JPH07125053A - Heat-resistant biaxially stretched blow molded bottle and production thereof - Google Patents

Heat-resistant biaxially stretched blow molded bottle and production thereof

Info

Publication number
JPH07125053A
JPH07125053A JP5300975A JP30097593A JPH07125053A JP H07125053 A JPH07125053 A JP H07125053A JP 5300975 A JP5300975 A JP 5300975A JP 30097593 A JP30097593 A JP 30097593A JP H07125053 A JPH07125053 A JP H07125053A
Authority
JP
Japan
Prior art keywords
mouth
heat
transition
parison
stretch blow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5300975A
Other languages
Japanese (ja)
Inventor
Takanori Oboshi
隆則 大星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP5300975A priority Critical patent/JPH07125053A/en
Publication of JPH07125053A publication Critical patent/JPH07125053A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/26Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/20Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer
    • B29C2949/28Preforms or parisons whereby a specific part is made of only one component, e.g. only one layer at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • B29C49/6409Thermal conditioning of preforms
    • B29C49/6436Thermal conditioning of preforms characterised by temperature differential
    • B29C49/6445Thermal conditioning of preforms characterised by temperature differential through the preform length
    • B29C49/6452Thermal conditioning of preforms characterised by temperature differential through the preform length by heating the neck
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0041Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7158Bottles

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To provide a mouth part having excellent heat resistance and good dimensional accuracy. CONSTITUTION:A heat-resistant biaxially stretched blow molded bottle has a mouth part 1 having a support ring 11 provided to the lower end thereof, the transfer part 2 continued to the mouth part 1, a shoulder part 3, a body part 4 and a bottom part 5. The mouth part 1 has a multilayered structure consisting of a polyester layer 14 and a heat-resistant resin layer 13 and the polyester layer 14 in the mouth part 1 and the transfer part 2 is crystallized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、口部及び移行部が結晶
化(白化)した耐熱性二軸延伸ブロー成形ボトル及びそ
の製造方法に関し、特に口部及び移行部が結晶化してい
るために優れた耐熱性と良好な寸法精度を有する耐熱性
二軸延伸ブロー成形ボトル及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant biaxially stretched blow-molded bottle in which the mouth and the transition are crystallized (whitened) and a method for producing the same, and particularly because the mouth and the transition are crystallized. The present invention relates to a heat-resistant biaxially stretch blow-molded bottle having excellent heat resistance and good dimensional accuracy, and a method for producing the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
ポリエステル製ボトルに80〜95℃の液体を充填するいわ
ゆるホットフィルや、炭酸ガス入りの果汁、乳酸菌飲料
等を充填したボトルに対するホットシャワーによるパス
テライジングが行われるようになり、そのため特に口部
付近に優れた耐熱性が要求されるようになった。という
のは、ホットフィルでは口部が熱い液体に最初にさらさ
れ、またホットシャワーによるパステライジングでも、
ホットシャワーをボトル上方から注ぐのが一般的である
からである。
2. Description of the Related Art In recent years,
So-called hot fill, which fills a polyester bottle with a liquid at 80 to 95 ° C, and pasteurizing with a hot shower for bottles filled with carbonic acid-containing fruit juice, lactic acid bacteria beverages, etc., will be performed especially near the mouth. Excellent heat resistance is now required. For hot fill, the mouth is first exposed to a hot liquid, and also for pasteurizing with a hot shower,
This is because it is common to pour the hot shower from above the bottle.

【0003】ところが、通常の二軸延伸ブロー成形によ
って得られるポリエステル製ボトルでは、口部は未延伸
のまま残され、移行部も低延伸のため、延伸やヒートセ
ットによる耐熱性の付与ができず、80〜95℃の液体の充
填には供し得ない。
However, in a polyester bottle obtained by ordinary biaxially stretch blow molding, the mouth portion is left unstretched and the transition portion is also low stretched, so that heat resistance cannot be imparted by stretching or heat setting. , Cannot be used for filling liquid at 80-95 ℃.

【0004】そこで、口部に耐熱性樹脂とポリエステル
樹脂等からなる多層構造を有するパリソンから二軸延伸
ブロー成形ボトルを製造する方法が種々試みられてい
る。しかしながら、その方法でも炭酸ガス入り飲料用ボ
トル等に65〜80℃のホットシャワーによるパステライジ
ングを長時間行う場合は、熱と内圧のため特に低延伸の
移行部において変形量が大きくなる。また、90℃以上の
厳しいホットフィル条件下で連続使用できる耐熱性を得
ることが難しい。
Therefore, various methods have been attempted for producing a biaxially stretch blow molded bottle from a parison having a multi-layered structure including a heat resistant resin and a polyester resin in the mouth. However, even in that method, when pasteurizing with a hot shower at 65 to 80 ° C. for a long time is performed on a bottle for a carbon dioxide-containing beverage or the like, the amount of deformation becomes large especially at the transition portion of low stretching due to heat and internal pressure. Further, it is difficult to obtain heat resistance capable of continuous use under severe hot fill conditions of 90 ° C or higher.

【0005】また、パリソンの段階、あるいは二軸延伸
ブロー成形した後に、ボトルの口部に加熱処理を施すこ
とにより、ポリエステルを結晶化させ、耐熱性を向上さ
せる方法が行われている。しかしながら、この方法にお
いては加熱処理した時のポリエステルの結晶化に伴い、
口部の寸法が変化しやすく、特に開口端部で収縮が発生
しやすいという問題がある。
Further, a method of crystallizing the polyester to improve the heat resistance by subjecting the mouth of the bottle to a heat treatment after the parison stage or after the biaxial stretch blow molding has been carried out. However, in this method, with the crystallization of the polyester when subjected to heat treatment,
There is a problem that the size of the mouth portion is likely to change, and contraction is likely to occur especially at the opening end portion.

【0006】したがって、本発明の目的は、優れた耐熱
性と良好な寸法精度を有する口部を具備する耐熱性二軸
延伸ブロー成形ボトル、及びかかる耐熱性二軸延伸ブロ
ー成形ボトルを製造する方法を提供することである。
Therefore, an object of the present invention is to provide a heat resistant biaxially stretch blow molded bottle having a mouth portion having excellent heat resistance and good dimensional accuracy, and a method for producing such a heat resistant biaxially stretch blow molded bottle. Is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的に鑑み鋭意研究
の結果、本発明者は、ポリエステル樹脂と耐熱性樹脂と
を共射出して、口部に多層構造を有するパリソンを製造
し、パリソンの段階又はパリソンを二軸延伸ブロー成形
した後に、口部及び移行部を内側から加熱し、次いで口
部を外側より加熱すれば、口部及び移行部におけるポリ
エステル層は実質的に変形することなく結晶化し、ホッ
トフィル及びホットシャワーに対する十分な耐熱性を有
する二軸延伸ブロー成形ボトルが得られることを見出
し、本発明に想到した。
As a result of earnest research in view of the above object, the present inventor produced a parison having a multilayer structure in the mouth by co-injecting a polyester resin and a heat-resistant resin. After the step or the parison is biaxially stretch blow molded, the mouth and the transition are heated from the inside, and then the mouth is heated from the outside, the polyester layer in the mouth and the transition is crystallized without substantial deformation. It was found that a biaxially stretched blow molded bottle having sufficient heat resistance against hot fill and hot shower can be obtained, and the present invention has been conceived.

【0008】すなわち本発明の耐熱性二軸延伸ブロー成
形ボトルは、下端にサポートリングを有する口部と、前
記口部に続く移行部と、肩部と、胴部と、底部とを有
し、前記口部がポリエステル層と耐熱性樹脂層とからな
る多層構造を有するものであり、前記口部及び前記移行
部におけるポリエステル層が結晶化していることを特徴
とする。
That is, the heat-resistant biaxially stretch blow-molded bottle of the present invention has a mouth portion having a support ring at the lower end, a transition portion continuing to the mouth portion, a shoulder portion, a body portion, and a bottom portion, The mouth portion has a multi-layered structure including a polyester layer and a heat resistant resin layer, and the polyester layer in the mouth portion and the transition portion is crystallized.

【0009】また、上記耐熱性二軸延伸ブロー成形ボト
ルを製造する本発明の第一の方法は、(a) ポリエステル
層と耐熱性樹脂層とからなる多層構造を有し下端にサポ
ートリングを有する口部と、前記口部に続く移行部と、
胴部と、底部とを有する有底円筒状のパリソンを形成
し、(b) 前記口部の内側に挿入したヒータによって、前
記口部及び前記移行部を内側より加熱して前記口部の内
側及び前記移行部におけるポリエステル層を結晶化した
後、(c) 前記口部を外側より加熱して、前記口部及び前
記移行部におけるポリエステル層を結晶化し、(d) 続い
て前記パリソンを二軸延伸ブロー成形することを特徴と
する。
The first method of the present invention for producing the heat-resistant biaxially stretch blow-molded bottle is (a) having a multilayer structure consisting of a polyester layer and a heat-resistant resin layer, and having a support ring at the lower end. A mouth portion, a transition portion that follows the mouth portion,
Forming a bottomed cylindrical parison having a body portion and a bottom portion, (b) by a heater inserted inside the mouth portion, the mouth portion and the transition portion are heated from the inside and the inside of the mouth portion is formed. And after crystallizing the polyester layer in the transition part, (c) heating the mouth portion from the outside to crystallize the polyester layer in the mouth portion and the transition portion, (d) subsequently biaxially the parison. It is characterized by stretch blow molding.

【0010】上記耐熱性二軸延伸ブロー成形ボトルを製
造する本発明の第二の方法は、(a)ポリエステル層と耐
熱性樹脂層とからなる多層構造を有し下端にサポートリ
ングを有する口部と、前記口部に続く移行部と、胴部
と、底部とを有する有底円筒状のパリソンを形成し、
(b) 前記パリソンを二軸延伸ブロー成形し、(c) 得られ
た二軸延伸ブロー成形ボトルの口部の内側に挿入したヒ
ータによって、前記口部及び前記移行部を内側より加熱
して前記口部の内側及び前記移行部におけるポリエステ
ル層を結晶化した後、(d) 前記口部を外側より加熱し
て、前記口部及び前記移行部におけるポリエステル層を
結晶化することを特徴とする。
The second method of the present invention for producing the heat-resistant biaxially stretch blow-molded bottle is as follows: (a) A mouth part having a multilayer structure consisting of a polyester layer and a heat-resistant resin layer and having a support ring at the lower end. And forming a bottomed cylindrical parison having a transition part following the mouth part, a body part, and a bottom part,
(b) biaxially stretch blow molding the parison, (c) by a heater inserted inside the mouth of the resulting biaxially stretch blow molded bottle, the mouth and the transition part are heated from the inside to After crystallizing the polyester layer at the inside of the mouth and at the transition, (d) heating the mouth from the outside to crystallize the polyester layer at the mouth and the transition.

【0011】上記耐熱性二軸延伸ブロー成形ボトルを製
造する本発明の第三の方法は、(a)ポリエステル層と耐
熱性樹脂層とからなる多層構造を有し下端にサポートリ
ングを有する口部と、前記口部に続く移行部と、胴部
と、底部とを有する有底円筒状のパリソンを形成し、
(b) 前記口部の内側に挿入したヒータにより前記口部及
び前記移行部を内側より加熱して前記口部の内側及び前
記移行部におけるポリエステル層を結晶化し、(c) 続い
て前記パリソンを二軸延伸ブロー成形し、(d) 得られた
二軸延伸ブロー成形ボトルの口部を外側より加熱して、
前記口部の外側及び前記移行部におけるポリエステル層
を結晶化することを特徴とする。
The third method of the present invention for producing the heat-resistant biaxially stretch blow-molded bottle is (a) a mouth part having a multilayer structure comprising a polyester layer and a heat-resistant resin layer and having a support ring at the lower end. And forming a bottomed cylindrical parison having a transition part following the mouth part, a body part, and a bottom part,
(b) heating the mouth portion and the transition portion from the inside by a heater inserted inside the mouth portion to crystallize the polyester layer at the inside of the mouth portion and the transition portion, and (c) subsequently the parison. Biaxially stretch blow molded, (d) heating the mouth of the resulting biaxially stretch blow molded bottle from the outside,
It is characterized in that the polyester layer on the outside of the mouth portion and on the transition portion is crystallized.

【0012】[0012]

【実施例】以下、本発明を詳細に説明する。〔A〕ボトル口部の構造 本発明の耐熱性二軸延伸ブロー成形ボトルは、図1に例
示するように、下端にサポートリング11を有する口部1
と、口部1に続く移行部2と、肩部3と、胴部4と、底
部5とからなる。本明細書において、移行部とは口部1
のわずか下方に位置し、二軸延伸ブローによってほとん
ど延伸されない部位をいい、ボトルの状態では口部と肩
部との間に位置するものである。また、本明細書におい
て耐熱性とは、耐熱性及び耐熱・耐圧性のいずれをも含
むことを意味する。なお、ボトルの肩部3、胴部4及び
底部5については、図1に示した形状にとらわれず、従
来のプラスチック製ボトルにみられる種々の形状に適宜
変更してよい。また、口部1のシール形態は、ネジ以外
のものにも適宜形状を選択できることは言うまでもな
い。
The present invention will be described in detail below. [A] Structure of Bottle Portion The heat-resistant biaxially stretch blow-molded bottle of the present invention has a mouth portion 1 having a support ring 11 at the lower end, as illustrated in FIG.
And a transition portion 2 following the mouth portion 1, a shoulder portion 3, a body portion 4, and a bottom portion 5. In the present specification, the transition portion is the mouth portion 1
It is located slightly below and is hardly stretched by biaxial stretching blow, and is located between the mouth and the shoulder in the bottle state. In addition, in this specification, heat resistance means including both heat resistance and heat resistance / pressure resistance. Note that the shoulder portion 3, the body portion 4, and the bottom portion 5 of the bottle are not limited to the shape shown in FIG. 1, and may be appropriately changed to various shapes found in conventional plastic bottles. Further, it goes without saying that the sealing form of the mouth portion 1 can be appropriately selected from shapes other than screws.

【0013】口部1は、ねじ部12とサポートリング11と
からなる。このような形状の口部1は、耐熱性樹脂層13
とポリエステル層14とが交互に形成された多層構造を有
する。図2に示す例では耐熱性樹脂層13は3層(13a〜
13c)となっており、最外層の耐熱性樹脂層13aは、サ
ポートリング11の上面まで連続していてもよい。一方ポ
リエステル層14a、14bは各耐熱性樹脂層13a〜13cの
間に存在する。なお、耐熱性樹脂層13は3層に限らず、
任意の層数とすることができる。
The mouth portion 1 comprises a screw portion 12 and a support ring 11. The mouth portion 1 having such a shape has a heat-resistant resin layer 13
And a polyester layer 14 are alternately formed. In the example shown in FIG. 2, the heat resistant resin layer 13 has three layers (13a-
13c), and the outermost heat-resistant resin layer 13a may be continuous to the upper surface of the support ring 11. On the other hand, the polyester layers 14a and 14b are present between the heat resistant resin layers 13a to 13c. The heat resistant resin layer 13 is not limited to three layers,
It can have any number of layers.

【0014】耐熱性樹脂層13a〜13cの厚さには特に制
限はないが、開口端に近づくにつれて耐熱性樹脂層13の
占める割合が多くなり、開口端部ではほぼ全体が耐熱性
樹脂からなるようになっているのが好ましい。
The thickness of the heat-resistant resin layers 13a to 13c is not particularly limited, but the heat-resistant resin layer 13 occupies a larger proportion toward the opening end, and the opening end portion is almost entirely made of the heat-resistant resin. It is preferable that

【0015】図1及び図2に示すように、口部1におけ
るポリエステル層14は結晶化している。また、移行部2
はサポートリング3の直下に均一結晶化領域2aを、その
下部に傾斜結晶化領域2bを有する。均一結晶化領域2aは
内側も外側も全体的に均一に結晶化しているが、傾斜結
晶化領域2bは肩部3に向かって外側から徐々に減少して
いる。
As shown in FIGS. 1 and 2, the polyester layer 14 in the mouth portion 1 is crystallized. Also, the transition section 2
Has a uniform crystallization region 2a immediately below the support ring 3 and a tilted crystallization region 2b below it. The uniform crystallized region 2a is crystallized uniformly on the inside and the outside, but the inclined crystallized region 2b gradually decreases from the outside toward the shoulder portion 3.

【0016】上記均一結晶化領域2a及び傾斜結晶化領域
2bを有する移行部2においては、高温の内容物を充填す
る場合でも、その内容物に接する移行部内側は結晶化さ
れているため、変形等が生じない。また、移行部2をパ
リソン段階で上記のように結晶化する場合は、その後の
ブロー成形の際に、傾斜結晶化領域2bの外側の結晶化し
ていない部分を任意の形状に延伸・成形することができ
る。このとき、移行部の肉厚と肩部の肉厚とをなだらか
に変化させれば、優れた物性や美麗な外観を得ることが
できる。
The uniform crystallization region 2a and the inclined crystallization region
In the transition section 2 having 2b, even when filling the high-temperature content, the inside of the transition section in contact with the content is crystallized, so that deformation or the like does not occur. When the transition part 2 is crystallized as described above at the parison stage, the non-crystallized portion outside the tilted crystallized region 2b is stretched / formed into an arbitrary shape in the subsequent blow molding. You can At this time, if the thickness of the transition portion and the thickness of the shoulder portion are gently changed, excellent physical properties and a beautiful appearance can be obtained.

【0017】従って、移行部全体を結晶化した場合と比
較して形状に自由性があるとともに、一旦結晶化した移
行部を無理に成形した際に生じる変形や、割れ、あるい
は結晶化した移行部とその下部の未結晶化部分との間に
生じやすい肉厚の段差等を防止することができる。
Therefore, compared to the case where the entire transitional portion is crystallized, the shape is more flexible, and the deformation, cracking, or crystallized transitional portion which occurs when the once crystallized transitional portion is forcibly formed. It is possible to prevent a thickness difference or the like, which is likely to occur between the non-crystallized portion and the lower portion.

【0018】以上説明した本発明のボトルは、80〜95℃
の液体を充填するホットフィルや、70〜80℃のホットシ
ャワーを30分ほどボトル上方より施すパステライジング
に充分に耐え得る良好な耐熱性を有する。
The bottle of the present invention described above has a temperature of 80 to 95 ° C.
It has good heat resistance enough to withstand hot filling for filling the liquid and hot pasteurizing at 70-80 ° C for about 30 minutes from the top of the bottle.

【0019】〔B〕ボトルの製造方法 口部1及び移行部2の結晶化は加熱処理によって行う
が、加熱結晶化処理には以下の3通りの方法、すなわち
(1) パリソンの段階で加熱結晶化処理を施す方法、(2)
ブロー成形後に加熱結晶化処理を施す方法、及び(3) パ
リソンの段階で内側だけ加熱結晶化し、次いでブロー成
形後に外側を加熱結晶化処理する方法がある。以下、各
方法について説明する。
[B] Bottle Manufacturing Method The mouth portion 1 and the transition portion 2 are crystallized by a heat treatment. The heat crystallization treatment includes the following three methods:
(1) Heat crystallization at the parison stage, (2)
There are a method of performing heat crystallization treatment after blow molding, and a method of (3) heat crystallization of only the inner side at the stage of parison, and then heat crystallization treatment of the outer side after blow molding. Hereinafter, each method will be described.

【0020】(1) パリソンの段階で加熱結晶化処理を施
す方法 まず、パリソンの製造について説明する。図3(a) に示
すように、口部型71と、インジェクションキャビティ型
72と、インジェクションコア型73とからなる射出成形型
7を用いて、パリソンを製造する。本発明におけるパリ
ソン6の口部1は、耐熱性樹脂層13とポリエステル樹脂
層14とからなる多層構造を有するため、例えば特開平1
−294025号に示されたポリエステル樹脂と耐熱性樹脂と
の共射出方法によって、上記多層構造を有するパリソン
を製造することができるが、他にも、口部側から耐熱性
樹脂を、底部側からポリエステル樹脂をそれぞれ射出す
る、いわゆる2ゲート共射出成形法等によっても製造す
ることができる。
(1) Heat crystallization treatment is performed at the parison stage.
To a method will be described first parison production. As shown in Fig. 3 (a), the mouth part mold 71 and the injection cavity mold
The parison is manufactured using the injection molding die 7 including the 72 and the injection core die 73. The mouth portion 1 of the parison 6 in the present invention has a multi-layer structure composed of the heat-resistant resin layer 13 and the polyester resin layer 14, and therefore is disclosed in, for example, Japanese Patent Laid-Open No.
By the co-injection method of a polyester resin and a heat-resistant resin shown in No. 294025, it is possible to manufacture a parison having the above-mentioned multilayer structure, but in addition, a heat-resistant resin from the mouth side, from the bottom side It can also be manufactured by a so-called two-gate co-injection molding method or the like in which each polyester resin is injected.

【0021】成形したパリソン6がガラス転移温度より
低い温度まで冷却したら、インジェクションコア型73及
びインジェクションキャビティ型72を離型する。このと
き、図3(b) に示すように、口部型71はパリソン6の口
部1を把持したままとする。
When the molded parison 6 is cooled to a temperature lower than the glass transition temperature, the injection core mold 73 and the injection cavity mold 72 are released. At this time, as shown in FIG. 3 (b), the mouth die 71 holds the mouth portion 1 of the parison 6 still.

【0022】次に、図4に示すように、口部型71で把持
したパリソン6を冷却型8内に入れるのが好ましい。そ
のとき、口部型71のみならず、パリソン6の胴部及び底
部も冷却するのが好ましい。冷却温度は、ポリエステル
樹脂の結晶化温度より低ければよいが、具体的には、10
〜50℃程度に冷却するのが好ましい。
Next, as shown in FIG. 4, it is preferable to put the parison 6 held by the mouth die 71 into the cooling die 8. At this time, it is preferable to cool not only the mouth die 71 but also the body and bottom of the parison 6. The cooling temperature may be lower than the crystallization temperature of the polyester resin, specifically, 10
It is preferable to cool to about 50 ° C.

【0023】上記のようにパリソン6を外側から冷却し
た状態で、図4に示すようにパリソン6の口部1からロ
ッドヒータ9を挿入し、口部1及び移行部2を内側より
加熱し、その部分におけるポリエステル層14を部分的
に、すなわち内側部分だけ結晶化する。このとき、パリ
ソンの表面温度が100 〜190 ℃となるように加熱するの
が好ましい。パリソンの表面温度が100 ℃未満ではポリ
エステル樹脂が結晶化せず、190 ℃を超えるとポリエス
テル層の結晶化が遅くなるとともにパリソンが軟化・変
形しやすくなる。また、加熱時間はポリエステル層14の
部分的結晶化を起こすように設定するが、具体的には0.
5 〜3分が好ましい。
With the parison 6 being cooled from the outside as described above, the rod heater 9 is inserted from the mouth portion 1 of the parison 6 as shown in FIG. 4, and the mouth portion 1 and the transition portion 2 are heated from the inside, The polyester layer 14 in that portion is partially crystallized, that is, only the inner portion is crystallized. At this time, it is preferable to heat the parison so that the surface temperature of the parison is 100 to 190 ° C. If the surface temperature of the parison is less than 100 ° C, the polyester resin will not crystallize, and if it exceeds 190 ° C, the crystallization of the polyester layer will be slow and the parison will be easily softened and deformed. Further, the heating time is set so as to cause partial crystallization of the polyester layer 14, but specifically, it is set to 0.
5 to 3 minutes is preferable.

【0024】次に、口部型71をパリソン6から取りはず
し、図5に示すように口部1を外側からリングヒータ10
で加熱するが、その他熱風ヒータ、赤外線ヒータ等を使
用してもよい。このとき、移行部2の下部及び胴部を加
熱しないように冷却型20に入れるのが好ましい。加熱温
度は、上記と同様に100 〜190 ℃程度でよい。また、加
熱時間は口部外層中の未結晶のポリエステル層14が結晶
化するのに十分な時間であればよいが、具体的には0.5
〜3分が好ましい。
Next, the mouth die 71 is removed from the parison 6 and the mouth 1 is opened from the outside as shown in FIG.
However, other hot air heaters, infrared heaters or the like may be used. At this time, it is preferable to put it in the cooling mold 20 so as not to heat the lower part of the transition part 2 and the body part. The heating temperature may be about 100 to 190 ° C. as described above. Further, the heating time may be a time sufficient for the uncrystallized polyester layer 14 in the outer layer of the mouth to be crystallized, but specifically 0.5
~ 3 minutes is preferred.

【0025】このような方法で口部1を加熱することに
より、口部1のポリエステル層14が結晶化し、移行部2
に均一結晶化領域2a及び傾斜結晶化領域2bが形成され
る。本発明の方法では、口部1の内側にジグ等の支持手
段を挿入せずに加熱処理を施しているが、口部1の内側
部分は結晶化しているので、加熱結晶化温度でも良好な
耐熱性を保持し、そのために口部1はほとんど変形しな
い。
By heating the mouth portion 1 by such a method, the polyester layer 14 of the mouth portion 1 is crystallized and the transition portion 2
A uniform crystallized region 2a and a tilted crystallized region 2b are formed on the surface. In the method of the present invention, the heat treatment is performed without inserting a supporting means such as a jig into the inside of the mouth 1. However, since the inner portion of the mouth 1 is crystallized, the heating crystallization temperature is also good. It retains heat resistance, so that the mouth portion 1 is hardly deformed.

【0026】このようにして得られたパリソン6を通常
の方法により二軸延伸ブロー成形するが、その際、移行
部2から肩部3にかけて急峻な肉厚差が生じない。
The parison 6 thus obtained is biaxially stretch-blow-molded by a usual method, but at that time, a steep thickness difference from the transition portion 2 to the shoulder portion 3 does not occur.

【0027】なお、二軸延伸ブロー成形法として、二段
階ブロー成形法を用いてもよい。二段階ブロー成形法の
場合、第一段において、一旦目的とするボトルの最終形
状よりも幾分大きくブロー成形し、プレボトルを製造す
る。このプレボトルを結晶性プラスチックの結晶化温度
以上融点未満の温度で加熱収縮させ、再度二軸延伸ブロ
ー成形を行い、所望の形状のボトルとする。このような
二軸延伸ブロー成形方法によって、ボトル胴部等の白化
現象を防止するとともに、ボトル表面の不規則な歪みの
発生を防止することができる。また、内部応力の緩和や
密度の向上を図ることができるため、さらに優れた耐熱
性を有するボトルを得ることができる。
A two-step blow molding method may be used as the biaxial stretch blow molding method. In the case of the two-stage blow molding method, in the first stage, blow molding is performed to a size slightly larger than the final shape of the desired bottle to produce a pre-bottle. The pre-bottle is heat-shrinked at a temperature not lower than the crystallization temperature of the crystalline plastic and lower than the melting point, and again subjected to biaxial stretch blow molding to obtain a bottle having a desired shape. By such a biaxial stretch blow molding method, it is possible to prevent the whitening phenomenon of the bottle body and the like and prevent the occurrence of irregular distortion on the bottle surface. Further, since the internal stress can be relaxed and the density can be improved, a bottle having further excellent heat resistance can be obtained.

【0028】(2) ブロー成形後に加熱結晶化処理を施す
方法 この方法では、パリソンに加熱結晶化処理を施すことな
く、上記と同様の方法で二軸延伸ブロー成形を行ってボ
トルを成形し、その後で口部の加熱結晶化処理を行う。
(2) Perform heat crystallization treatment after blow molding
Method In this method, the parison is not subjected to the heat crystallization treatment, but is subjected to the biaxial stretch blow molding in the same manner as described above to mold the bottle, and then the mouth heat crystallization treatment is performed.

【0029】二軸延伸ブロー成形後、ボトルを口部型で
把持したまま金型から取り出し、次の加熱結晶化処理を
行う。加熱結晶化処理では、口部型で把持したボトルを
冷却型内に入れ、(1) の方法と同様にボトルの口部から
ヒータを挿入して口部及び移行部を内側から加熱し、そ
の部分におけるポリエステル層を結晶化する。加熱結晶
化条件は(1) の方法と同様でよい。
After the biaxially stretch blow molding, the bottle is taken out from the mold while being held by the mouth mold, and the following heat crystallization treatment is performed. In the heating crystallization process, the bottle held by the mouth mold is put in the cooling mold, and a heater is inserted from the mouth of the bottle to heat the mouth and the transition part from the inside in the same manner as in the method (1). Crystallize the polyester layer in parts. The heat crystallization conditions may be the same as in the method (1).

【0030】次に、口部型をボトルから離型して口部を
外側より加熱し、口部外層中の未結晶のポリエステル層
を結晶化する。加熱結晶化条件は(1) の方法と同様でよ
い。
Next, the mouth mold is released from the bottle and the mouth is heated from the outside to crystallize the uncrystallized polyester layer in the outer layer of the mouth. The heat crystallization conditions may be the same as in the method (1).

【0031】(3) パリソンの段階で内側だけ加熱結晶化
処理し、次いでブロー成形後に外側を加熱結晶化処理す
る方法 この方法では、パリソンの段階で口部及び移行部を内側
より加熱結晶化処理し、次いでブロー成形後に外側から
口部を加熱結晶化処理する。
(3) Heat crystallization of only the inside at the stage of parison
Treated, then heat-crystallized on the outside after blow molding
Method According to this method, the mouth portion and the transitional portion are heat-crystallized from the inside at the stage of parison, and then the mouth portion is heat-crystallized from the outside after blow molding.

【0032】パリソンの製造後、口部型でパリソンを把
持した状態でインジェクションコア型及びインジェクシ
ョンキャビティ型を取り外し、口部及び移行部を内側か
ら加熱し、その部分におけるポリエステル層を結晶化す
る。加熱結晶化条件は(1) の方法と同様でよい。
After the parison is manufactured, the injection core mold and the injection cavity mold are removed while the parison is gripped by the mouth mold, and the mouth part and the transition part are heated from the inside to crystallize the polyester layer in the part. The heat crystallization conditions may be the same as in the method (1).

【0033】上記パリソンを用いて二軸延伸ブロー成形
を行った後、口部を外側より加熱し、口部外層中の未結
晶のポリエステル層を結晶化する。加熱結晶化条件は
(1) の方法と同様でよい。
After biaxial stretch blow molding is performed using the parison, the mouth portion is heated from the outside to crystallize the uncrystallized polyester layer in the outer layer of the mouth portion. The heat crystallization conditions are
The method of (1) may be the same.

【0034】〔C〕材質 本発明の耐熱性二軸延伸ブロー成形ボトルのポリエステ
ル層14は、飽和ジカルボン酸と飽和二価アルコールとか
らなるポリエステル樹脂により形成することができる。
飽和ジカルボン酸としては、テレフタル酸、イソフタル
酸、フタル酸、ナフタレン-1,4- 又は2,6-ジカルボン
酸、ジフェニルエーテル-4,4′−ジカルボン酸、ジフェ
ニルジカルボン酸類、ジフェノキシエタンジエタンジカ
ルボン酸類等の芳香族ジカルボン酸類、アジピン酸、セ
バチン酸、アゼライン酸、デカン-1,10-ジカルボン酸等
の脂肪族ジカルボン酸、シクロヘキサンジカルボン酸等
の脂環族ジカルボン酸等を使用することができる。また
飽和二価アルコールとしては、エチレングリコール、プ
ロピレングリコール、トリメチレングリコール、テトラ
メチレングリコール、ジエチレングリコール、ポリエチ
レングリコール、ポリプロピレングリコール、ポリテト
ラメチレングリコール、ヘキサメチレングリコール、ド
デカメチレングリコール、ネオペンチルグリコール等の
脂肪族グリコール類、シクロヘキサンジメタノール等の
脂環族グリコール、2,2-ビス(4′−β−ヒドロキシエト
キシフェニル)プロパン、その他の芳香族ジオール類等
を使用することができる。このような飽和ジカルボン酸
と飽和二価アルコールとからなるポリエステル樹脂とし
ては、テレフタル酸とエチレングリコールとからなるポ
リエチレンテレフタレートを用いるのが好ましい。
[C] Material The polyester layer 14 of the heat resistant biaxially stretch blow molded bottle of the present invention can be formed of a polyester resin composed of a saturated dicarboxylic acid and a saturated dihydric alcohol.
Saturated dicarboxylic acids include terephthalic acid, isophthalic acid, phthalic acid, naphthalene-1,4- or 2,6-dicarboxylic acid, diphenyl ether-4,4'-dicarboxylic acid, diphenyldicarboxylic acids, diphenoxyethanediethanedicarboxylic acids And the like, aliphatic dicarboxylic acids such as adipic acid, sebacic acid, azelaic acid, decane-1,10-dicarboxylic acid and the like, alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid and the like can be used. As the saturated dihydric alcohol, aliphatic glycols such as ethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, hexamethylene glycol, dodecamethylene glycol and neopentyl glycol are used. Glycols, alicyclic glycols such as cyclohexanedimethanol, 2,2-bis (4'-β-hydroxyethoxyphenyl) propane, and other aromatic diols can be used. As the polyester resin composed of such a saturated dicarboxylic acid and a saturated dihydric alcohol, it is preferable to use polyethylene terephthalate composed of terephthalic acid and ethylene glycol.

【0035】上記ポリエステル樹脂は、固有粘度が 0.5
〜1.5 、好ましくは0.55〜0.85の範囲の値を有する。ま
たこのようなポリエステルは、溶融重合で製造され、 1
80〜250 ℃の温度下で減圧処理または不活性ガス雰囲気
で熱処理されたもの、または固相重合して低分子量重合
物であるオリゴマーやアセトアルデヒドの含有量を低減
させたものが好適である。
The above polyester resin has an intrinsic viscosity of 0.5.
Has a value in the range from .about.1.5, preferably 0.55 to 0.85. Also, such polyesters are produced by melt polymerization, 1
Those that have been subjected to reduced pressure treatment or heat treatment in an inert gas atmosphere at a temperature of 80 to 250 ° C., or those that have reduced the content of oligomers and acetaldehyde, which are low molecular weight polymers by solid-state polymerization, are suitable.

【0036】また、耐熱性樹脂としては、ポリカーボネ
ート、ポリアリレート、ポリエチレンナフタレート、ポ
リアセタール、ポリサルフォン、ポリエーテルエーテル
ケトン、ポリエーテルサルフォン、ポリエーテルイミ
ド、ポリフェニレンサルファイド及びこれらの樹脂とポ
リエチレンテレフタレートとのブレンドポリマー、及び
上記耐熱性樹脂間のブレンドポリマー、さらには上記耐
熱性樹脂の2種以上の樹脂とポリエチレンテレフタレー
トとのブレンドポリマー、Uポリマー(ユニチカ製、ポ
リアリレートとポリエチレンテレフタレートとのブレン
ドポリマー)等を使用することができる。これらのうち
では、特にポリカーボネート、ポリアリレート、及びU
ポリマー(ポリアリレートとポリエチレンテレフタレー
トとのブレンドポリマー)が好ましい。
As the heat resistant resin, polycarbonate, polyarylate, polyethylene naphthalate, polyacetal, polysulfone, polyether ether ketone, polyether sulfone, polyether imide, polyphenylene sulfide and blends of these resins with polyethylene terephthalate. Polymers, blend polymers between the above heat resistant resins, further blend polymers of two or more resins of the above heat resistant resins with polyethylene terephthalate, U polymers (manufactured by Unitika, blend polymers of polyarylate and polyethylene terephthalate), etc. Can be used. Among these, especially polycarbonate, polyarylate, and U
Polymers (blended polymers of polyarylate and polyethylene terephthalate) are preferred.

【0037】なお本発明で使用するポリエステル樹脂及
び耐熱性樹脂中には、本発明の目的を損なわない範囲で
安定剤、顔料、酸化防止剤、熱劣化防止剤、紫外線劣化
防止剤、帯電防止剤、抗菌剤等の添加剤やその他の樹脂
を適量加えることができる。
In the polyester resin and heat-resistant resin used in the present invention, stabilizers, pigments, antioxidants, heat deterioration inhibitors, ultraviolet light deterioration inhibitors, antistatic agents are included within the range not impairing the object of the present invention. An appropriate amount of additives such as antibacterial agents and other resins can be added.

【0038】以上、本発明を添付図面を参照して説明し
てきたが、本発明はこれに限定されず、本発明の思想を
逸脱しない限り、種々の変更を施すことができる。
The present invention has been described above with reference to the accompanying drawings. However, the present invention is not limited to this, and various modifications can be made without departing from the idea of the present invention.

【0039】本発明を以下の具体的実施例により、さら
に詳細に説明する。実施例1 耐熱性樹脂としてポリカーボネート(三菱化成(株)
製、NOVAREX 7022A )を使用し、ポリエチレンテレフタ
レート(ユニチカ(株)製、NEH-2050)と共射出成形に
より、図6に示す多層構造を有するパリソンを成形し
た。得られたパリソンの各部位の寸法A〜H(A:ネジ
山径、B:ネジ谷径、C:口部内径(最大)、D:口部
内径(最小)、E:巻締リング径、F:巻締リング下
径、G:サポートリング径、H:サポートリング高)を
測定した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 Polycarbonate as a heat-resistant resin (Mitsubishi Kasei Co., Ltd.)
Manufactured by NOVAREX 7022A) and co-injection molding with polyethylene terephthalate (NEH-2050 manufactured by Unitika Ltd.) to form a parison having a multilayer structure shown in FIG. Dimensions A to H of each part of the obtained parison (A: screw thread diameter, B: screw root diameter, C: mouth inner diameter (maximum), D: mouth inner diameter (minimum), E: tightening ring diameter, F: winding clamp ring lower diameter, G: support ring diameter, H: support ring height) were measured.

【0040】パリソンを口部型で把持したまま、20℃に
冷却している冷却型内に入れた。この状態で、パリソン
の口部からロッドヒータを挿入し、150 ℃で1分間パリ
ソンの口部及び移行部を内側より加熱し、その部分にお
けるポリエステル層を結晶化した。
While holding the parison with the mouth mold, it was placed in a cooling mold cooled to 20 ° C. In this state, a rod heater was inserted from the mouth of the parison, and the mouth and transition part of the parison were heated from the inside at 150 ° C. for 1 minute to crystallize the polyester layer in that part.

【0041】次に、パリソンの口部をリングヒータによ
って外側から150 ℃で1分加熱し、口部外層中の未結晶
化ポリエステル層を結晶化した。
Next, the mouth of the parison was heated from the outside by a ring heater at 150 ° C. for 1 minute to crystallize the uncrystallized polyester layer in the outer layer of the mouth.

【0042】加熱結晶化後のパリソンの各部位の寸法A
〜Hを測定し、加熱結晶化による収縮率を算出した。結
果を図7に示す。図7のグラフから明らかなように、本
発明の方法により加熱結晶化処理を施したパリソンの口
部には、加熱結晶化による変形がほとんどなかった。
Dimension A of each part of the parison after heat crystallization
.About.H was measured, and the shrinkage rate due to heat crystallization was calculated. The results are shown in Fig. 7. As is clear from the graph of FIG. 7, the mouth of the parison subjected to the heat crystallization treatment by the method of the present invention showed almost no deformation due to the heat crystallization.

【0043】実施例2 実施例1と同様の原料を用いて図6に示す多層構造を有
するパリソンを成形し、通常の方法で二軸延伸ブロー成
形を行った。得られたボトルについて、各部位の寸法A
〜Hを測定した。
Example 2 Using the same raw material as in Example 1, a parison having a multilayer structure shown in FIG. 6 was molded and biaxially stretch blow molded by a usual method. Dimension A of each part of the obtained bottle
~ H was measured.

【0044】ボトルを口部型で把持したまま、20℃に冷
却している冷却型内に入れた。この状態で、ボトルの口
部からロッドヒータを挿入し、150 ℃で1分間ボトルの
口部及び移行部を内側より加熱し、その部分におけるポ
リエステル層を結晶化した。
While holding the bottle with the mouth mold, the bottle was put into a cooling mold cooled to 20 ° C. In this state, a rod heater was inserted from the mouth of the bottle, and the mouth and transition part of the bottle were heated from the inside at 150 ° C. for 1 minute to crystallize the polyester layer in that part.

【0045】次に、ボトルの口部をリングヒータによっ
て外側から150 ℃で1分加熱し、口部外層中の未結晶化
ポリエステル層を結晶化した。
Next, the mouth of the bottle was heated from the outside by a ring heater at 150 ° C. for 1 minute to crystallize the uncrystallized polyester layer in the outer layer of the mouth.

【0046】得られたボトルの各部位の寸法A〜Hを測
定し、加熱結晶化による収縮率を算出した結果、二軸延
伸ブロー成形ボトルの口部には加熱結晶化による変形が
ほとんどないことが分かった。
The dimensions A to H of the respective parts of the obtained bottle were measured, and the shrinkage rate due to the heat crystallization was calculated. As a result, the mouth of the biaxially stretch blow-molded bottle showed almost no deformation due to the heat crystallization. I understood.

【0047】実施例3 実施例1と同様の原料を用いて図6に示す多層構造を有
するパリソンを成形し、各部位の寸法A〜Hを測定し
た。次いで、パリソンを口部型で把持したまま、20℃に
冷却している冷却型内に入れた。この状態で、パリソン
の口部からロッドヒータを挿入し、150 ℃で1分間パリ
ソンの口部及び移行部を内側より加熱し、その部分にお
けるポリエステル層を結晶化した。
Example 3 Using the same raw material as in Example 1, a parison having a multi-layer structure shown in FIG. 6 was molded, and the dimensions A to H of each part were measured. Next, the parison was held in the mouth mold and put into a cooling mold cooled to 20 ° C. In this state, a rod heater was inserted from the mouth of the parison, and the mouth and transition part of the parison were heated from the inside at 150 ° C. for 1 minute to crystallize the polyester layer in that part.

【0048】上記パリソンを通常の方法で二軸延伸ブロ
ー成形し、得られたボトルの口部をリングヒータによっ
て外側から150 ℃で1分加熱し、口部外層中の未結晶化
ポリエステル層を結晶化した。
The above parison was biaxially stretch blow-molded by a conventional method, and the mouth of the obtained bottle was heated from the outside by a ring heater at 150 ° C. for 1 minute to crystallize the uncrystallized polyester layer in the outer layer of the mouth. Turned into

【0049】得られたボトルの各部位の寸法A〜Hを測
定し、加熱結晶化による収縮率を算出した結果、二軸延
伸ブロー成形ボトルの口部には加熱結晶化による変形が
ほとんどないことが分かった。
The dimensions A to H of the respective parts of the obtained bottle were measured, and the shrinkage ratio due to heat crystallization was calculated. As a result, the mouth of the biaxially stretch blow-molded bottle was hardly deformed due to heat crystallization. I understood.

【0050】[0050]

【発明の効果】以上説明した通り、本発明においては、
二軸延伸ブロー成形する前及び/又は後で、耐熱性樹脂
層を含む多層構造の口部及び移行部を内側から加熱し、
次いで口部を外側より加熱するので、ボトルの口部には
加熱結晶化による変形が実質的にほとんどなく、寸法精
度の良好な耐熱性に優れたボトルが得られる。
As described above, according to the present invention,
Before and / or after biaxially stretch blow molding, the mouth and transition of the multilayer structure containing the heat resistant resin layer are heated from the inside,
Next, since the mouth is heated from the outside, the mouth of the bottle is substantially free from deformation due to heat crystallization, and a bottle having good dimensional accuracy and excellent heat resistance can be obtained.

【0051】このような特性を有する本発明の耐熱性二
軸延伸ブロー成形ボトルは、ホットフィルやホットシャ
ワーによるパステライジング等を適用のに好適であると
ともに、取扱い性が良好である。
The heat-resistant biaxially stretch blow-molded bottle of the present invention having such characteristics is suitable for applying pastelizing by hot fill or hot shower, and has good handleability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐熱性二軸延伸ブロー成形ボトルの一
例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of a heat resistant biaxially stretch blow molded bottle of the present invention.

【図2】図1の口部の拡大図である。FIG. 2 is an enlarged view of the mouth portion of FIG.

【図3】本発明の耐熱性二軸延伸ブロー成形ボトルの製
造工程の一部を示す概略図である。
FIG. 3 is a schematic view showing a part of the manufacturing process of the heat resistant biaxially stretch blow molded bottle of the present invention.

【図4】本発明の耐熱性二軸延伸ブロー成形ボトルの製
造工程の一部を示す概略図である。
FIG. 4 is a schematic view showing a part of the manufacturing process of the heat resistant biaxially stretch blow molded bottle of the present invention.

【図5】本発明の耐熱性二軸延伸ブロー成形ボトルの製
造工程の一部を示す概略図である。
FIG. 5 is a schematic view showing a part of the manufacturing process of the heat resistant biaxially stretch blow molded bottle of the present invention.

【図6】実施例において得られたパリソンの口部を示す
断面図である。
FIG. 6 is a sectional view showing the mouth of the parison obtained in the example.

【図7】実施例1において得られたパリソンの口部の各
部位における収縮率を示すグラフである。
FIG. 7 is a graph showing the contraction rate in each part of the mouth of the parison obtained in Example 1.

【符号の説明】[Explanation of symbols]

1・・・口部 11・・・サポートリング 12・・・ネジ部 13・・・耐熱性樹脂層 14・・・ポリエステル層 2・・・移行部 2a・・・均一結晶化領域 2b・・・傾斜結晶化領域 3・・・肩部 4・・・胴部 5・・・底部 6・・・パリソン 7・・・射出成形型 71・・・口部型 72・・・インジェクションキャビティ型 73・・・インジェクションコア型 8・・・冷却型 9・・・ロッドヒータ 10・・・リングヒータ 20・・・冷却型 1 ... Mouth 11 ... Support Ring 12 ... Screw 13 ... Heat Resistant Resin Layer 14 ... Polyester Layer 2 ... Transition 2a ... Uniform Crystallization Region 2b ... Gradient crystallization region 3 ... Shoulder part 4 ... Body part 5 ... Bottom part 6 ... Parison 7 ... Injection mold 71 ... Mouth part mold 72 ... Injection cavity mold 73 ...・ Injection core type 8 ・ ・ ・ Cooling type 9 ・ ・ ・ Rod heater 10 ・ ・ ・ Ring heater 20 ・ ・ ・ Cooling type

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 9:00 22:00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B29L 9:00 22:00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下端にサポートリングを有する口部と、
前記口部に続く移行部と、肩部と、胴部と、底部とを有
し、前記口部がポリエステル層と耐熱性樹脂層とからな
る多層構造を有する耐熱性二軸延伸ブロー成形ボトルで
あって、前記口部及び前記移行部におけるポリエステル
層が結晶化していることを特徴とする耐熱性二軸延伸ブ
ロー成形ボトル。
1. A mouth portion having a support ring at a lower end,
A heat-resistant biaxially stretched blow-molded bottle having a transition part following the mouth part, a shoulder part, a body part, and a bottom part, and the mouth part having a multilayer structure consisting of a polyester layer and a heat-resistant resin layer. A heat-resistant biaxially stretch blow-molded bottle, wherein the polyester layer in the mouth portion and the transition portion is crystallized.
【請求項2】 請求項1に記載の耐熱性二軸延伸ブロー
成形ボトルにおいて、前記移行部は前記サポートリング
の直下部に均一結晶化領域を有し、前記結晶化領域は前
記肩部に向かって外側から徐々に減少していることを特
徴とする耐熱性二軸延伸ブロー成形ボトル。
2. The heat resistant biaxially stretch blow molded bottle according to claim 1, wherein the transition portion has a uniform crystallization region immediately below the support ring, and the crystallization region faces the shoulder portion. Heat-resistant biaxially stretch blow-molded bottle characterized by gradually decreasing from the outside.
【請求項3】 請求項1又は2に記載の耐熱性二軸延伸
ブロー成形ボトルの製造方法であって、(a) ポリエステ
ル層と耐熱性樹脂層とからなる多層構造を有し下端にサ
ポートリングを有する口部と、前記口部に続く移行部
と、胴部と、底部とを有する有底円筒状のパリソンを形
成し、(b) 前記口部の内側に挿入したヒータによって、
前記口部及び前記移行部を内側より加熱して前記口部の
内側及び前記移行部におけるポリエステル層を結晶化し
た後、(c) 前記口部を外側より加熱して、前記口部及び
前記移行部におけるポリエステル層を結晶化し、(d) 続
いて前記パリソンを二軸延伸ブロー成形することを特徴
とする方法。
3. The method for producing a heat-resistant biaxially stretch blow-molded bottle according to claim 1 or 2, wherein the support ring has a multilayer structure comprising (a) a polyester layer and a heat-resistant resin layer. A mouth part having, a transition part following the mouth part, a body part, and a bottomed cylindrical parison having a bottom part are formed, (b) by a heater inserted inside the mouth part,
After heating the mouth portion and the transition portion from the inside to crystallize the polyester layer in the mouth portion and the transition portion, (c) heating the mouth portion from the outside, the mouth portion and the transition Part of the polyester layer is crystallized, and (d) subsequently, the parison is biaxially stretch blow molded.
【請求項4】 請求項1又は2に記載の耐熱性二軸延伸
ブロー成形ボトルの製造方法であって、(a) ポリエステ
ル層と耐熱性樹脂層とからなる多層構造を有し下端にサ
ポートリングを有する口部と、前記口部に続く移行部
と、胴部と、底部とを有する有底円筒状のパリソンを形
成し、(b) 前記パリソンを二軸延伸ブロー成形し、(c)
得られた二軸延伸ブロー成形ボトルの口部の内側に挿入
したヒータによって、前記口部及び前記移行部を内側よ
り加熱して前記口部の内側及び前記移行部におけるポリ
エステル層を結晶化した後、(d) 前記口部を外側より加
熱して、前記口部及び前記移行部におけるポリエステル
層を結晶化することを特徴とする方法。
4. The method for producing a heat-resistant biaxially stretch blow-molded bottle according to claim 1, wherein the support ring has a multi-layered structure comprising (a) a polyester layer and a heat-resistant resin layer, and a support ring at the lower end. Forming a bottomed cylindrical parison having a mouth part having a transition part following the mouth part, a body part, and a bottom part, (b) biaxially stretch blow molding the parison, and (c)
After crystallizing the polyester layer on the inside of the mouth and the transition part by heating the mouth part and the transition part from the inside by a heater inserted inside the mouth part of the obtained biaxially stretched blow molded bottle. And (d) heating the mouth portion from the outside to crystallize the polyester layer in the mouth portion and the transition portion.
【請求項5】 請求項1又は2に記載の耐熱性二軸延伸
ブロー成形ボトルの製造方法であって、(a) ポリエステ
ル層と耐熱性樹脂層とからなる多層構造を有し下端にサ
ポートリングを有する口部と、前記口部に続く移行部
と、胴部と、底部とを有する有底円筒状のパリソンを形
成し、(b) 前記口部の内側に挿入したヒータにより前記
口部及び前記移行部を内側より加熱して前記口部の内側
及び前記移行部におけるポリエステル層を結晶化し、
(c) 続いて前記パリソンを二軸延伸ブロー成形し、(d)
得られた二軸延伸ブロー成形ボトルの口部を外側より加
熱して、前記口部の外側及び前記移行部におけるポリエ
ステル層を結晶化することを特徴とする方法。
5. The method for producing a heat-resistant biaxially stretch blow-molded bottle according to claim 1, wherein the support ring has a multi-layered structure comprising (a) a polyester layer and a heat-resistant resin layer. Forming a bottomed cylindrical parison having a mouth part having, a transition part following the mouth part, a body part, and a bottom part, and (b) the mouth part by a heater inserted inside the mouth part and The transition part is heated from the inside to crystallize the polyester layer in the inside of the mouth part and the transition part,
(c) Then biaxially stretch blow molding the parison, (d)
A method of heating the mouth portion of the obtained biaxially stretch blow molded bottle from the outside to crystallize the polyester layer outside the mouth portion and at the transition portion.
JP5300975A 1993-11-05 1993-11-05 Heat-resistant biaxially stretched blow molded bottle and production thereof Pending JPH07125053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5300975A JPH07125053A (en) 1993-11-05 1993-11-05 Heat-resistant biaxially stretched blow molded bottle and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5300975A JPH07125053A (en) 1993-11-05 1993-11-05 Heat-resistant biaxially stretched blow molded bottle and production thereof

Publications (1)

Publication Number Publication Date
JPH07125053A true JPH07125053A (en) 1995-05-16

Family

ID=17891334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5300975A Pending JPH07125053A (en) 1993-11-05 1993-11-05 Heat-resistant biaxially stretched blow molded bottle and production thereof

Country Status (1)

Country Link
JP (1) JPH07125053A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088447A (en) * 2003-09-18 2005-04-07 Dainippon Printing Co Ltd Intermediate molded body for stretch blow molding and synthetic resin-made bottle body
WO2018007604A3 (en) * 2016-07-08 2018-03-01 Gr8 Engineering Limited Container and manufacture thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088447A (en) * 2003-09-18 2005-04-07 Dainippon Printing Co Ltd Intermediate molded body for stretch blow molding and synthetic resin-made bottle body
JP4531365B2 (en) * 2003-09-18 2010-08-25 大日本印刷株式会社 Intermediate molded body for stretch blow molding and synthetic resin casing
WO2018007604A3 (en) * 2016-07-08 2018-03-01 Gr8 Engineering Limited Container and manufacture thereof
US11110640B2 (en) 2016-07-08 2021-09-07 Gr8 Engineering Limited Container and manufacture thereof

Similar Documents

Publication Publication Date Title
JP4135163B2 (en) Cooling method for multilayer preform
US6572812B2 (en) Preform and container with crystallized neck finish and method of making the same
NZ209211A (en) Blow moulding a container in two moulds with intermould transfer under pressure
JP3350192B2 (en) Pressure-resistant self-standing container and method of manufacturing the same
US6214281B1 (en) Multi-layer container and preform and process for obtaining same
JP2001206336A (en) Polyester resin laminated container and its holding method
US6562279B2 (en) Multi-layer container and preform and process for obtaining same
US6413600B1 (en) Multi-layer container and preform and process for obtaining same
JP3449634B2 (en) Heat-resistant biaxially stretch blow-molded bottle and method for producing the same
JP3449635B2 (en) Heat-resistant biaxially stretch blow-molded bottle and method for producing the same
JPH07125053A (en) Heat-resistant biaxially stretched blow molded bottle and production thereof
JPH0573568B2 (en)
JPH0531792A (en) Manufacture of heat resistant container
JPH07132923A (en) Biaxially oriented blow-molded heat-resistant bottle and manufacture thereror
JPH07132922A (en) Biaxially oriented blow-molded heat-resistant bottle and manufacture therefor
JPH0615643A (en) Manufacture of premolded body
JPH0615725A (en) Heat-resistant biaxially orientated blow molded bottle and its manufacture
JP2001150524A (en) Heat-resistant polyester resin laminated container and method for molding the same
JPS60201909A (en) Manufacture of multilayer stretch blown bottle
JPH07257537A (en) Heat and pressure resistant vessel and production method
JP3142344B2 (en) Resin preform having hollow wall, method for producing the same, and biaxially stretch blow molded container using the same
JP3522043B2 (en) Polyester, preform and biaxially stretched bottle made of polyester, and method for producing polyester biaxially stretched bottle
JPH0457732A (en) Biaxially stretched blow molding-fabricated container having heat resistance and gas-barrier property
JPH06144453A (en) Vessel with cap
JP3099993B2 (en) Preforms and heat resistant bottles