length L and the weld pitch λ is less than 0.2, buckling progresses while the non-welded part opens when the impact absorbing member is crushed, and the impact absorbing member is deformed into a part of the impact absorbing member. The non-linear portion remains, that is, the impact absorption energy cannot be sufficiently improved due to the reduction in the buckling resistance of the flange and the reduction in the member strength increase due to the reduction in the work hardening region (deformation region). This is thought to be because the deformation stress locally decreases, the average crushing load of the shock absorbing member decreases, and the shock absorbing energy also decreases.

一方、溶接長Lと溶接ピッチλの比(L/λ)が0.95を超える場合には、衝撃吸収部材が圧潰途中で衝撃吸収部材の長手方向(軸方向)から傾き、横転して衝撃吸収エネルギが低下する確率が上昇する。実際の自動車の正面衝突を考慮すると、衝撃吸収部材の軸方向と荷重負荷方向は必ずしも一致しないことがあるため、L/λが0.95を超えると、実車でも衝撃吸収部材が横倒れして衝撃吸収特性が低下する可能性が高い。   On the other hand, when the ratio (L / λ) of the welding length L to the welding pitch λ exceeds 0.95, the impact absorbing member is tilted from the longitudinal direction (axial direction) of the impact absorbing member in the middle of crushing and rolls over to cause impact. The probability that the absorbed energy decreases increases. Considering the actual frontal collision of an automobile, the axial direction of the impact absorbing member may not always coincide with the load loading direction. Therefore, if L / λ exceeds 0.95, the impact absorbing member will fall sideways even in an actual vehicle. There is a high possibility that the shock absorption characteristics will deteriorate.

以上の理由から、本発明において少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材をレーザ溶接する際に、ハット型断面形状鋼板のフランジ部の長手方向に沿って断続的に形成された溶接ビードの1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)を0.2以上、0.95以下とする。   For the above reasons, at least one of the present invention is intermittently formed along the longitudinal direction of the flange portion of the hat-shaped cross-sectional steel plate when laser-welding the shock absorbing member having a closed cross-sectional structure made of a hat-shaped cross-sectional steel plate. The ratio (L / λ) of the weld length L and the weld pitch λ per place of the weld bead is 0.2 or more and 0.95 or less.

(溶融幅Wと板厚tの比(W/t))
次に、本発明者らは、少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材に形成された溶接ビードにおけるフランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)が衝撃吸収部材の衝撃吸収特性に与える影響について詳細に検討した。
(Ratio of melt width W to sheet thickness t (W / t))
Next, the inventors of the present invention have a ratio of the melt width W and the plate thickness t at the overlapping surface of the flange portion in the weld bead formed on the shock absorbing member having a closed cross-sectional structure made of a steel plate having a hat-shaped cross section. The effect of (W / t) on the impact absorbing characteristics of the impact absorbing member was examined in detail.

図6に衝撃吸収部材の溶接ビードにおける溶融幅Wと板厚tの比(W/t)と衝撃吸収エネルギの関係を示す。
なお、衝撃吸収部材の衝撃吸収特性は、図4に示すような衝撃吸収部材の圧潰試験結果における荷重―変位曲線(実線)から衝撃吸収エネルギを求め、溶融幅Wと板厚tの比(W/t)が0.7の条件における衝撃吸収部材の衝撃吸収エネルギの測定値(基準=1.0)に対する相対比として評価した。
FIG. 6 shows the relationship between the ratio (W / t) of the melt width W to the plate thickness t in the weld bead of the shock absorbing member and the shock absorbing energy.
The shock absorbing characteristic of the shock absorbing member is obtained by calculating the shock absorbing energy from the load-displacement curve (solid line) in the result of the crushing test of the shock absorbing member as shown in FIG. / T) was evaluated as a relative ratio to the measured value (reference = 1.0) of the impact absorption energy of the impact absorbing member under the condition of 0.7.

また、衝撃吸収部材の溶接ビードにおける溶接長Lと溶接ピッチλの比(L/λ)は0.5とした。   Further, the ratio (L / λ) of the weld length L to the weld pitch λ in the weld bead of the shock absorbing member was set to 0.5.

溶融幅Wと板厚tの比(W/t)が1.0未満の場合には、溶接部の強度が不足して衝撃吸収部材の圧潰中に溶接部で破断し、不整な圧潰モードが発生する(規則的な蛇腹変形が生じない)ことで衝撃吸収部材の平均圧潰荷重が低下し、その結果、衝撃吸収部材の衝撃吸収エネルギが低下する。   When the ratio (W / t) of the melt width W to the plate thickness t is less than 1.0, the strength of the welded portion is insufficient and the welded portion is broken during the crushing of the shock absorbing member, and an irregular crushing mode occurs. Occurrence (regular bellows deformation does not occur) reduces the average crushing load of the shock absorbing member, and as a result, the shock absorbing energy of the shock absorbing member decreases.

一方、溶融幅Wと板厚tの比(W/t)が3.0を超える場合には、レーザ溶接時に溶融金属が部分的に垂れ落ちる、あるいは完全に溶け落ちてしまうため、良好な溶接部は得られない。この場合、溶接部の強度が低下するだけでなく、部品外観の点でも不良と判断される。   On the other hand, when the ratio (W / t) of the melt width W to the plate thickness t exceeds 3.0, the molten metal partially sags or completely melts during laser welding. Part cannot be obtained. In this case, not only the strength of the welded portion is reduced, but it is also judged defective in terms of the appearance of the parts.

以上の理由から、本発明において少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材をレーザ溶接する際に、ハット型断面形状鋼板のフランジ部の長手方向に沿って断続的に形成された溶接ビードのフランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)を1.0以上、3.0以下とする。   For the above reasons, at least one of the present invention is intermittently formed along the longitudinal direction of the flange portion of the hat-shaped cross-sectional steel plate when laser-welding the shock absorbing member having a closed cross-sectional structure made of a hat-shaped cross-sectional steel plate. The ratio (W / t) of the melt width W and the plate thickness t at the overlapping surface of the flange portion of the weld bead is set to 1.0 or more and 3.0 or less.

(L/λとW/tの関係)
さらに、発明者らは、上記衝撃吸収部材の溶接ビードにおける1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)、および、重ね合わせ面での溶融幅Wと板厚tの比(W/t)と、衝撃吸収部材の衝撃吸収特性の関係について詳細に検討した。
(Relationship between L / λ and W / t)
Furthermore, the inventors have determined the ratio (L / λ) of the welding length L and the welding pitch λ per point in the weld bead of the shock absorbing member, and the ratio of the melt width W and the plate thickness t on the overlapping surface. The relationship between (W / t) and the impact absorbing characteristics of the impact absorbing member was examined in detail.

図5に衝撃吸収部材の溶接ビードにおける溶接長Lと溶接ピッチλの比(L/λ)、および、重ね合わせ面での溶融幅Wと板厚tの比(W/t)と、衝撃吸収特性および圧潰形態との関係を示す。   FIG. 5 shows the ratio of the weld length L to the weld pitch λ (L / λ) in the weld bead of the shock absorbing member, the ratio of the melt width W to the plate thickness t (W / t) on the overlapping surface, and the shock absorption. The relationship between characteristics and collapsed form is shown.

なお、衝撃吸収部材を形成するハット型断面形状鋼板およびフラット鋼板は何れも、板厚が1.2mm、引張強さが294MPaのものを用い、衝撃吸収部材のハット型断面にける幅方向の長さ(横壁長さ)aは60mm、高さ方向の長さ(縦壁長さ)bは40mmとした。   Note that both the hat-shaped cross-section steel plate and the flat steel plate forming the shock-absorbing member have a thickness of 1.2 mm and a tensile strength of 294 MPa, and the width in the hat-shaped cross-section of the shock-absorbing member is long. The length (horizontal wall length) a was 60 mm, and the length in the height direction (vertical wall length) b was 40 mm.

図中の記号は、○は衝撃吸収特性に優れる(衝撃吸収特性がL/λ=0.1、W/t=0.7での衝撃吸収エネルギに対する相対比で1.05以上)場合、□は衝撃吸収部材の横倒れが発生し衝撃吸収特性が低下する場合、△は圧潰中に衝撃吸収部材の溶接部で剥離する場合、×は溶接時に溶接部の一部が溶け落ちて溶接不良となる場合を示す。   Symbols in the figure indicate that ◯ is excellent in shock absorption characteristics (when the shock absorption characteristics are L / λ = 0.1, relative ratio to the shock absorption energy at W / t = 0.7, 1.05 or more), □ Is a case where the shock absorbing member falls sideways and the shock absorbing characteristics are deteriorated, △ is a case where peeling occurs at the welded portion of the shock absorbing member during crushing, and x is a weld failure due to melting of a part of the welded portion during welding. Shows the case.

この結果から、衝撃吸収部材の溶接ビードにおける溶接長Lと溶接ピッチλの比(L/λ)を0.2以上0.95以下とし、かつ、フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)を1.0以上3.0以下とすることにより、衝撃吸収部材の良好な圧潰形態を安定して維持でき、衝撃吸収特性を十分に向上することができる。   From this result, the ratio (L / λ) of the welding length L to the welding pitch λ (L / λ) in the weld bead of the shock absorbing member is 0.2 or more and 0.95 or less, and the melt width W on the overlapping surface of the flange portion is By setting the ratio (W / t) of the plate thickness t to 1.0 or more and 3.0 or less, a favorable crushing form of the shock absorbing member can be stably maintained, and the shock absorbing characteristics can be sufficiently improved. .

これらの理由から、本発明では、少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材をレーザ溶接する際に、ハット型断面形状鋼板のフランジ部の長手方向に沿って断続的に形成されたの1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)を0.2以上、0.95以下とし、かつ、溶接ビードのフランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)を1.0以上、3.0以下とする。   For these reasons, in the present invention, when laser-welding a shock absorbing member having a closed cross-sectional structure, at least one of which is a hat-shaped cross-sectional steel plate, intermittently along the longitudinal direction of the flange portion of the hat-shaped cross-sectional steel plate. The ratio (L / λ) of the formed weld length L to the weld pitch λ (L / λ) is 0.2 or more and 0.95 or less, and the melt width W at the overlapping surface of the flange portion of the weld bead And the plate thickness t (W / t) is 1.0 or more and 3.0 or less.

本発明では、上述したように、上記衝撃吸収部材の溶接ビードにおいて上記溶接長Lと溶接ピッチλの比(L/λ)と、上記溶融幅Wと板厚tの比(W/t)を上記適正範囲に制御し溶接することで良好な圧潰形態を安定して維持でき、衝撃吸収特性が十分に高い衝撃吸収部材を製造することができる。   In the present invention, as described above, in the weld bead of the shock absorbing member, the ratio of the weld length L to the weld pitch λ (L / λ) and the ratio of the melt width W to the plate thickness t (W / t) are set. By controlling and welding within the appropriate range, it is possible to stably maintain a good crushing shape and to manufacture an impact absorbing member having sufficiently high impact absorbing characteristics.

さらに、本発明では、衝撃吸収部材の良好な圧潰形態をより安定して維持し、衝撃吸収特性をより向上するために、上記規定に加えて、さらに、以下の理由で溶接ビード位置、ハット型断面形状を以下のように適正に制御するのが好ましい。   Furthermore, in the present invention, in order to maintain a good crushing shape of the shock absorbing member more stably and to further improve the shock absorbing characteristics, in addition to the above definition, the weld bead position, the hat type for the following reasons. It is preferable to appropriately control the cross-sectional shape as follows.

(溶接ビード位置:縦壁部からのフランジ幅方向距離d)
本発明者らは、圧潰試験の解析結果から上記衝撃吸収部材の衝撃吸収特性はハット型断面形状におけるフランジ部に隣接するR部(角部)の寄与が大きく、図2の(a)に示すように、フランジ部に形成する溶接ビードの位置をフランジ部の板厚tに対して、ハット型断面形状鋼板の縦壁部からフランジ幅方向に距離d=12t0.5だけ離れた範囲内とすることが衝撃吸収部材の衝撃吸収特性を安定して向上させるために好ましいことを確認した。
(Welding bead position: flange width direction distance d from the vertical wall)
From the analysis result of the crush test, the present inventors have contributed greatly to the R portion (corner portion) adjacent to the flange portion in the hat-shaped cross-sectional shape of the shock absorbing member, as shown in FIG. As described above, the position of the weld bead formed on the flange portion is within a range away from the vertical wall portion of the hat-shaped cross-sectional steel plate by a distance d = 12t 0.5 with respect to the plate thickness t of the flange portion. Has been confirmed to be preferable in order to stably improve the shock absorbing characteristics of the shock absorbing member.

フランジ部に形成する溶接ビードの位置がハット型断面形状鋼板の縦壁部からフランジ幅方向に距離dより過大であると、ハット型断面形状のフランジ部に隣接するR部(角部)終端と溶接ビードの位置までの距離が大きくなり、圧潰中に衝撃吸収部材のR部近傍での変形を拘束できなくなるため、衝撃吸収部材の衝撃吸収特性は低下する。また、衝撃吸収部材を構成する鋼板の板厚tの増加に伴いR部近傍の座屈強度は増加し、また圧潰時にR部近傍が周囲の変形を拘束する範囲が拡大するため、溶接ビードを形成するフランジ幅方向の距離dの適正位置は、鋼板の板厚tの増加と共に増加する。   If the position of the weld bead formed on the flange portion is larger than the distance d in the flange width direction from the vertical wall portion of the hat-shaped cross-section steel plate, the end of the R portion (corner portion) adjacent to the hat-shaped cross-section flange portion, Since the distance to the position of the weld bead increases and deformation in the vicinity of the R portion of the shock absorbing member cannot be restricted during crushing, the shock absorbing characteristics of the shock absorbing member are deteriorated. In addition, the buckling strength in the vicinity of the R portion increases as the thickness t of the steel plate constituting the shock absorbing member increases, and the range in which the vicinity of the R portion restrains the surrounding deformation during crushing is expanded. The appropriate position of the distance d in the flange width direction to be formed increases as the thickness t of the steel plate increases.

これらの理由から、本発明では、衝撃吸収部材の衝撃吸収特性を安定して向上させるために、上記溶接長Lと溶接ピッチλの比(L/λ)、および、上記溶融幅Wと板厚tの比(W/t)の上記規定に加えて、溶接ビードの形成する位置を、フランジ部の板厚tに対して、ハット型断面形状鋼板の縦壁部からフランジ幅方向の距離d=12×t0.5だけ離れた範囲内とすることが好ましい。 For these reasons, in the present invention, in order to stably improve the shock absorbing characteristics of the shock absorbing member, the ratio (L / λ) of the weld length L to the weld pitch λ, the melt width W, and the plate thickness. In addition to the above definition of the ratio of t (W / t), the position where the weld bead is formed is the distance d in the flange width direction from the vertical wall portion of the hat-shaped cross-sectional steel plate with respect to the plate thickness t of the flange portion. It is preferable to be within a range separated by 12 × t 0.5 .

(板厚tと平均辺長D(=(a+b)/2)の比(=t/D))
本発明者らは、圧潰試験の解析結果から上記衝撃吸収部材の圧潰モードは、上述したフランジ部に形成する溶接ビードの形状だけでなく、衝撃吸収部材の幾何形状、特に、ハット型断面形状鋼板のハット型断面の幅方向の長さaと高さ方向の長さbの影響を受けることを確認した。
(Ratio of plate thickness t and average side length D (= (a + b) / 2) (= t / D))
From the analysis results of the crush test, the present inventors have determined that the crushing mode of the shock absorbing member is not only the shape of the weld bead formed on the flange portion, but also the geometric shape of the shock absorbing member, particularly a hat-shaped cross-section steel plate. It was confirmed that the hat-shaped cross section was affected by the length a in the width direction and the length b in the height direction.

図4に衝撃吸収部材の圧潰試験におけるコンパクトモード(実線)およびノンコンパクトモード(点線)の荷重−変位曲線を示す。また、図8に衝撃吸収部材の圧潰試験におけるコンパクトモードおよびノンコンパクトモードの圧潰形態を示す。   FIG. 4 shows load-displacement curves in the compact mode (solid line) and the non-compact mode (dotted line) in the crush test of the shock absorbing member. FIG. 8 shows a compact mode and a non-compact mode crush form in the crush test of the shock absorbing member.

圧潰試験の解析結果から、ハット型断面形状鋼板において、フランジ部の板厚tと、ハット型断面の幅方向の長さaと高さ方向の長さbとの平均長さD=(a+b)/2との比(t/D)が0.020以上の場合には、衝撃吸収部材の圧潰時には、図4の実線の荷重−変位曲線に示すような規則的な蛇腹変形、いわゆるコンパクトモード(図8の(b)、参照)となる。一方、上記t/Dが0.020以下の場合、つまり、フランジ部の板厚tに対して、ハット型断面の幅方向の長さaと高さ方向の長さbとの平均長さD=(a+b)/2が過度に大きくなると、圧潰時に衝撃吸収部材の局所に応力が集中し、衝撃吸収部材において塑性変形を生じない直線状の部分が残るノンコンパクトモード(図8の(a)、参照)の圧潰形態となる。このようなノンコンパクトモードでの圧潰時には、図4の一点鎖線で示すような周期性の無い荷重―変位曲線となる。   From the analysis result of the crush test, in the hat-shaped cross-section steel plate, the average length D = (a + b) of the thickness t of the flange portion, the length a in the width direction of the hat-shaped cross section, and the length b in the height direction. When the ratio (t / D) to / 2 is 0.020 or more, when the shock absorbing member is crushed, regular bellows deformation as shown by a solid load-displacement curve in FIG. (See (b) of FIG. 8). On the other hand, when the above t / D is 0.020 or less, that is, with respect to the plate thickness t of the flange portion, the average length D of the length a in the hat-shaped cross section and the length b in the height direction. When (a + b) / 2 is excessively large, stress is concentrated locally in the impact absorbing member during crushing, and a non-compact mode in which a linear portion that does not cause plastic deformation remains in the impact absorbing member ((a) of FIG. 8). , See)). When crushing in such a non-compact mode, a load-displacement curve having no periodicity is obtained as shown by a one-dot chain line in FIG.

本発明では、上述したフランジ部に形成する溶接ビードの形状を適正に制御することにより、衝撃吸収部材の圧潰形態がコンパクトモード、または、ノンコパクトモードの何れの場合でも、衝撃吸収特性を向上させる効果が得られる。特に、本発明の上記溶接ビード形状の規定により、ノンコパクトモードで圧潰する際に、フランジ部の鋼板重ね合わせ面に対して平行方向あるいは垂直方向の変形を拘束し、フランジの座屈荷重を大幅に向上できるので、本発明を利用し特に優れた吸収エネルギを得るには、上記溶接ビード形状の規定に加えて、上記t/Dを0.020以下とするのが好ましい。   In the present invention, by appropriately controlling the shape of the weld bead formed on the flange portion described above, the shock absorbing property is improved regardless of whether the impact absorbing member is in the compact mode or the non-compact mode. An effect is obtained. In particular, according to the above specification of the weld bead shape of the present invention, when crushing in the non-compact mode, the deformation in the parallel direction or the perpendicular direction to the steel plate overlapping surface of the flange portion is restrained to greatly increase the flange buckling load. Therefore, in order to obtain particularly excellent absorbed energy using the present invention, it is preferable to set the t / D to 0.020 or less in addition to the definition of the weld bead shape.

本発明は、上述したように、レーザ溶接時の溶接ビード形状を制御することで衝撃吸収部材の良好な圧潰形態を安定して維持し、衝撃吸収特性を十分に向上するものであるから、衝撃吸収部材を構成する鋼板の強度を特に規定する必要はない。なお、本発明者らは、引張強さ(TS)が270〜1470MPaの範囲の鋼材をレーザ溶接して作製した衝撃吸収部材の圧潰試験において、本発明の適用による衝撃吸収特性の向上効果が得られることを確認している。   As described above, the present invention stably maintains a good crushing shape of the shock absorbing member by controlling the weld bead shape at the time of laser welding, and sufficiently improves the shock absorbing characteristics. There is no need to particularly define the strength of the steel plate constituting the absorbing member. In addition, in the crushing test of the impact absorbing member produced by laser welding a steel material having a tensile strength (TS) in the range of 270 to 1470 MPa, the present inventors have obtained the effect of improving the impact absorbing characteristics by applying the present invention. It is confirmed that

もちろん、本発明の目的および主旨を逸脱しない範囲において、衝撃吸収部材に用いる鋼材の機械的特性や種類を適宜変更することができることは言うまでもない。   Of course, it goes without saying that the mechanical properties and types of the steel used for the shock absorbing member can be changed as appropriate without departing from the scope and spirit of the present invention.

一般に衝撃吸収部材の衝撃吸収エネルギの絶対値は用いる鋼材の引張強度TSの増加に伴い上昇するため、衝撃吸収部材の重量増を招くことなく、高い衝撃吸収特性を得る目的で、引張強度TSの高い高張力鋼板を利用することもできる。   In general, the absolute value of the impact absorbing energy of the impact absorbing member increases with an increase in the tensile strength TS of the steel material used. Therefore, in order to obtain high impact absorbing characteristics without increasing the weight of the impact absorbing member, High high strength steel plates can also be used.

さらに、衝撃吸収部材に用いる鋼材として、高張力鋼板の中でもTRIP(Transformatin Induced Plasticity)鋼やDP(Dual Phase)鋼を利用することで、同強度の鋼材の中でも特に優れた衝撃吸収特性を得ることができる。これらの鋼材は変形時の加工硬化特性が高いため、座屈が進展する箇所の応力レベルが変形開始直後に上昇し、従って部材全体の荷重レベルや衝撃吸収エネルギが向上することとなる。また、急激に応力レベルの上昇する座屈部から、強度の低い座屈部周囲へ変形が容易に伝播することで、横倒れが発生しにくくなる長所も認められる。   Furthermore, by using TRIP (Transformin Induced Plasticity) steel and DP (Dual Phase) steel among high-tensile steel plates as steel materials used for impact absorbing members, particularly excellent shock absorbing characteristics can be obtained among steel materials of the same strength. Can do. Since these steel materials have high work hardening characteristics at the time of deformation, the stress level of the portion where buckling progresses increases immediately after the start of deformation, and therefore the load level and impact absorption energy of the entire member are improved. In addition, there is also an advantage that the side wall does not easily fall because the deformation easily propagates from the buckled portion where the stress level suddenly increases to the periphery of the buckled portion having low strength.

また、本発明において、鋼材の板厚も特に限定する必要はないが、自動車部品として静的な荷重に対する十分な強度・剛性を確保する目的で、衝撃吸収部材に用いる鋼材の板厚を0.6mm以上とすることもできる。   In the present invention, the thickness of the steel material is not particularly limited, but the thickness of the steel material used for the shock absorbing member is set to 0. 0 for the purpose of ensuring sufficient strength and rigidity against a static load as an automobile part. It can also be 6 mm or more.

以下に本発明について実施例を挙げて説明する。   Hereinafter, the present invention will be described with reference to examples.

引張強さが280MPaクラス、板厚tが1.2mmの鋼板を用い、図2の(a)に示した断面形状に曲げ加工し、ハット型断面形状鋼板を作製した。このハット型断面形状鋼板と、同じ引張強さ、板厚のフラット鋼板を重ね合わせた後、図3に示すようにフランジ部の重ね合わせ部分を長手方向に断続的にレーザ溶接して、図1に示すような衝撃吸収部材を作製した。この際、レーザ溶接によりフランジ部に形成する溶接ビードの条件は、表1または表2に示すように、1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)、フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)、溶接ビード位置とハット型断面形状鋼板の縦壁部からのフランジ幅方向距離d、ハット型断面の幅方向の長さaと高さ方向の長さbとの平均長さD=(a+b)/2との比(t/D)を種々変えて行なった。レーザ溶接にはYAGレーザを用い、加工点出力を3.0kW、焦点位置のビーム直径を0.6mmφの一定とし、溶接速度を調節し、溶接ビードの溶融幅Wを調整した。なお、溶融幅Wとは、フランジ部の鋼板重ね合わせ面における溶接ビードの幅を指し、溶接後、溶接部断面観察から測定した。溶接時のシールドはセンターシールドトーチを用いて行い、シールドガスとして窒素ガスを用いた。レーザ溶接時のビームの焦点位置は、フランジ部の鋼板表面とした。   A steel plate having a tensile strength of 280 MPa class and a plate thickness t of 1.2 mm was bent into the cross-sectional shape shown in FIG. 2A to produce a hat-shaped cross-sectional steel plate. After the flat steel plate having the same tensile strength and thickness as this hat-shaped cross-sectional steel plate is superposed, the superposed portion of the flange portion is intermittently laser-welded in the longitudinal direction as shown in FIG. A shock absorbing member as shown in FIG. At this time, as shown in Table 1 or Table 2, the condition of the weld bead formed on the flange portion by laser welding is the ratio (L / λ) of the welding length L to the welding pitch λ per location, and the overlap of the flange portion. Ratio (W / t) of melt width W and sheet thickness t at the mating surface, weld bead position and flange width direction distance d from the vertical wall of the hat-shaped cross-section steel plate, width-direction length a of the hat-shaped cross section The ratio (t / D) of the average length D = (a + b) / 2 between the height b and the length b in the height direction was varied. A YAG laser was used for laser welding, the processing point output was set at 3.0 kW, the beam diameter at the focal position was fixed at 0.6 mmφ, the welding speed was adjusted, and the melt width W of the weld bead was adjusted. In addition, the fusion width W refers to the width of the weld bead on the steel sheet overlapping surface of the flange portion, and was measured from observation of the weld cross-section after welding. The shield at the time of welding was performed using a center shield torch, and nitrogen gas was used as a shield gas. The focal position of the beam during laser welding was the steel plate surface of the flange portion.

表1は、衝撃吸収部材サイズがハット型断面の幅方向の長さ(横壁長さ)a:120mm、高さ方向の長さ(縦壁長さ)b:80mm、フランジ幅c:20mm、衝撃吸収部材の長手方向(軸方向)の長さ:300mmの場合の試験結果を示す。表2は、衝撃吸収部材サイズは、ハット型断面の幅方向の長さ(横壁長さ)a:60mm、高さ方向の長さ(縦壁長さ)b:40mm、フランジ幅c:20mm、衝撃吸収部材の長手方向(軸方向)の長さ:300mmの場合の試験結果を示す。   Table 1 shows that the size of the shock absorbing member is a hat-shaped cross-section length in the width direction (horizontal wall length) a: 120 mm, length in the height direction (vertical wall length) b: 80 mm, flange width c: 20 mm, impact The test result in the case of length of the longitudinal direction (axial direction) of an absorption member: 300 mm is shown. In Table 2, the shock absorbing member size is the width in the hat-shaped cross section (horizontal wall length) a: 60 mm, the length in the height direction (vertical wall length) b: 40 mm, the flange width c: 20 mm, The test result when the length in the longitudinal direction (axial direction) of the impact absorbing member is 300 mm is shown.

なお、衝撃吸収部材の圧潰試験は、110kgの錘を自由落下させ、14m/sec(50km/h)の速度で溶接部材に衝突させた。衝撃吸収部材の衝撃吸収特性は、衝撃吸収部材の圧潰試験により得られた図4に示すような荷重−変位曲線の荷重(反力)を150mm変位まで積分して、吸収エネルギを求め、表1に示したNo.8、あるいは表2に示したNo.12の吸収エネルギを基準(=1)とし、この基準値に対する吸収エネルギ比を基に評価し、吸収エネルギが基準値に対して5%以上向上したものを「OK」(良好)、それ以下のものを「NG」(不良)とした。   In the crushing test of the impact absorbing member, a 110 kg weight was freely dropped and collided with the welding member at a speed of 14 m / sec (50 km / h). The shock absorbing characteristics of the shock absorbing member are obtained by integrating the load (reaction force) of the load-displacement curve as shown in FIG. 4 obtained by the crushing test of the shock absorbing member up to 150 mm displacement to obtain the absorbed energy. No. shown in FIG. 8 or No. 2 shown in Table 2. An absorption energy of 12 is set as a reference (= 1), and an evaluation is made based on an absorption energy ratio with respect to the reference value. When the absorption energy is improved by 5% or more with respect to the reference value, “OK” (good) or less The thing was made into "NG" (defective).

但し、本実施例の総合評価は、衝撃吸収特性評価(吸収エネルギ比)の結果が「OK」(良好)であっても、同条件で圧潰試験を複数回行って、圧潰時に衝撃吸収部材が横転した割合(横倒れ率)が30%を超えたものはNG(不良)と評価した。   However, the overall evaluation of this example is that, even if the result of the impact absorption characteristic evaluation (absorption energy ratio) is “OK” (good), the crush test is performed a plurality of times under the same conditions, and the impact absorbing member is Those with a rollover ratio (lateral fall rate) exceeding 30% were evaluated as NG (defective).

また、表1または表2において、dはハット型断面形状鋼板の縦壁から溶接ビード止端部までのフランジ幅方向の距離を示す。溶接ビード位置の条件式:d≦12×t0.5の評価は、この条件式を満足する場合を○、満足しない場合を×とした。 Moreover, in Table 1 or Table 2, d shows the distance of the flange width direction from the vertical wall of a hat-shaped cross-section steel plate to a weld bead toe part. Conditional expression of the weld bead position: In the evaluation of d ≦ 12 × t 0.5 , the case where this conditional expression is satisfied is evaluated as ◯, and the case where it is not satisfied is evaluated as ×.

ハット型断面の幅方向の長さ(横壁長さ)a:120mm、高さ方向の長さ(縦壁長さ)b:80mmの衝撃吸収部材の試験結果を表1に示す。   Table 1 shows the test results of the impact-absorbing member having a hat-shaped cross-sectional length (horizontal wall length) a: 120 mm and a height direction length (vertical wall length) b: 80 mm.

Figure 2006142917
Figure 2006142917

No.1〜4は本発明例であり、レーザ溶接ビードにおける1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)、フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)が本発明の規定範囲内を満足しているため、衝撃吸収部材の衝撃吸収特性の評価結果は「OK」(良好)であり、優れた衝撃吸収特性を得ることができた。
一方、表1のNo.5〜8は1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)、フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)の何れかが本発明の規定範囲を外れた比較例である。
No. 1-4 are examples of the present invention, the ratio of the welding length L to the welding pitch λ (L / λ) per spot in the laser welding bead, the ratio of the melt width W to the plate thickness t on the overlapping surface of the flange portion. Since (W / t) satisfies the specified range of the present invention, the impact absorption property evaluation result of the impact absorbing member is “OK” (good), and an excellent impact absorbing property can be obtained. .
On the other hand, no. 5-8 is either the ratio of the welding length L to the welding pitch λ per location (L / λ), or the ratio of the melt width W to the plate thickness t (W / t) on the overlapping surface of the flange portion. It is a comparative example outside the specified range of the invention.

No.5はW/tが本発明範囲内であるが、L/λが本発明範囲から外れるため、衝撃吸収部材の衝撃吸収特性が優れるが、圧潰試験における横倒れ率が33%と多発し基準値を超えたためNGと判定した。   No. No. 5, W / t is within the range of the present invention, but L / λ is out of the range of the present invention, so that the impact absorbing characteristics of the impact absorbing member are excellent. It was determined to be NG because it exceeded.

No.6はL/λが0.15で本発明範囲から外れ、溶接部の剥離が部分的に生じ、衝撃吸収部材の衝撃吸収特性が不良であった。   No. No. 6 had an L / λ of 0.15, which was out of the scope of the present invention, and the welded part was partially peeled off, and the impact absorbing property of the impact absorbing member was poor.

No.7はL/λが本発明範囲内であるが、W/tが発明範囲から外れ、圧潰試験中に溶接部が一部剥離し、衝撃吸収部材の衝撃吸収特性が不良であった。   No. In No. 7, L / λ was within the range of the present invention, but W / t was out of the range of the present invention, and a weld part was partly peeled during the crushing test, and the impact absorbing characteristics of the impact absorbing member were poor.

No.8はL/λが本発明範囲内であるが、W/tが発明範囲から外れ、圧潰試験中に溶接部が一部剥離した。   No. In No. 8, L / λ was within the range of the present invention, but W / t was out of the range of the present invention, and the weld was partially peeled during the crush test.

ハット型断面の幅方向の長さ(横壁長さ)a:60mm、高さ方向の長さ(縦壁長さ)b:40mmの衝撃吸収部材の試験結果を表2に示す。   Table 2 shows the test results of the impact-absorbing member having a hat-shaped cross-sectional length (horizontal wall length) a: 60 mm and a height direction length (vertical wall length) b: 40 mm.

Figure 2006142917
Figure 2006142917

No.9およびNo.10は本発明例であり、レーザ溶接ビードにおける1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)、フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)が本発明の規定範囲内を満足しているため、衝撃吸収部材の衝撃吸収特性の評価結果は「OK」(良好)であり、優れた衝撃吸収特性を得ることができた。
が。
No. 9 and no. 10 is an example of the present invention, where the ratio of the welding length L to the welding pitch λ (L / λ) per spot in the laser weld bead, the ratio of the melt width W to the plate thickness t (W Since / t) is within the specified range of the present invention, the evaluation result of the impact absorbing property of the impact absorbing member is “OK” (good), and an excellent impact absorbing property can be obtained.
But.

一方、No.11および12は1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)、フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)の何れかが本発明の規定範囲を外れた比較例である。   On the other hand, no. 11 and 12 are either the ratio of the welding length L to the welding pitch λ per location (L / λ), or the ratio of the melt width W to the plate thickness t (W / t) on the overlapping surface of the flange portion. It is a comparative example outside the specified range of the invention.

No.11はW/tが本発明範囲内であるが、L/λが本発明範囲から外れ、衝撃吸収部材の衝撃吸収特性が優れるが、圧潰試験における横倒れ率が40%と基準値を超えたためNGと判定した。   No. No. 11 has W / t within the scope of the present invention, but L / λ is out of the scope of the present invention, and the impact absorbing characteristics of the impact absorbing member are excellent, but the lateral collapse rate in the crushing test exceeds 40%, which is the standard value. It was determined as NG.

No.12はW/tが本発明範囲内であるが、L/λが本発明範囲から外れ、溶接部の剥離が部分的に生じた。   No. No. 12, W / t was within the range of the present invention, but L / λ was out of the range of the present invention, and peeling of the weld part occurred partially.

本発明の実施形態を示す衝撃吸収部材の溶接方向の斜め前方から見た斜視図である。It is the perspective view seen from the diagonal front of the welding direction of the impact-absorbing member which shows embodiment of this invention. 本発明の実施形態を示す衝撃吸収部材の溶接方向の前方から見た断面図である。(a)はハット型断面形状鋼板とフラット鋼板からなる衝撃吸収部材、(b)はハット型断面形状鋼板とハット型断面形状鋼板からなる衝撃吸収部材をそれぞれ示す。It is sectional drawing seen from the front of the welding direction of the impact-absorbing member which shows embodiment of this invention. (A) shows the impact-absorbing member which consists of a hat-shaped cross-sectional steel plate and a flat steel plate, (b) shows the impact-absorbing member which consists of a hat-shaped cross-sectional steel plate and a hat-shaped cross-sectional steel plate, respectively. 本発明の実施形態を示す衝撃吸収部材のレーザ照射方向に見た平面図である。It is the top view seen in the laser irradiation direction of the impact-absorbing member which shows embodiment of this invention. 衝撃吸収部材の圧潰試験における荷重−変位曲線を示す図である。実線は圧潰形態がコンパクトモードの場合、一点鎖線は圧潰形態がノンコンパクトモードの場合を示す。It is a figure which shows the load-displacement curve in the crushing test of an impact-absorbing member. A solid line indicates a case where the crushing mode is the compact mode, and a one-dot chain line indicates a case where the crushing mode is the non-compact mode. 溶接長Lと溶接ピッチλの比(L/λ)、および、重ね合わせ面での溶融幅Wと板厚tの比(W/t)と、衝撃吸収特性および圧潰形態との関係を示すグラフである。The graph which shows the relationship between the ratio (L / λ) of the welding length L and the welding pitch λ, the ratio (W / t) of the melt width W and the plate thickness t on the overlapping surface, and the impact absorption characteristics and the crushing form. It is. 衝撃吸収部材の溶接ビードにおける溶融幅Wと板厚tの比(W/t)と衝撃吸収エネルギの関係を示すグラフである。It is a graph which shows the relationship between the ratio (W / t) of the fusion | melting width W and plate | board thickness t in the weld bead of an impact-absorbing member, and impact-absorbing energy. 衝撃吸収部材の溶接ビードにおける溶接長Lと溶接ピッチλの比(L/λ)と衝撃吸収エネルギの関係を示すグラフである。It is a graph which shows the relationship between the ratio (L / (lambda)) of the welding length L and the welding pitch (lambda) in the weld bead of an impact-absorbing member, and impact-absorbing energy. 圧潰試験における圧潰形態を示す図である。(a)は圧潰形態がノンコンパクトモードの場合、(b)は圧潰形態がコンパクトモードの場合を示す。It is a figure which shows the crush form in a crush test. (A) shows a case where the crushing mode is a non-compact mode, and (b) shows a case where the crushing mode is a compact mode.

符号の説明Explanation of symbols

1 ハット型断面形状鋼板
2 フラット鋼板
3 フランジ
4 溶接ビード
5 R部(角部)
t:板厚
a:ハット型断面の幅方向の長さ(横壁長さ)
b:ハット型断面の高さ方向の長さ(縦壁長さ)
c:フランジ幅
d:縦壁部と溶接ビード間の距離
W:溶融幅
L:溶接長
λ:溶接ピッチ
1 Hat-shaped cross-section steel plate 2 Flat steel plate 3 Flange 4 Weld bead 5 R part (corner part)
t: Thickness a: Length of hat-shaped cross section in the width direction (lateral wall length)
b: Length in the height direction of the hat-shaped cross section (vertical wall length)
c: flange width d: distance between the vertical wall portion and the weld bead W: melt width L: weld length λ: weld pitch

Claims (6)

少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材において、前記ハット型断面形状鋼板のフランジ部の長手方向に沿って断続的に形成された溶接ビードの1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)が0.2以上0.95以下であり、かつ前記フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)が1.0以上、3.0以下であることを特徴とする衝撃吸収特性に優れた衝撃吸収部材。   In an impact absorbing member having a closed cross-sectional structure, at least one of which is made of a hat-shaped cross-sectional steel plate, a weld length L per weld bead formed intermittently along the longitudinal direction of the flange portion of the hat-shaped cross-sectional steel plate. And the welding pitch λ (L / λ) is 0.2 or more and 0.95 or less, and the ratio (W / t) of the melt width W and the plate thickness t on the overlapping surface of the flange portion is 1. An impact-absorbing member excellent in impact-absorbing characteristics, characterized by being 0 or more and 3.0 or less. 前記フランジ部の板厚tに対して、前記溶接ビードは、前記ハット型断面形状鋼板の縦壁部からフランジ幅方向の距離d=12×t0.5だけ離れた範囲内に形成したことを特徴とする請求項1に記載の衝撃吸収特性に優れた衝撃吸収部材。 The weld bead is formed within a range away from the vertical wall portion of the hat-shaped cross-sectional steel plate by a distance d = 12 × t 0.5 in the flange width direction with respect to the plate thickness t of the flange portion. The shock-absorbing member having excellent shock-absorbing characteristics according to claim 1. 前記ハット型断面形状鋼板における、フランジ部の板厚tと、ハット型断面の幅方向の長さaと高さ方向の長さbとの平均長さD=(a+b)/2との比(t/D)が0.020以下であることを特徴とする請求項1または2に記載の衝撃吸収特性に優れた衝撃吸収部材。   In the hat-shaped cross-section steel plate, the ratio of the thickness t of the flange portion to the average length D = (a + b) / 2 of the length a in the width direction and the length b in the height direction of the hat-shaped cross section ( The shock absorbing member having excellent shock absorbing characteristics according to claim 1 or 2, wherein t / D) is 0.020 or less. 少なくとも一方がハット型断面形状鋼板からなる閉断面構造の衝撃吸収部材を溶接する方法において、1箇所当たりの溶接長Lと溶接ピッチλの比(L/λ)が0.2以上0.95以下であり、かつ前記フランジ部の重ね合わせ面での溶融幅Wと板厚tの比(W/t)が1.0以上、3.0以下となるように、レーザ溶接により前記ハット型断面形状鋼板のフランジ部の長手方向に沿って溶接ビードを断続的に形成することを特徴とする衝撃吸収特性に優れた衝撃吸収部材の溶接方法。   In a method of welding a shock absorbing member having a closed cross-sectional structure, at least one of which is made of a hat-shaped cross-sectional steel plate, the ratio (L / λ) of the welding length L to the welding pitch λ per location is 0.2 or more and 0.95 or less. And the hat-shaped cross-sectional shape by laser welding so that the ratio (W / t) of the melt width W to the plate thickness t on the overlapping surface of the flange portion is 1.0 or more and 3.0 or less. A welding method for an impact-absorbing member excellent in impact-absorbing characteristics, wherein a weld bead is intermittently formed along a longitudinal direction of a flange portion of a steel plate. 前記フランジ部の板厚tに対して、前記溶接ビードは、前記ハット型断面形状鋼板の縦壁部からフランジ幅方向の距離d=12×t0.5だけ離れた範囲内に形成することを特徴とする請求項4に記載の衝撃吸収特性に優れた衝撃吸収部材の溶接方法。 The weld bead is formed within a range of a distance d = 12 × t 0.5 in the flange width direction from the vertical wall portion of the hat-shaped cross-sectional steel plate with respect to the plate thickness t of the flange portion. The welding method of the impact-absorbing member excellent in the impact-absorbing property of Claim 4. 前記ハット型断面形状鋼板における、フランジ部の板厚tと、ハット型断面の幅方向の長さaと高さ方向の長さbとの平均長さD=(a+b)/2との比(t/D)が0.020以下であることを特徴とする請求項4または5に記載の衝撃吸収特性に優れた衝撃吸収部材の溶接方法。   In the hat-shaped cross-section steel plate, the ratio of the thickness t of the flange portion to the average length D = (a + b) / 2 of the length a in the width direction and the length b in the height direction of the hat-shaped cross section ( 6. The method for welding an impact absorbing member having excellent impact absorbing characteristics according to claim 4, wherein t / D) is 0.020 or less.
JP2004333645A 2004-11-17 2004-11-17 Shock absorbing member having excellent shock absorbing property and welding method therefor Pending JP2006142917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004333645A JP2006142917A (en) 2004-11-17 2004-11-17 Shock absorbing member having excellent shock absorbing property and welding method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004333645A JP2006142917A (en) 2004-11-17 2004-11-17 Shock absorbing member having excellent shock absorbing property and welding method therefor

Publications (1)

Publication Number Publication Date
JP2006142917A true JP2006142917A (en) 2006-06-08

Family

ID=36623111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004333645A Pending JP2006142917A (en) 2004-11-17 2004-11-17 Shock absorbing member having excellent shock absorbing property and welding method therefor

Country Status (1)

Country Link
JP (1) JP2006142917A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161911A (en) * 2006-12-28 2008-07-17 Sumitomo Metal Ind Ltd Shock absorbing member and its manufacturing method
JP2009056483A (en) * 2007-08-31 2009-03-19 Sumitomo Metal Ind Ltd Lap laser welding method and laser welded product
JP2010158983A (en) * 2009-01-08 2010-07-22 Mazda Motor Corp Vehicle body structure formed by laser welding and spot welding, and its manufacturing method
JP2014210283A (en) * 2013-04-19 2014-11-13 新日鐵住金株式会社 Laser welding method and welded joint
JP6176428B1 (en) * 2016-03-15 2017-08-09 Jfeスチール株式会社 Lap laser welded joint, method for producing the welded joint, and automotive framework component
WO2017159425A1 (en) * 2016-03-15 2017-09-21 Jfeスチール株式会社 Lap laser-welded joint, method for producing same, and automobile skeleton component
KR20180100431A (en) * 2016-02-19 2018-09-10 신닛테츠스미킨 카부시키카이샤 Absence of automobile
CN109641321A (en) * 2016-09-29 2019-04-16 杰富意钢铁株式会社 Manufacturing method, laser weld joint and the automobile skeleton part of laser weld joint
JP2020153401A (en) * 2019-03-19 2020-09-24 日本製鉄株式会社 Closed cross-sectional structure
JP2021088001A (en) * 2021-03-12 2021-06-10 トヨタ自動車株式会社 Welding method and weld structure
JP2021091928A (en) * 2019-12-09 2021-06-17 日本製鉄株式会社 Steel, blank, and method for producing hot stamp member

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170568A (en) * 1992-12-08 1994-06-21 Mazda Motor Corp Beam welding method for vehicle frame member
JPH07119892A (en) * 1993-10-27 1995-05-12 Nissan Motor Co Ltd High strength member
JPH07125651A (en) * 1993-11-04 1995-05-16 Nissan Motor Co Ltd Strengthening member
JP2002079388A (en) * 2000-09-06 2002-03-19 Nippon Steel Corp Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
JP2003200852A (en) * 2001-10-25 2003-07-15 Toyota Motor Corp Hollow structural body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170568A (en) * 1992-12-08 1994-06-21 Mazda Motor Corp Beam welding method for vehicle frame member
JPH07119892A (en) * 1993-10-27 1995-05-12 Nissan Motor Co Ltd High strength member
JPH07125651A (en) * 1993-11-04 1995-05-16 Nissan Motor Co Ltd Strengthening member
JP2002079388A (en) * 2000-09-06 2002-03-19 Nippon Steel Corp Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
JP2003200852A (en) * 2001-10-25 2003-07-15 Toyota Motor Corp Hollow structural body

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008161911A (en) * 2006-12-28 2008-07-17 Sumitomo Metal Ind Ltd Shock absorbing member and its manufacturing method
JP2009056483A (en) * 2007-08-31 2009-03-19 Sumitomo Metal Ind Ltd Lap laser welding method and laser welded product
JP2010158983A (en) * 2009-01-08 2010-07-22 Mazda Motor Corp Vehicle body structure formed by laser welding and spot welding, and its manufacturing method
JP2014210283A (en) * 2013-04-19 2014-11-13 新日鐵住金株式会社 Laser welding method and welded joint
US10577028B2 (en) 2016-02-19 2020-03-03 Nippon Steel Corporation Automobile member
KR102141455B1 (en) * 2016-02-19 2020-08-05 닛폰세이테츠 가부시키가이샤 Car absence
KR20180100431A (en) * 2016-02-19 2018-09-10 신닛테츠스미킨 카부시키카이샤 Absence of automobile
JP6176428B1 (en) * 2016-03-15 2017-08-09 Jfeスチール株式会社 Lap laser welded joint, method for producing the welded joint, and automotive framework component
CN108778608A (en) * 2016-03-15 2018-11-09 杰富意钢铁株式会社 Overlap the manufacturing method and automobile skeleton part of laser weld joint, the welding point
KR20180114122A (en) 2016-03-15 2018-10-17 제이에프이 스틸 가부시키가이샤 Overlap laser welded joint, method of manufacturing the welded joint, and skeleton part for automobile
KR102129194B1 (en) 2016-03-15 2020-07-01 제이에프이 스틸 가부시키가이샤 Overlapping laser welding joint, manufacturing method of the welding joint and skeleton parts for automobiles
WO2017159425A1 (en) * 2016-03-15 2017-09-21 Jfeスチール株式会社 Lap laser-welded joint, method for producing same, and automobile skeleton component
US10919113B2 (en) 2016-03-15 2021-02-16 Jfe Steel Corporation Laser lap-welded joint, method of manufacturing the same, and automobile framework component
CN109641321A (en) * 2016-09-29 2019-04-16 杰富意钢铁株式会社 Manufacturing method, laser weld joint and the automobile skeleton part of laser weld joint
JP2020153401A (en) * 2019-03-19 2020-09-24 日本製鉄株式会社 Closed cross-sectional structure
JP7151573B2 (en) 2019-03-19 2022-10-12 日本製鉄株式会社 Closed section structure
JP2021091928A (en) * 2019-12-09 2021-06-17 日本製鉄株式会社 Steel, blank, and method for producing hot stamp member
JP2021088001A (en) * 2021-03-12 2021-06-10 トヨタ自動車株式会社 Welding method and weld structure

Similar Documents

Publication Publication Date Title
JP5488069B2 (en) Crash box and car body
JP4968201B2 (en) Laser welded structural member and manufacturing method thereof
JP5126503B2 (en) Crash box and its mounting structure
CA2907413E (en) Automobile structural member and manufacturing method of the same
KR101947929B1 (en) Automobile member
JP2002079388A (en) Method for laser beam welding of shock-absorbing member having excellent shock absorption characteristic against axial collapse
KR102141455B1 (en) Car absence
JP3922263B2 (en) Method of manufacturing resistance spot welded joint
JP2006142917A (en) Shock absorbing member having excellent shock absorbing property and welding method therefor
JP2007269075A (en) Welding structure closed section frame
CN113195310A (en) Energy-absorbing component and bumper beam with such an energy-absorbing component
JP5131810B2 (en) Crash box and manufacturing method thereof
CN106809153B (en) Bumper unit for a motor vehicle
JP2008155749A (en) Impact absorbing member and its manufacturing method
JP2010083381A (en) Bumper system and method for manufacturing the same
JP5235007B2 (en) Crash box
JP5416471B2 (en) Method for welding vehicle frame member and vehicle frame member
JP2002079387A (en) Method for welding lap joint with laser beam
JP5283405B2 (en) Automotive reinforcement
JP2005075293A (en) Shock absorbing structure for railway vehicle
JP5180950B2 (en) Bumper structure
JP4016911B2 (en) Laser welding method of high strength steel
JP6172426B1 (en) Automotive parts
JP4993520B2 (en) Welded structure closed section frame
JP6787365B2 (en) How to determine the shape and spot welding position of collision energy absorbing parts for automobiles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013