JPH0712416B2 - Hollow fiber type substance separation membrane - Google Patents

Hollow fiber type substance separation membrane

Info

Publication number
JPH0712416B2
JPH0712416B2 JP16865586A JP16865586A JPH0712416B2 JP H0712416 B2 JPH0712416 B2 JP H0712416B2 JP 16865586 A JP16865586 A JP 16865586A JP 16865586 A JP16865586 A JP 16865586A JP H0712416 B2 JPH0712416 B2 JP H0712416B2
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
fiber type
pore size
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16865586A
Other languages
Japanese (ja)
Other versions
JPS6328405A (en
Inventor
敏幸 八木
勝 金泉
仁 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16865586A priority Critical patent/JPH0712416B2/en
Publication of JPS6328405A publication Critical patent/JPS6328405A/en
Publication of JPH0712416B2 publication Critical patent/JPH0712416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微細孔構造を有する中空糸型物質分離膜に関
するものであり、特に経時的な性能の低下、いわゆる目
づまりやファウリングのない安定した膜性能を有する中
空糸型物質分離膜に関するものである。
TECHNICAL FIELD The present invention relates to a hollow fiber type substance separation membrane having a fine pore structure, and in particular, there is no deterioration in performance over time, so-called clogging or fouling. The present invention relates to a hollow fiber type substance separation membrane having stable membrane performance.

(従来の技術) 膜による物質分離は、従来、特定成分の除去といった概
念が一般的であった。すなわち逆浸透法による海水の淡
水化や、電子部品製造分野における超純水の製造、医療
用のパイロジェンフリーの水の製造など、水中に含まれ
る無機イオン、エンドトキシン、微粒子等の除去が主な
目的であり物質の分画ということにはほとんど重点がお
かれていなかった。
(Prior Art) Conventionally, the concept of removing a specific component has been generally used for material separation by a membrane. That is, the main purpose is to remove inorganic ions, endotoxins, fine particles, etc. contained in water such as desalination of seawater by the reverse osmosis method, production of ultrapure water in the field of electronic component production, and production of pyrogen-free water for medical use. Thus, little emphasis was placed on the fractionation of substances.

しかし今日、膜による物質分離はこの分画という点にも
重点が置かれようとしている。例えば、発酵もしくは酵
素反応において生体触媒の再循環システムとしての、膜
システムが利用されようとしている。このシステムにお
ける膜の役割は、生体触媒と生産物を分画することであ
り、従来の除去という概念と異なり、膜から排除されな
い生体触媒は再度利用されるのである。また健常者より
の血漿採取においても膜の役割は、血球成分を分画する
ことにあり、血球成分は再び血液提供者に返血される。
このように膜による物質分離には、除去と分画という2
つの概念があるが、従来開発され、使用されてきた精密
過(MF)膜は、そのほとんどが除去を目的としたもの
であり、物質の分画には適さないものであった。これは
従来のMF膜における細孔の孔経分布のバラツキが大きい
ことに起因しているのであるが、膜構造の面から見ると
従来のMF膜の構造はスポンジ状あるいは三次元網目構造
となっている。かかる細孔とは膜素材の間隙をジグザグ
に通っている間隙のことであり、細孔の通路において最
も小さい間隙の部分が、その膜の通過性能を決定してい
る部分となる。この最小間隙部分が膜全体に、均一に分
布しているものが、除去特性に優れた膜とされており、
この最小間隙が均一な大きさのものであれば、この最小
間隙以上の大きさを有する物質は膜外に漏出せず、除去
をという面では優れているといえる。しかし、最小孔径
以外の部分での膜素材の間隙の大きさは、無視されてお
りこの部分での間隙の大きさのバラツキが大きいほど、
すなわち膜全体としての細孔径分布の標準偏差値σが大
きいほど様様な大きさの物質が膜素材間隙に入り込み、
最小間隙を通ることのできない物質はそのまま間隙内に
留まることになる。このため、このようなスポンジ状あ
るいは三次元網目構造の膜においては、目詰りやファウ
リングによる膜の透過性能の変化、過速度の低下など
の膜使用における性能変化を引きおこすことになる。こ
のように従来のMF膜は、希薄な系における物質の除去に
おいては優れた性能を示すが、濃厚な系もしくは様々な
大きさの物質を含む系の物質分画には、膜使用時におけ
る性能の経時的な低下が著しく、安定した分画性能を得
ることができないという問題があった。
However, today, the separation of substances by membranes is also focused on this point. For example, membrane systems are being used as biocatalyst recycling systems in fermentation or enzymatic reactions. The role of the membrane in this system is to separate the biocatalyst from the product, and unlike the conventional concept of removal, biocatalyst that is not excluded from the membrane is reused. Further, the role of the membrane in collecting plasma from a healthy person is to fractionate the blood cell component, and the blood cell component is returned to the blood donor again.
In this way, separation and fractionation are the two
Although there are two concepts, most of the fine filtration (MF) membranes that have been developed and used in the past were intended for removal, and were not suitable for fractionation of substances. This is due to the large variation in the pore size distribution of the conventional MF membrane, but from the viewpoint of the membrane structure, the conventional MF membrane has a sponge-like or three-dimensional network structure. ing. Such pores are those that pass through the gaps of the membrane material in a zigzag manner, and the smallest gap portion in the passage of the pores is the portion that determines the passage performance of the membrane. What has this minimum gap part uniformly distributed over the entire film is considered to be a film with excellent removal characteristics.
If the minimum gap has a uniform size, it can be said that a substance having a size larger than the minimum gap does not leak out of the membrane and is excellent in terms of removal. However, the size of the gap of the membrane material in the part other than the minimum pore size is ignored, and the greater the variation in the size of the gap in this part is,
That is, the larger the standard deviation value σ of the pore size distribution of the entire membrane, the larger the size of the substance entering the membrane material gap,
The substance that cannot pass through the minimum gap remains in the gap as it is. For this reason, in such a sponge-like or three-dimensional network structure membrane, a change in membrane permeation performance due to clogging or fouling, a change in membrane performance such as a decrease in overspeed, etc. are caused. As described above, the conventional MF membrane shows excellent performance in removing substances in a dilute system, but the performance during use of the membrane is superior in the substance fractionation of a rich system or a system containing substances of various sizes. However, there was a problem in that stable fractionation performance could not be obtained.

(発明が解決しようとする問題点) 従来の精密過膜において困難であった、性能の経時安
定性、すなわち膜の目詰まりやファウリングのない精密
過膜とするのに必要な膜分離構造を有し、濃厚な物質
の分画に有利に使用できる中空糸型物質分離膜を提供す
ることにある。
(Problems to be solved by the invention) The stability of the performance over time, which is difficult in the conventional precision membrane, that is, the membrane separation structure required for a precision membrane without clogging or fouling Another object of the present invention is to provide a hollow fiber type substance separation membrane, which has an advantage and can be advantageously used for fractionation of concentrated substances.

(問題を解決するための手段) 膜使用時における性能の経時的変化を防ぐための手段と
しては、膜の細孔を閉塞してしまう大きさをもつ物質を
膜内部にとり込まないような構造にすることが基本的に
必要である。従来のMF膜のように最小間隙をのみ均一化
するのではなく、膜壁全体の細孔径を均一化し、膜表面
において膜細孔を閉塞する物質を排除することができれ
ば、膜内部の細孔閉塞のない、膜使用時における経時変
化のない、安定した性能のMF膜とすることができる。す
なわち本発明は、膜壁全体に存在する細孔の孔経分布の
平均孔径Pと分布の標準偏差値σにおいて、0.01(μ
m)≦P≦0.6(μm)およびσ/P≦1.0なる関係を満
し、かつ膜の空孔率εが0.6≦ε≦0.8なる関係を満たす
中空糸型物質分離膜であり膜使用時における経時変化の
ない安定した膜性能を具備するものである。ここでの細
孔の孔経分布とは膜壁の全体に存在する細孔全体を指
し、その孔径分布を対数正規分布に近似して得られるパ
ラメーターにより平均孔径Pならびに標準偏差値σが算
出される。膜の細孔径分布の測定は、一般によく用いら
れている水銀圧入法によった。水銀圧入法では、圧入圧
力と水銀の圧入量の関係が得られ、圧力より細孔径を、
圧入量より細孔数を求めることができる。また全水銀圧
入量より、膜の空孔率も算出できる。孔径分布を対数正
規分布に近似するに当っては、対数正規確率紙に、孔径
と積算の圧入量をプロットすることによって直線近似し
て求める。対数正規分布は次式で示される。
(Means for solving the problem) As a means for preventing the performance of the membrane from changing over time when using the membrane, a structure should be adopted in which a substance having a size that blocks the pores of the membrane is not taken into the membrane. It is basically necessary to do. Rather than uniformizing only the minimum gap as in conventional MF membranes, if the pore size of the entire membrane wall is made uniform and substances that block the membrane pores on the membrane surface can be eliminated, the pores inside the membrane will be It is possible to obtain a stable MF membrane that is free from clogging and does not change with time when the membrane is used. That is, in the present invention, the average pore diameter P of the pore size distribution of the pores existing on the entire membrane wall and the standard deviation value σ of the distribution are 0.01 (μ
m) ≦ P ≦ 0.6 (μm) and σ / P ≦ 1.0, and the porosity ε of the membrane is 0.6 ≦ ε ≦ 0.8. It has stable film performance that does not change with time. The pore size distribution here refers to all pores existing in the entire membrane wall, and the average pore size P and standard deviation value σ are calculated by parameters obtained by approximating the pore size distribution to a lognormal distribution. It The pore size distribution of the membrane was measured by the generally used mercury intrusion method. In the mercury injection method, the relationship between the injection pressure and the injection amount of mercury can be obtained.
The number of pores can be determined from the amount of press fit. Further, the porosity of the film can be calculated from the total amount of mercury injected. In approximating the pore size distribution to a lognormal distribution, it is found by linear approximation by plotting the pore size and the integrated press-fit amount on a lognormal probability paper. The lognormal distribution is shown by the following equation.

γ:孔径〔μm〕 (γ):孔径γの存在確率〔−〕 θ1,θ2:パラメーター 平均孔径Pおよび標準偏差値σは、確率分布関数より、 であり、対数正規分布においては よりP、σを求めることができる。Pは細孔の平均孔径
を表わしているが、Pを0.01(μm)から0.6(μm)
の間に規定する意味は、Pが0.01μm未満の領域におい
ては、MF膜の領域よりも、限外過(UF)膜の領域であ
り、これらの分離特性は膜における細孔よりも、膜表面
に形成されるゲル層もしくは濃度分極層によって支配さ
れ、細孔径分布がほとんど問題とはならないためであ
る。またPが0.6μmを越える領域では、MF膜が目的と
している分画対象であるところの、微生物、血液中の細
胞成分等の大きさと非常に近くなり、こられ粒子の膜表
面細孔へのくい込みとそれに伴う目詰まりのため、著し
い過性能の低下をきたす。また中空糸膜においては、
紡糸との関係から強度的に製膜の非常に困難な領域とな
り、現実的でない。これらの理由により膜の微細構造の
平均孔径Pは0.01μmから0.6μmの間に存在すること
が必要である。又細孔径分布の標準偏差値σは、平均孔
径Pとの関係においてσ/P≦1の場合、非常に均一な孔
径分布となっているということができる。このためσ/P
≦1なる関係を満たす膜においては、膜に存在する細孔
が均一の大きさであるというばかりでなく、1つの間隙
通路においてもその大きさの変化が少なく、膜表面から
細孔内に入り込んだ物質は、ほぼ何の障害もなく膜内部
を通過することになる。すなわちこのような関係を満た
す場合においては、膜内部での目詰まり、ファウリング
の起きにくい構造になっているということができる。実
際に、細孔径分布を均一化させた膜を電子顕微鏡によっ
て観察すると、従来のMF膜のスポンジ状あるいは三次元
網目構造ではなく、膜素材が粒子化され、膜が粒子充填
状構造となっていることが観察される。また、このよう
な構造においては膜の空孔率は、従来のMF膜に比較して
やや小さい値をとるようになる。しかし空孔率εが0.6
未満となると膜面の細孔数が少なくなる結果として、膜
表面の効率が低くなり、εの高いものと同等の過量を
得ようとすれば、必然的に単位細孔当りの過流量が増
大し、従って細孔間隙を通過する物質量が増大する結果
として目詰りやファウリングを起こす確率が高くなって
しまう。このためεの値としては0.6以上が必要であ
る。一方εがあまりにも高い場合には、膜構造上、粒子
充填構造では強度が非常に弱くなってしまうため、中空
糸膜としての製膜は困難である。また、高いεで製膜で
きる方向にもっていくと膜構造はスポンジ状あるいは三
次元網目状構造に変化していき、均一な孔径分布をもっ
た膜とすることは困難である。これらの理由により、膜
の空孔率は0.6≦ε≦0.8の範囲から選ぶことが必要であ
る。
γ: Pore diameter [μm] (γ): Probability of existence of pore diameter γ [-] θ 1 , θ 2 : Parameter average pore size P and standard deviation value σ are And in the lognormal distribution From this, P and σ can be obtained. P represents the average pore size of the pores, but P is 0.01 (μm) to 0.6 (μm)
In the region where P is less than 0.01 μm, the meaning is defined as the ultrafiltration (UF) membrane region rather than the MF membrane region, and these separation characteristics are more important than the pores in the membrane than the MF membrane region. This is because it is dominated by the gel layer or the concentration polarization layer formed on the surface, and the pore size distribution is hardly a problem. In the region where P exceeds 0.6 μm, the size of the MF membrane is very close to the size of microorganisms, cell components in blood, etc., which is the target of fractionation, and the particles of the MF membrane are separated into pores on the membrane surface. Due to the biting and the clogging that accompanies it, the overperformance is significantly reduced. In the hollow fiber membrane,
Due to the relationship with spinning, it becomes a very difficult area for film formation in terms of strength, which is not realistic. For these reasons, it is necessary that the average pore size P of the microstructure of the membrane be between 0.01 μm and 0.6 μm. When the standard deviation value σ of the pore size distribution is σ / P ≦ 1 in relation to the average pore size P, it can be said that the pore size distribution is extremely uniform. Therefore σ / P
In a film satisfying the relationship of ≦ 1, not only are the pores present in the film of uniform size, but there is little change in the size even in one interstitial passage, and the pores enter the pores from the film surface. The substance will pass through the membrane without any obstacles. That is, when such a relationship is satisfied, it can be said that the structure is such that clogging inside the film and fouling do not easily occur. In fact, when observing the membrane with a uniform pore size distribution with an electron microscope, the membrane material is not a sponge-like or three-dimensional network structure of the conventional MF membrane, but the membrane material becomes a particle-filled structure. Is observed. Further, in such a structure, the porosity of the film takes a value slightly smaller than that of the conventional MF film. However, the porosity ε is 0.6
If the ratio is less than the above, the number of pores on the membrane surface will decrease, and as a result, the efficiency of the membrane surface will decrease. Therefore, as a result of increasing the amount of the substance passing through the pore gaps, the probability of causing clogging and fouling increases. Therefore, the value of ε needs to be 0.6 or more. On the other hand, if ε is too high, the strength becomes very weak in the particle packing structure due to the membrane structure, so that it is difficult to form a hollow fiber membrane. Further, when the film is formed with a high ε, the film structure changes to a sponge-like or three-dimensional network structure, and it is difficult to obtain a film having a uniform pore size distribution. For these reasons, it is necessary to select the porosity of the film from the range of 0.6 ≦ ε ≦ 0.8.

以上、本発明による中空糸型物質分離膜は、細孔径分布
膜構造が従来のMF膜とは異なる新規なMF膜であり、使用
時の目詰りやファウリングのほとんどない優れた物質分
画特性を持つMF膜である。
As described above, the hollow fiber type substance separation membrane according to the present invention is a novel MF membrane having a pore size distribution membrane structure different from that of the conventional MF membrane, and has excellent substance fractionation characteristics with almost no clogging or fouling during use. It is an MF membrane with.

この様な本発明に係る中空糸型物質分離膜は例えば以下
の方法によって製造される。即ち、重合体濃度が20重量
%以上であり、かつ非プロトン性極性溶媒及び非溶媒を
使用して紡糸原液を作製し、しかる後該紡糸原液及び内
液を二重管ノズルより吐出し、下記条件で凝固させて膜
孔径を制御することによって製造される。
Such a hollow fiber type substance separation membrane according to the present invention is produced, for example, by the following method. That is, a polymer concentration is 20% by weight or more, and a spinning stock solution is prepared using an aprotic polar solvent and a non-solvent, and then the spinning stock solution and the inner solution are discharged from a double tube nozzle, It is manufactured by coagulating under controlled conditions and controlling the membrane pore size.

凝固条件:O<T1−T2≦40(℃)(ここでT1は吐出温度、
T2は凝固浴温度)、かつ凝固浴及び内液中の溶媒及び非
溶媒の濃度≧50重量% 以下本発明の製造方法を順に説明する。
Solidification conditions: O <T 1 −T 2 ≦ 40 (℃) (where T 1 is the discharge temperature,
T 2 is the coagulation bath temperature), and the concentration of the solvent and the non-solvent in the coagulation bath and the internal solution ≧ 50% by weight.

紡糸原液調製 重合体濃度が20重量%以上であり、かつ溶媒として150
℃以上の沸点を有する非プロトン性極性溶媒を及び非溶
媒を用いて紡糸原液を作製する。非プロトン性極性溶媒
としてはN−メチルピロリドン(bp202℃)、ジメチル
ホルムアミド(bp153℃)、ジメチルアセトアミド(bp1
64℃)、ジメチルスルホキシド(bp189℃)等が、また
非溶媒としては水と相溶性を有するエチレングリコー
ル、トリエチレングリコール、ポリエチレングリコー
ル、グリセリン、ポリプロピレングリコール等の多価ア
ルコールやメタノール、エタノールなどのアルコール
類、水などが使用できるが、これらに限定されるもので
はない。
Preparation of spinning solution A polymer concentration of 20% by weight or more and a solvent of 150%
A spinning stock solution is prepared by using an aprotic polar solvent having a boiling point of not lower than 0 ° C. and the non-solvent. As the aprotic polar solvent, N-methylpyrrolidone (bp202 ° C), dimethylformamide (bp153 ° C), dimethylacetamide (bp1)
64 ° C), dimethylsulfoxide (bp189 ° C), etc., and as nonsolvents, polyhydric alcohols compatible with water such as ethylene glycol, triethylene glycol, polyethylene glycol, glycerin, polypropylene glycol, etc., and alcohols such as methanol, ethanol, etc. However, it is not limited to these.

この様に重合体を溶媒及び非溶媒に混合、溶解させて紡
糸原液を作製するが、この時重要な点はポリマー濃度で
ある。つまりこれまでは分離膜を製膜するためにはポリ
マー濃度を低目に設定し透水速度を高めることが一般的
であったが、本発明は従来の方法とは逆に高ポリマー濃
度で経時点に目づまり、ファウリングをおこさない膜を
製造するものである。
In this way, the polymer is mixed and dissolved in the solvent and the non-solvent to prepare a spinning dope. At this time, the important point is the polymer concentration. That is, in the past, in order to form a separation membrane, it was general to set the polymer concentration to a low value to increase the water permeation rate, but the present invention, contrary to the conventional method, uses a high polymer concentration at a later time. It is intended to produce a film that is clogged with the film and does not cause fouling.

この様に本発明においてはポリマー濃度を20重量%以上
に調製することが必要である。これが20重量%未満では
所望の性能を具備する膜を製膜できないので好ましくな
い。
Thus, in the present invention, it is necessary to adjust the polymer concentration to 20% by weight or more. If it is less than 20% by weight, a film having desired performance cannot be formed, which is not preferable.

吐出、凝固工程 上述の様に作製した紡糸原液は脱泡処理、加熱処理、
過処理を施して二重管ノズルより吐出する。吐出時に中
空糸の中空部に内液を流下させることが重要である。内
液は前記の溶媒及び非溶媒の用いる水溶性の凝固性液体
であり、これらの溶媒及び非溶媒の濃度を50重量%以上
に設定することが必要である。
Discharging and coagulation process The spinning solution prepared as described above is subjected to defoaming treatment, heat treatment,
Over-process and discharge from a double tube nozzle. It is important to let the internal liquid flow down into the hollow portion of the hollow fiber at the time of discharging. The internal liquid is a water-soluble coagulating liquid which uses the above-mentioned solvent and non-solvent, and it is necessary to set the concentration of these solvent and non-solvent to 50% by weight or more.

また吐出後中空糸は凝固浴で凝固させるのがこの場合の
凝固条件についても、上記の内液同様溶媒及び非溶媒の
濃度を50重量%以上に設定することが必要である。
The hollow fibers after discharge are solidified in a coagulation bath. In this case also, it is necessary to set the concentration of the solvent and the non-solvent to 50% by weight or more as in the case of the above inner liquid.

即ち、凝固浴及び内液に高い濃度の溶媒、非溶媒系を用
いることによりはじめて凝固時に形成されるポリマーの
粒子径をでき得る限り大きくし膜構造を粒状集合体構造
となし、透過性の優れた分離膜が得られた。つまり凝固
浴及び内液の溶媒及び非溶液の濃度(溶媒と非溶媒の合
計した濃度)が50重量%未満では多孔質膜を形成する凝
固速度がはやりすぎるために中空糸外表面は非常に緻密
となると共に中空糸内表面に前記した粒状集合体構造が
形成されないものとなる。
That is, by using a high concentration solvent and non-solvent system in the coagulation bath and internal solution, the particle size of the polymer formed at the time of coagulation is made as large as possible to form the membrane structure as a granular aggregate structure and excellent in permeability. A separation membrane was obtained. In other words, if the concentration of the solvent and non-solution (total concentration of solvent and non-solvent) in the coagulation bath and the internal liquid is less than 50% by weight, the coagulation rate for forming the porous membrane is too fast and the outer surface of the hollow fiber is very dense. In addition, the above-mentioned granular aggregate structure is not formed on the inner surface of the hollow fiber.

更にこの粒状集合体構造を形成させるにあたっての重要
な点は凝固再生時の凝固浴温度(T2)と二重管ノズルの
吐出温度(T1)とのO<T1−T2≦40(℃)の関係を満た
す様に設定することにある。つまり(T1−T2)の温度差
がない場合は凝固が不充分であり膜孔形成がなされない
し、又(T1−T2)が40℃をこえると前述の凝固条件が外
れる場合同様多孔質膜形成時の凝固速度がはやすぎるた
めに本発明の目的とする膜構造をうることができず好ま
しくない。
Further, an important point in forming this granular aggregate structure is O <T 1 −T 2 ≦ 40 (where the coagulation bath temperature (T 2 ) during coagulation regeneration and the discharge temperature (T 1 ) of the double tube nozzle are ℃) to satisfy the relationship. In other words, if there is no temperature difference of (T 1 −T 2 ), coagulation is insufficient and no membrane pores are formed, and if the temperature of (T 1 −T 2 ) exceeds 40 ° C, the above coagulation conditions are not met. Similarly, since the solidification rate at the time of forming the porous film is too fast, the desired film structure of the present invention cannot be obtained, which is not preferable.

水洗、捲取工程 前述の凝固工程を経た中空糸は引続き水洗工程に付され
余分の溶媒、非溶媒を除去したのち適度な熱処理を施し
捲きとられる。更にこのあと又はこの前にグリセリン等
の多価アルコール等による親水化処理を施し、いわゆる
ぬれ性を付することが望ましい。
Water Washing and Winding Steps The hollow fibers that have undergone the coagulation step described above are subsequently subjected to a water washing step to remove excess solvent and non-solvent, and then subjected to an appropriate heat treatment to be wound up. Further or thereafter, it is desirable to perform a hydrophilic treatment with a polyhydric alcohol such as glycerin to give a so-called wettability.

以上の諸工程を採用することにより透過性を著しく高め
得る、又経時的に目づまり、ファウリングのない孔構造
を有する中空糸型分離膜がえられた。なお、本発明に使
用する重合体は、セルロースアセテート、セルロースト
リアセテート等のセルロース糸重合体、合成重合体など
が好ましいが、これに限定されるものではない。
By adopting the above-mentioned steps, a hollow fiber type separation membrane having a pore structure in which the permeability can be remarkably enhanced and which is clogged with time and has no fouling was obtained. The polymer used in the present invention is preferably a cellulose thread polymer such as cellulose acetate or cellulose triacetate, or a synthetic polymer, but is not limited thereto.

この様にして得られた中空糸型物質分離膜はウレタン系
の接着剤等により通常の方法でモジュールにつくられ、
最終製品として使用される。
The hollow fiber type material separation membrane thus obtained is made into a module by a usual method with a urethane adhesive or the like,
Used as a final product.

次に本発明の中空糸型物質分離膜の具体的説明を実施例
により説明する。
Next, a concrete description of the hollow fiber type substance separation membrane of the present invention will be described by way of Examples.

実施例 膜素材のポリマーとして、セルローストリアセテート
(CTA)、溶媒としてN−メチルピロリドン(NMP)、微
孔形成剤としてポリエチレングコール(PEG,分子量40
0)の三成分を140℃にて混合溶解し、中空糸膜の紡糸原
液とした。この紡糸原液を水、NMP,PEGの三成分より成
る内液とともに二重管型ノズルより吐出し、やはり水、
NMP,PEGの三成分より成る凝固液中に吐出して(乾)湿
式紡糸法により中空糸膜を製膜する。本発明の中空糸型
物質分離膜の均一な孔径分布を得るため、凝固条件は紡
糸原液温度を90℃以下に下げ、凝固液温度を70℃以上と
する非常に温和な条件下で凝固を行なう。さらに膜の強
度および空孔率コントロールのため、紡糸原液中のポリ
マー濃度を高くし(27%)、中空糸型物質膜を得た。
(第1表のNo.1)さらに比較例として従来型MF膜の中空
糸型物質分離膜も製膜した。(第1表のNo.2〜4) これらの中空糸型物質分離膜を血液中からの血漿成分を
採取する血漿採取膜として用いた場合の、使用時におけ
る性能の経時変化を調査した。また膜の透過性能を調査
するため微小粒子の膜透過性能を調査した。血液糸の評
価手段としては牛血を用い、透過性能は血漿採取15,30
分の2点における総コレステロールのふるい係数により
評価した。また微小粒子の透過性能評価にはDow Dnifor
m Latex 380Åを用いふるい係数を算出し比較した。な
おふるい係数とは膜の物質透過性能を表わす数値であ
り、膜を過させる前の原液中の濃度Cinと過液中の
濃度Cfとの比で表わされる。SC=Cf/Cin(第2表)第2
表に示されているように、本発明における中空糸型物質
分離膜(No.1)においては、膜の分離性能がほとんど変
化していなのに対して、他の比較例(No.2〜4)におい
ては、経時的に著しい変化が見られる。また微小粒子の
透過性能においても本発明の中空糸型物質分離膜は高い
透過性能を示している。これは本発明における中空糸膜
の細孔では入口から出口までの間で孔径の変化がほとん
どなく、平均孔径の半分以下の大きさの粒子の通過に対
して何の障害にもたらさないが、従来タイプの膜におい
ては、見かけ上、平均孔径は大きくなっているが、膜壁
全体にわたる孔径分布のバラツキが大きいことから、細
孔の間隙の大きさが様々に変化し、微小粒子が膜内で捕
捉されてしまう結果として、低い透過量しかないものと
考えられる。微小粒子の透過を増大させる手段として従
来型のMF膜では平均孔径のアップが考えられる。比較例
No.4のように平均孔径の大きなものでは確かに、微小粒
子単一系における透過性能はアップするが、血液のよう
な濃厚かつ多種の大きさの物質を含む系においては、膜
の細孔径分布のバラツキが増大する結果として、必ずし
も良好な透過性能は得られない。このように本発明にお
ける中空糸型物質分離膜は膜使用時における経時的な目
詰りやファウリングのない高い物質透過性能を有したも
のであることがわかる。
Example Cellulose triacetate (CTA) was used as the polymer of the membrane material, N-methylpyrrolidone (NMP) was used as the solvent, and polyethylene glycol (PEG, molecular weight 40 was used as the micropore-forming agent.
The three components of 0) were mixed and dissolved at 140 ° C. to prepare a stock solution for spinning a hollow fiber membrane. This spinning solution was discharged from a double-tube nozzle together with water, an internal solution consisting of three components of NMP and PEG.
A hollow fiber membrane is formed by a (dry) wet spinning method by discharging into a coagulating liquid composed of three components of NMP and PEG. In order to obtain a uniform pore size distribution of the hollow fiber type substance separation membrane of the present invention, the coagulation conditions are such that the spinning dope temperature is lowered to 90 ° C or lower, and the coagulation liquid temperature is 70 ° C or higher, and coagulation is performed under very mild conditions. . Furthermore, in order to control the strength and porosity of the membrane, the polymer concentration in the spinning dope was increased (27%) to obtain a hollow fiber type membrane.
(No. 1 in Table 1) Furthermore, as a comparative example, a hollow fiber type substance separation membrane of a conventional MF membrane was also formed. (Nos. 2 to 4 in Table 1) When these hollow fiber type substance separation membranes were used as plasma collection membranes for collecting plasma components from blood, changes in performance during use were investigated. Moreover, in order to investigate the permeation performance of the membrane, the permeation performance of the fine particles was investigated. Bovine blood was used as the blood thread evaluation method, and the permeation performance was determined by plasma collection 15,30
It was evaluated by the sieving coefficient of total cholesterol at two points. In addition, Dow Dnifor
Sieving coefficient was calculated using m Latex 380Å and compared. The sieving coefficient is a numerical value representing the mass permeation performance of the membrane, and is represented by the ratio of the concentration Cin in the undiluted solution before passing through the membrane and the concentration Cf in the perfusate. SC = Cf / Cin (Table 2) No. 2
As shown in the table, in the hollow fiber type substance separation membrane (No. 1) of the present invention, the separation performance of the membrane is almost unchanged, whereas in other comparative examples (No. 2 to 4). In, the remarkable change is seen with time. Also, in the permeation performance of fine particles, the hollow fiber type substance separation membrane of the present invention shows high permeation performance. In the pores of the hollow fiber membrane of the present invention, there is almost no change in the pore size from the inlet to the outlet, and there is no hindrance to the passage of particles having a size of half or less of the average pore size. Although the average pore size is apparently large in this type of membrane, the variation in pore size distribution over the entire membrane wall causes the size of the pores to change in various ways, resulting in the formation of fine particles within the membrane. As a result of being trapped, it is considered that there is only a low transmission amount. As a means to increase the permeation of fine particles, it is possible to increase the average pore size in the conventional MF membrane. Comparative example
It is true that a large average pore size such as No. 4 will improve the permeation performance in a single system of fine particles, but in a system containing dense and various sizes such as blood, the pore size of the membrane will be large. As a result of the increased dispersion in distribution, good transmission performance is not always obtained. Thus, it can be seen that the hollow fiber type substance separation membrane of the present invention has a high substance permeation performance without clogging or fouling over time when the membrane is used.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】微細孔構造を有する中空糸型物質分離膜に
おいて、膜壁全体に存在する細孔の孔径分布の平均孔径
Pと該分布の標準偏差値σがそれぞれ0.01(μm)≦P
≦0.6(μm)およびσ/P≦1.0なる関係を満たし、かつ
0.8≧ε≧0.6(ε:膜の空孔率)なる関係を満たすこと
を特徴とする中空糸型物質分離膜。
1. A hollow fiber type substance separation membrane having a fine pore structure, wherein the average pore diameter P of the pore diameter distribution of the pores existing on the entire membrane wall and the standard deviation value σ of the distribution are 0.01 (μm) ≦ P, respectively.
Satisfies the relationship of ≦ 0.6 (μm) and σ / P ≦ 1.0, and
A hollow fiber type substance separation membrane, characterized in that the relation of 0.8 ≧ ε ≧ 0.6 (ε: porosity of membrane) is satisfied.
JP16865586A 1986-07-17 1986-07-17 Hollow fiber type substance separation membrane Expired - Fee Related JPH0712416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16865586A JPH0712416B2 (en) 1986-07-17 1986-07-17 Hollow fiber type substance separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16865586A JPH0712416B2 (en) 1986-07-17 1986-07-17 Hollow fiber type substance separation membrane

Publications (2)

Publication Number Publication Date
JPS6328405A JPS6328405A (en) 1988-02-06
JPH0712416B2 true JPH0712416B2 (en) 1995-02-15

Family

ID=15872048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16865586A Expired - Fee Related JPH0712416B2 (en) 1986-07-17 1986-07-17 Hollow fiber type substance separation membrane

Country Status (1)

Country Link
JP (1) JPH0712416B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813452B2 (en) * 1990-10-29 1998-10-22 株式会社クラレ Method for producing hydrophilic membrane
US8999167B2 (en) * 2003-08-07 2015-04-07 Asahi Kasei Medical Co., Ltd. Composite porous membrane and process for producing the same

Also Published As

Publication number Publication date
JPS6328405A (en) 1988-02-06

Similar Documents

Publication Publication Date Title
US4269713A (en) Ethylene-vinyl alcohol copolymer membrane and a method for producing the same
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
JP6484171B2 (en) Hydrophilic vinylidene fluoride porous hollow fiber membrane and method for producing the same
EP0121911B1 (en) Hollow fiber filter medium and process for preparing the same
JP4172819B2 (en) Hollow fiber membrane
US4362677A (en) Method of producing ethylene-vinyl alcohol copolymer hollow fiber membranes
CN112657343A (en) Polyamide hollow fiber composite separation membrane and preparation method thereof
KR100557264B1 (en) Hollow fiber membrane and process for producing the same
JP3386904B2 (en) Cellulose acetate hollow fiber separation membrane and method for producing the same
US4983293A (en) Semipermeable membrane and process for preparing same
JPH0712416B2 (en) Hollow fiber type substance separation membrane
JP3217842B2 (en) Hollow fiber high-performance microfiltration membrane
JPS5836602B2 (en) Ethylene-vinyl alcohol copolymer membrane and its manufacturing method
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
WO1995024262A1 (en) Hollow-fiber blood-purifying membrane and process for producing the same
JPH0211263B2 (en)
JP4164730B2 (en) Selective separation membrane
JP3167370B2 (en) Hollow fiber membrane having novel structure and method for producing the same
KR960012027B1 (en) Manufacturing method of polor membrane
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane
JP3032618B2 (en) Hollow fiber membrane for hemodialysis and method for producing the same
JPS6249911A (en) Production of aromatic polysulfone hollow yarn membrane
JPH10337456A (en) Membrane forming stock solution
JPH0670155B2 (en) Manufacturing method of polytetrafluoroethylene resin porous membrane
JPH1170326A (en) Polyacrylonitrile-based membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees