JPH0712409A - Refrigerating device - Google Patents

Refrigerating device

Info

Publication number
JPH0712409A
JPH0712409A JP17612293A JP17612293A JPH0712409A JP H0712409 A JPH0712409 A JP H0712409A JP 17612293 A JP17612293 A JP 17612293A JP 17612293 A JP17612293 A JP 17612293A JP H0712409 A JPH0712409 A JP H0712409A
Authority
JP
Japan
Prior art keywords
compressor
valve
flow rate
control valve
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17612293A
Other languages
Japanese (ja)
Inventor
Ko Sunaga
曠 須永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP17612293A priority Critical patent/JPH0712409A/en
Publication of JPH0712409A publication Critical patent/JPH0712409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To provide a refrigerating device, capable of preventing the overheat of discharging temperature of a compressor smoothly by a liquid injection circuit from the starting of the compressor without increasing the number of parts and/or complicating the structure of the device. CONSTITUTION:A compressor A, a condenser B, a liquid receiver C, an expansion valve D and an evaporator E are connected sequentially so as to be annularly. A liquid injection circuit K3, supplying liquid refrigerant from the liquid receiver C into the compressor A, is provided. A solenoid valve SV1 and a flow rate control valve V are interposed in the liquid injection circuit K3. The opening degree of the flow rate control valve V is regulated on the basis of the temperature of discharging gas of the compressor A. The flow rate control valve V secures the predetermined flow rate of refrigerant even at the closed position thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧縮機の吐出温度の過
熱を防止するためのリキッドインジェクション回路を具
備した冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus having a liquid injection circuit for preventing the discharge temperature of a compressor from overheating.

【0002】[0002]

【従来の技術】従来この種冷凍空調機器においては、冷
凍装置の冷凍サイクルを構成する圧縮機の吐出ガス温度
が異常に上昇すると、圧縮機の摺動部の焼き付きや巻線
の焼損を来すため、リキッドインジェクションによる冷
却方式が採用されている。この冷却方式は、受液器内の
液冷媒をリキッドインジェクション回路によって圧縮機
の中間圧力部に供給することにより、圧縮機の吐出ガス
温度を低下させるものである。また、従来一般的にはキ
ャピラリチューブと開閉弁を介設することによって、リ
キッドインジェクション回路による液冷媒の供給を制御
していたが、液冷媒供給量の適正化を目的として、リキ
ッドインジェクション回路にはキャピラリチューブに代
わって膨張弁から成る流量制御弁が介設されるようにな
って来ている。
2. Description of the Related Art Conventionally, in this type of refrigerating and air-conditioning equipment, when the temperature of discharge gas of a compressor constituting a refrigerating cycle of a refrigerating apparatus rises abnormally, seizure of a sliding portion of the compressor and burnout of windings occur. Therefore, the cooling method by liquid injection is adopted. This cooling system lowers the discharge gas temperature of the compressor by supplying the liquid refrigerant in the liquid receiver to the intermediate pressure part of the compressor by a liquid injection circuit. Further, conventionally, the supply of the liquid refrigerant by the liquid injection circuit was generally controlled by interposing a capillary tube and an opening / closing valve, but for the purpose of optimizing the liquid refrigerant supply amount, the liquid injection circuit is not provided. In place of the capillary tube, a flow rate control valve composed of an expansion valve has been installed.

【0003】係る膨張弁方式によるリキッドインジェク
ションは、圧縮機の吐出配管の温度を流量制御弁の感温
筒により検知して、その弁開度を調整することにより行
うものであり、吐出配管の温度上昇に伴って図4中一点
鎖線で示す如く弁開度を拡張することにより冷媒流量を
増やし、それによって圧縮機に適正量の液冷媒を供給し
て冷却するものである。
Liquid injection by such an expansion valve system is carried out by detecting the temperature of the discharge pipe of the compressor by the temperature sensing cylinder of the flow control valve and adjusting the valve opening thereof. As the temperature rises, the valve opening is expanded as shown by the alternate long and short dash line in FIG. 4 to increase the refrigerant flow rate, thereby supplying and cooling an appropriate amount of liquid refrigerant to the compressor.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、図4よ
り明らかな如く従来の流量制御弁は弁閉位置においてそ
の弁開度を完全に0とし、それによって冷媒流量も0と
している。一方で、感温筒は熱容量を有しており、その
温度検知には遅れが生じるため、圧縮機の始動時等にそ
の吐出ガス温度が急激に上昇した場合、どうしても流量
制御弁の弁開動作に遅れが生じて液冷媒の供給が不足
し、図5中一点鎖線で示す如く吐出ガス温度の許容限度
を大きく越えてしまう問題があった。
However, as is apparent from FIG. 4, the conventional flow rate control valve completely sets the valve opening degree to 0 in the valve closed position, and thereby sets the refrigerant flow rate to 0 as well. On the other hand, the temperature-sensitive cylinder has a heat capacity, and there is a delay in its temperature detection.Therefore, if the discharge gas temperature rises sharply at the start of the compressor, the valve opening operation of the flow control valve is inevitable. However, there is a problem that the supply of the liquid refrigerant is insufficient and the allowable limit of the discharge gas temperature is greatly exceeded as shown by the alternate long and short dash line in FIG.

【0005】そのため、従来では流量制御弁をバイパス
するキャピラリチューブ等を追加することにより、係る
急激な温度上昇に対する弁開遅れを補償していたが、部
品点数が増加し、コスト高を生ずる欠点がある。また、
圧縮機に感温筒挿入用の孔を形成して、吐出ガス温度の
上昇を迅速に感知できるようにしたものもあるが、その
場合は構造が複雑となる問題があった。
For this reason, conventionally, a capillary tube or the like that bypasses the flow rate control valve is added to compensate for the valve opening delay with respect to such a rapid temperature rise, but the number of parts increases and the cost increases. is there. Also,
There is also a compressor in which a hole for inserting a temperature-sensitive cylinder is formed so that a rise in discharge gas temperature can be sensed quickly, but in that case, there is a problem that the structure becomes complicated.

【0006】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、部品点数の増加や構造の
複雑化を来すこと無く、圧縮機の始動時よりリキッドイ
ンジェクション回路にて円滑に圧縮機の吐出ガス温度の
過熱を防止することができる冷凍装置を提供することを
目的とする。
The present invention has been made in order to solve the above-mentioned conventional technical problems, and a liquid injection circuit is provided from the time of starting the compressor without increasing the number of parts and complicating the structure. Therefore, it is an object of the present invention to provide a refrigeration system capable of smoothly preventing the discharge gas temperature of a compressor from overheating.

【0007】[0007]

【課題を解決するための手段】即ち、本発明の冷凍装置
20は、圧縮機A、凝縮器B、受液器C、減圧装置(膨
張弁)D及び蒸発器Eを順次環状に接続すると共に、受
液器Cから圧縮機Aに液冷媒を供給するリキッドインジ
ェクション回路K3を設け、このリキッドインジェクシ
ョン回路K3には開閉弁(膨張弁)SV1と流量制御弁
Vとを介設して成るものであって、流量制御弁Vは圧縮
機Aの吐出ガス温度に基づいて弁開度を調整すると共
に、弁閉位置においても所定の冷媒流量を確保するもの
である。
That is, in a refrigerating apparatus 20 of the present invention, a compressor A, a condenser B, a liquid receiver C, a pressure reducing device (expansion valve) D and an evaporator E are sequentially connected in an annular shape. A liquid injection circuit K3 for supplying a liquid refrigerant from the liquid receiver C to the compressor A is provided, and an on-off valve (expansion valve) SV1 and a flow control valve V are interposed in the liquid injection circuit K3. Therefore, the flow rate control valve V adjusts the valve opening degree based on the discharge gas temperature of the compressor A, and also secures a predetermined refrigerant flow rate even in the valve closed position.

【0008】[0008]

【作用】本発明の冷凍装置20によれば、リキッドイン
ジェクション回路K3に介設された流量制御弁Vが、そ
の弁閉位置においても所定の冷媒流量を確保しているの
で、圧縮機Aの始動時等にその吐出ガス温度が急激に上
昇した場合、流量制御弁Vの弁開動作に遅れが生じて
も、少なくとも前記所定量の液冷媒を圧縮機Aに供給す
ることができる。従って、流量制御弁Vの弁開遅れによ
る吐出ガス温度の過熱が防止される。
According to the refrigerating apparatus 20 of the present invention, since the flow control valve V provided in the liquid injection circuit K3 secures a predetermined refrigerant flow rate even in the valve closed position, the compressor A is started. When the discharge gas temperature rises rapidly at times, at least the predetermined amount of the liquid refrigerant can be supplied to the compressor A even if the valve opening operation of the flow control valve V is delayed. Therefore, the discharge gas temperature is prevented from overheating due to the valve opening delay of the flow rate control valve V.

【0009】特に、従来の如くバイパス管やキャピラリ
チューブを追加併用する必要がなくなるので、部品点数
を削減し、構造の簡素化を図ることが可能となるもので
ある。尚、圧縮機Aが停止している状態では開閉弁(電
磁弁)SV1が閉じられることになるので、流量制御弁
Vが前述の如く弁閉位置において所定流量を確保してい
ても、何ら問題は生じない。
In particular, since it is not necessary to additionally use a bypass pipe and a capillary tube as in the conventional case, the number of parts can be reduced and the structure can be simplified. Since the on-off valve (solenoid valve) SV1 is closed when the compressor A is stopped, there is no problem even if the flow control valve V secures the predetermined flow rate at the valve closed position as described above. Does not occur.

【0010】[0010]

【実施例】次に、図面に基づき本発明の一実施例を詳述
する。図1は本発明の冷凍装置20の冷媒回路図、図2
は流量制御弁Vの縦断側面図、図3は流量制御弁Vの弁
体2部分の拡大縦断側面図、図4は流量制御弁Vの弁開
度と冷媒流量の関係を示す図、図5は圧縮機Aの吐出ガ
ス温度の時間推移を示す図、図6は圧縮機A内のスイッ
チ圧縮部21のスクロール22の縦断側面図である。図
1において、Aは例えばスクロール型の圧縮機、Bは凝
縮器、Cは受液器、Dは減圧装置としての膨張弁、Eは
蒸発器、Fはアキュムレータであり、これらは配管Kに
より順次環状に接続されて、冷凍装置20の冷凍サイク
ルを構成している。Gは膨張弁Dの感温筒であり、蒸発
器Eの出口側の配管(吸込側配管)K2に添設されると
共に、キャピラリチューブHにより膨張弁Dに接続され
ている。
An embodiment of the present invention will be described in detail with reference to the drawings. 1 is a refrigerant circuit diagram of a refrigerating apparatus 20 of the present invention, FIG.
5 is a vertical side view of the flow control valve V, FIG. 3 is an enlarged vertical side view of the valve body 2 of the flow control valve V, FIG. 4 is a view showing the relationship between the valve opening of the flow control valve V and the refrigerant flow rate, FIG. 6 is a diagram showing a time transition of the discharge gas temperature of the compressor A, and FIG. 6 is a vertical cross-sectional side view of the scroll 22 of the switch compression unit 21 in the compressor A. In FIG. 1, A is, for example, a scroll type compressor, B is a condenser, C is a liquid receiver, D is an expansion valve as a pressure reducing device, E is an evaporator, F is an accumulator, and these are sequentially provided by a pipe K. The refrigeration cycle of the refrigeration system 20 is configured by being connected in a ring shape. G is a temperature sensitive tube of the expansion valve D, which is attached to the outlet side pipe (suction side pipe) K2 of the evaporator E and is connected to the expansion valve D by a capillary tube H.

【0011】前記受液器Cの出口側と膨張弁Dの間の配
管Kからは、図6に示す圧縮機Aのスクロール圧縮部2
1における圧縮空間23の中間圧力(AP2)部23A
に連通したリキッドインジェクション回路K3が設けら
れており、このリキッドインジェクション回路K3に
は、開閉弁としての電磁弁SV1と、膨張弁から成る流
量制御弁Vが介設されている。
From the pipe K between the outlet side of the liquid receiver C and the expansion valve D, the scroll compression section 2 of the compressor A shown in FIG.
Intermediate pressure (AP2) portion 23A of the compression space 23 in No. 1
Is provided with a liquid injection circuit K3, which is provided with a solenoid valve SV1 serving as an opening / closing valve and a flow control valve V including an expansion valve.

【0012】図2及び図3はこの流量制御弁Vの詳細構
造を示しており、弁本体1には一次口1aと二次口1b
が形成され、一次口1aと二次口1b間の隔壁1cに形
成された弁口1dを開閉する弁体2が、二次口1b側に
おいてコイルバネ3により閉弁方向に付勢されて設けら
れている。尚、4はコイルバネ3の受けである。
2 and 3 show the detailed structure of the flow rate control valve V. The valve body 1 has a primary port 1a and a secondary port 1b.
The valve body 2 for opening and closing the valve opening 1d formed in the partition wall 1c between the primary opening 1a and the secondary opening 1b is provided by being biased in the valve closing direction by the coil spring 3 on the secondary opening 1b side. ing. Incidentally, 4 is a receiver of the coil spring 3.

【0013】弁本体1の一次口1a側には、下蓋5と上
蓋6が設けられ、下蓋5と上蓋6間において、周縁部7
a、8aをアルゴン溶接により固着されることにより、
二枚積み重ねられた金属製のダイヤフラム7、8が設け
られて圧力室R1と圧力室R2を区画している。内側の
ダイヤフラム7に当接するバネ受け9には、連動杆10
の一端が接続され、連動杆10の他端における小径部1
0aが弁口1dを貫通して前記弁体2に当接している。
また、バネ受け9と本体1間には、圧力設定用コイルバ
ネ11が設けられている。
A lower lid 5 and an upper lid 6 are provided on the primary port 1a side of the valve body 1, and a peripheral edge portion 7 is provided between the lower lid 5 and the upper lid 6.
By fixing a and 8a by argon welding,
Two stacked metal diaphragms 7 and 8 are provided to partition the pressure chamber R1 and the pressure chamber R2. The interlocking rod 10 is attached to the spring receiver 9 that abuts on the inner diaphragm 7.
One end of the interlocking rod 10 is connected to the small diameter portion 1 at the other end of the interlocking rod 10.
0a penetrates the valve opening 1d and is in contact with the valve body 2.
A pressure setting coil spring 11 is provided between the spring receiver 9 and the main body 1.

【0014】また、流量制御弁Vの連動杆10の小径部
10aは、圧縮機Aが停止していて弁閉位置となってい
る状態で、図3の如く少許弁体2を押し下げて弁口1d
を開いており、図4の実線で示す如く弁閉位置(0)に
おいて所定の流量を確保する。そして、弁開度が増大す
るに従って流量が増大するよう構成されている。係る流
量制御弁Vの圧力室R2には、キャピラリチューブ12
を介して感温筒13が接続され、感温筒13は圧縮機A
の吐出側配管K1に添設されている。そして、この感温
筒13内には所定量の冷媒が封入されている。
Further, the small diameter portion 10a of the interlocking rod 10 of the flow control valve V is pushed down the small valve body 2 as shown in FIG. 3 while the compressor A is stopped and in the valve closed position to open the valve opening. 1d
Is opened, and a predetermined flow rate is secured at the valve closed position (0) as shown by the solid line in FIG. The flow rate increases as the valve opening increases. The capillary tube 12 is provided in the pressure chamber R2 of the flow control valve V.
The temperature sensitive cylinder 13 is connected via the
Is attached to the discharge side pipe K1. A predetermined amount of refrigerant is enclosed in the temperature sensitive cylinder 13.

【0015】一方、圧縮機Aにはシリンダー内バイパス
方式による容量制御装置26が取り付けられている。こ
の容量制御装置26は圧縮機Aの吐出側配管K1に連通
した高圧配管K4と、アキュムレータFの入口側の吸込
側配管K2に連通した低圧配管K5と、高圧配管K4に
介設された逆止弁27及び電磁弁SV2と、低圧配管K
5に介設された逆止弁28及び電磁弁SV3と、圧縮機
Aの前記スクロール22に接続された連通配管K6と、
スクロール22内に設けられたバイパス弁29、29と
から構成されている。
On the other hand, the compressor A is provided with a capacity control device 26 of an in-cylinder bypass system. The capacity control device 26 includes a high-pressure pipe K4 that communicates with the discharge-side pipe K1 of the compressor A, a low-pressure pipe K5 that communicates with the suction-side pipe K2 on the inlet side of the accumulator F, and a check valve provided in the high-pressure pipe K4. Valve 27 and solenoid valve SV2, low pressure pipe K
5, a check valve 28 and a solenoid valve SV3, and a communication pipe K6 connected to the scroll 22 of the compressor A,
It is composed of bypass valves 29, 29 provided in the scroll 22.

【0016】前記逆止弁27は電磁弁SV2の吐出側配
管K1側に設けられ、電磁弁SV2方向を順方向として
おり、逆止弁28は電磁弁SV3の吸込側配管K2側に
設けられ、配管K2方向を順方向としている。また、連
通配管K6の一端は電磁弁SV2とSV3の間において
高圧配管K4と低圧配管K5とに連通しており、他端は
図6の如くスクロール22のバイパス弁29、29の上
面に連通されている。また、圧縮空間23の中間圧力部
23Aと吸込部23Bとはバイパス弁29の下面に連通
している。更に、前記各電磁弁SV2、SV3は容量制
御スイッチ31により開閉制御されると共に、圧縮機A
と電磁弁SV1は、圧縮機Aの高圧・低圧を感知して動
作する高低圧スイッチ32により運転・停止、或いは開
閉制御される。
The check valve 27 is provided on the discharge side pipe K1 side of the solenoid valve SV2, the solenoid valve SV2 direction is the forward direction, and the check valve 28 is provided on the suction side pipe K2 side of the solenoid valve SV3. The direction of the pipe K2 is the forward direction. Further, one end of the communication pipe K6 communicates with the high pressure pipe K4 and the low pressure pipe K5 between the solenoid valves SV2 and SV3, and the other end communicates with the upper surfaces of the bypass valves 29, 29 of the scroll 22 as shown in FIG. ing. Further, the intermediate pressure portion 23A and the suction portion 23B of the compression space 23 communicate with the lower surface of the bypass valve 29. Further, the solenoid valves SV2, SV3 are controlled to be opened and closed by the capacity control switch 31, and the compressor A
The solenoid valve SV1 is operated / stopped or controlled to be opened / closed by a high / low pressure switch 32 which operates by sensing the high pressure / low pressure of the compressor A.

【0017】以上の構成にて動作を説明する。高低圧ス
イッチ32により圧縮機Aが始動されると、圧縮部21
から吐出された高温高圧のガス冷媒は凝縮器Bにて凝縮
液化された後、受液器Cに一旦貯溜され、その後膨張弁
Dで減圧されてから蒸発器Eにて蒸発する。このときに
生ずる吸熱作用により冷凍装置20は冷却能力を発揮す
る。このように圧縮機Aからは高温のガス冷媒が吐出さ
れるので、吐出側配管K1の温度は急激に上昇する。
The operation will be described with the above configuration. When the compressor A is started by the high / low pressure switch 32, the compression unit 21
The high-temperature and high-pressure gas refrigerant discharged from is condensed and liquefied in the condenser B, then temporarily stored in the liquid receiver C, then decompressed by the expansion valve D, and then evaporated in the evaporator E. The refrigerating apparatus 20 exerts a cooling capacity by the endothermic action generated at this time. In this way, since the high temperature gas refrigerant is discharged from the compressor A, the temperature of the discharge side pipe K1 rapidly rises.

【0018】また、圧縮機Aの始動と同時に高低圧スイ
ッチ32は電磁弁SV1も開放する。そして、吐出側配
管K1の温度が上昇すると、感温筒13内の冷媒圧力が
上昇して流量制御弁Vにおける圧力室R2の圧力VP2
が上昇し、圧力室R1の圧力VP1並びにバネ11、3
の弾性力に打ち勝ってダイヤフラム7、8と連動杆10
を下方に移動させるので、弁体2は弁口1dから離間さ
れ、図4に実線で示す如く弁開度は大きくなる。これに
よって、受液器C内の液冷媒の一部がリキッドインジェ
クション回路K3より圧縮機Aの中間圧力部23Aに供
給されて圧縮機Aの吐出ガス温度を低下させる。
Simultaneously with the start of the compressor A, the high / low pressure switch 32 also opens the solenoid valve SV1. Then, when the temperature of the discharge side pipe K1 rises, the refrigerant pressure in the temperature sensing cylinder 13 rises and the pressure VP2 of the pressure chamber R2 in the flow control valve V.
Rise, the pressure VP1 in the pressure chamber R1 and the springs 11 and 3 are increased.
Overcoming the elastic force of the diaphragms 7 and 8 and the interlocking rod 10
Is moved downward, the valve body 2 is separated from the valve opening 1d, and the valve opening becomes large as shown by the solid line in FIG. As a result, a part of the liquid refrigerant in the receiver C is supplied from the liquid injection circuit K3 to the intermediate pressure portion 23A of the compressor A, and the discharge gas temperature of the compressor A is lowered.

【0019】ここで、圧縮機Aの始動時に吐出ガス温度
が急激に変化すると、感温筒13の熱容量によって温度
検知に遅れが生ずる。従って、圧縮機Aの始動直後は弁
体2は動作せずに弁閉位置にあるが、前述の如く流量制
御弁Vの弁体2は弁閉位置において弁口1dから少許離
間しており、例えば最大流量10%〜20%の漏れ流量
を確保している。従って、圧縮機Aが始動し、電磁弁S
V1が開いたと当時に液冷媒の供給が開始されるように
なるので、図5に実線で示す如く圧縮機Aの始動時の吐
出ガス温度の上昇が抑制される。
Here, if the discharge gas temperature changes abruptly at the time of starting the compressor A, the temperature detection is delayed due to the heat capacity of the temperature sensing cylinder 13. Therefore, immediately after the compressor A is started, the valve body 2 does not operate and is in the valve closed position, but as described above, the valve body 2 of the flow control valve V is slightly separated from the valve opening 1d at the valve closed position, For example, the maximum flow rate of 10% to 20% is secured as the leakage flow rate. Therefore, the compressor A starts and the solenoid valve S
When V1 is opened, the supply of the liquid refrigerant is started at that time, so that the rise of the discharge gas temperature at the time of starting the compressor A is suppressed as shown by the solid line in FIG.

【0020】これによって、吐出ガス温度の過熱(許容
限度を越える温度)が防止され、圧縮機Aの損傷の発生
が解消されるようになるので、信頼性の向上が図れる。
また、電磁弁SV1は高低圧スイッチ32により圧縮機
Aの停止と同時に閉じられるので、前述の如く流量制御
弁Vが弁閉位置にて所定の流量を確保していても、圧縮
機Aの停止時にリキッドインジェクション回路K3より
液冷媒の供給は停止するため、問題は生じない。
As a result, the discharge gas temperature is prevented from overheating (a temperature exceeding the allowable limit), and the occurrence of damage to the compressor A is eliminated, so that the reliability can be improved.
Further, since the solenoid valve SV1 is closed at the same time as the compressor A is stopped by the high / low pressure switch 32, even if the flow rate control valve V secures a predetermined flow rate at the valve closed position as described above, the compressor A is stopped. Since the supply of the liquid refrigerant from the liquid injection circuit K3 is stopped at times, no problem occurs.

【0021】ここで、上述の流量制御弁Vでは弁閉位置
において、所定流量を確保することによって、圧縮機A
の始動時の吐出ガス温度の過熱を解消したが、それ以外
に、或いはそれに加えて流量制御弁Vの感温筒13内に
封入する冷媒として、二種以上の異なる冷媒の混合物を
封入することによっても、吐出ガス温度の過熱を有効に
解消できる。以下、図1の流量制御弁Vとして通常の流
量制御弁(弁閉位置において流量0となるもの)を用
い、感温筒13内に冷媒R−142bと冷媒R−22の
混合冷媒を封入した場合について説明する。
Here, in the above-mentioned flow rate control valve V, the compressor A is secured by ensuring a predetermined flow rate at the valve closed position.
Although the overheating of the discharge gas temperature at the time of starting the above is eliminated, in addition to or in addition to it, as a refrigerant to be sealed in the temperature sensing cylinder 13 of the flow control valve V, a mixture of two or more different refrigerants should be sealed. Also, the overheating of the discharge gas temperature can be effectively eliminated. Hereinafter, as the flow rate control valve V of FIG. 1, a normal flow rate control valve (having a flow rate of 0 at the valve closed position) is used, and a mixed refrigerant of the refrigerant R-142b and the refrigerant R-22 is enclosed in the temperature sensing cylinder 13. The case will be described.

【0022】この場合において、R−142bとR−2
2の飽和蒸気圧内であれば、その重量比により図9に示
す如き第一の特性L1(R142bが68.9wt%、
R−22が31.1wt%)、第二の特性L2(R14
2bが75.6wt%、R−22が24.4wt%)、
第三の特性L3(R142bが80.1wt%、R−2
2が19.9wt%)、第四の特性L4(R142bが
82.1wt%、R−22が17.9wt%)の各飽和
曲線が得られ、それによって、任意の特性の過熱度を得
ることができる。従って、前記スクロール型の圧縮機A
の適正設定過熱度+30℃〜40℃に封入冷媒の混合比
を設定することにより、従来図10の如く圧縮機Aの始
動時に吐出ガス温度が許容限度を大きく越えていたもの
を、図8の如く許容限度内に抑えることができるように
なる。尚、前記適正設定過熱度は、レシプロ型の圧縮機
の場合には+45℃前後であり、ロータリー型の圧縮機
の場合には+20℃〜30℃である。
In this case, R-142b and R-2
If the saturated vapor pressure is 2, the first characteristic L1 (R142b is 68.9 wt%, as shown in FIG. 9)
R-22 is 31.1 wt%, second characteristic L2 (R14
2b is 75.6 wt% and R-22 is 24.4 wt%),
Third characteristic L3 (R142b is 80.1 wt%, R-2
2 is 19.9 wt%), and each saturation curve of the fourth characteristic L4 (R142b is 82.1 wt%, R-22 is 17.9 wt%) is obtained, thereby obtaining a superheat degree of an arbitrary characteristic. You can Therefore, the scroll type compressor A
By setting the mixture ratio of the enclosed refrigerant to the appropriate set superheat degree of + 30 ° C. to 40 ° C., the discharge gas temperature greatly exceeds the allowable limit at the time of starting the compressor A as shown in FIG. Thus, it becomes possible to keep it within the allowable limit. The properly set superheat degree is around + 45 ° C in the case of a reciprocating compressor, and is + 20 ° C to 30 ° C in the case of a rotary compressor.

【0023】次に、前記容量制御装置26の動作につい
て図7を参照しながら説明する。容量制御装置26は、
冷凍装置20の負荷の変化に対して圧縮機Aの運転・停
止をなるべく避けて圧縮機Aの長寿命化を図るために設
けられており、圧縮機Aの運転により、その低圧(AP
3)は低下して行くが、例えば1kg/cm2 Gより高
い場合には容量制御スイッチ31は電磁弁SV2を開
き、電磁弁SV3を閉じている。従って、バイパス弁2
9、29の上面には吐出側配管K1の高圧(AP1)が
加わるため、バイパス弁29、29は閉じ、従って、圧
縮機Aは100%の運転を行う。
Next, the operation of the capacity control device 26 will be described with reference to FIG. The capacity control device 26
It is provided for the purpose of prolonging the life of the compressor A by avoiding the operation / stop of the compressor A as much as possible with respect to the change of the load of the refrigeration system 20, and the low pressure (AP
Although 3) is decreasing, for example, when it is higher than 1 kg / cm 2 G, the capacity control switch 31 opens the solenoid valve SV2 and closes the solenoid valve SV3. Therefore, the bypass valve 2
Since the high pressure (AP1) of the discharge side pipe K1 is applied to the upper surfaces of 9 and 29, the bypass valves 29 and 29 are closed, and therefore the compressor A operates at 100%.

【0024】その後、低圧が更に低下して1kg/cm
2 Gを下回ると、容量制御スイッチ31が電磁弁SV2
を閉じ、電磁弁SV3を開くので高圧(AP1)が吸込
側配管K2に逃げ、バイパス弁29、29は中間圧力部
23Aの中間圧(AP2)により押し上げられて開き、
中間圧力部23Aの中間圧縮ガスが吸込部23Bに戻さ
れる。これによって、冷媒循環量が減少するので、圧縮
機Aは60%の運転となる。その後、低圧が上昇して2
kg/cm2 Gを上回ると、容量制御スイッチ31が再
び電磁弁SV2を開き、SV3を閉じるので、バイパス
弁29、29が閉じて圧縮機Aは100%運転となる。
After that, the low pressure was further reduced to 1 kg / cm.
Below 2 G, the capacity control switch 31 causes the solenoid valve SV2
Is closed and the solenoid valve SV3 is opened, so that the high pressure (AP1) escapes to the suction side pipe K2, and the bypass valves 29, 29 are pushed up by the intermediate pressure (AP2) of the intermediate pressure portion 23A and opened,
The intermediate compressed gas of the intermediate pressure portion 23A is returned to the suction portion 23B. As a result, the refrigerant circulation amount decreases, so that the compressor A operates at 60%. After that, the low pressure rises to 2
When the pressure exceeds kg / cm 2 G, the capacity control switch 31 opens the solenoid valve SV2 again and closes SV3, so that the bypass valves 29, 29 are closed and the compressor A operates at 100%.

【0025】また、負荷が小さくて上記60%運転によ
っても低圧が低下して例えば0.6kg/cm2 G以下
になると、高低圧スイッチ32が圧縮機Aを停止させる
(同時に電磁弁SV1〜SV3も閉じる)。そして、低
圧が再び上昇して例えば1.7kg/cm2 G以上とな
ると、高低圧スイッチ32が圧縮機Aを起動し、電磁弁
SV1を開くと共に、容量制御スイッチ31は電磁弁S
V2を開き、SV3を閉じるので、圧縮機Aは100%
運転で始動されることになる。
Further, when the load is small and the low pressure is reduced to, for example, 0.6 kg / cm 2 G or less even by the above 60% operation, the high / low pressure switch 32 stops the compressor A (simultaneously with the solenoid valves SV1 to SV3). Also close). Then, when the low pressure rises again and becomes, for example, 1.7 kg / cm 2 G or more, the high / low pressure switch 32 starts the compressor A and opens the solenoid valve SV1, and the capacity control switch 31 causes the solenoid valve SV to open.
Compressor A is 100% because V2 is opened and SV3 is closed.
It will be started by driving.

【0026】ここで、圧縮機Aの停止に伴い高圧AP1
が低下して中間圧AP2よりも低くなると、電磁弁SV
2に逆圧が加わろうとするため所謂チャタリングを起こ
し、異常音を発する危険性があるが、本実施例では逆止
弁27が設けられているので係る逆圧は阻止され、従っ
て、異常音が発生する問題が解消される。また、圧縮機
Aが故障して交換する場合、電磁弁SV3の一方(圧縮
機A側であった方)は体気圧、他方の吸込側配管K2側
は低圧AP3となるため、電磁弁SV3に逆圧が加わっ
て、ガス漏れが発生する危険性があるが、実施例では逆
止弁28を設けているので係るガス漏れは有効に阻止さ
れる。
Here, as the compressor A is stopped, the high pressure AP1
Becomes lower than the intermediate pressure AP2, the solenoid valve SV
There is a risk of causing so-called chattering and making an abnormal sound because the back pressure is about to be applied to 2. However, since the check valve 27 is provided in the present embodiment, the back pressure is prevented, and therefore the abnormal sound is generated. The problems that occur are eliminated. Further, when the compressor A fails and is replaced, one of the solenoid valves SV3 (the one on the compressor A side) becomes the body pressure and the other suction side pipe K2 side becomes the low pressure AP3. Although there is a risk that gas leakage will occur due to the application of back pressure, in the embodiment, since the check valve 28 is provided, such gas leakage is effectively prevented.

【0027】[0027]

【発明の効果】以上詳述した如く本発明によれば、リキ
ッドインジェクション回路に介設された流量制御弁が、
その弁閉位置においても所定の冷媒流量を確保している
ので、圧縮機の始動時等にその吐出ガス温度が急激に上
昇した場合、流量制御弁の弁開動作に遅れが生じても、
少なくとも前記所定量の液冷媒を圧縮機に供給すること
ができる。従って、流量制御弁の弁開遅れによる吐出温
度の過熱を防止して圧縮機の損傷の発生を有効に回避す
ることができる。特に、従来の如くバイパス管やキャピ
ラリチューブを追加併用する必要がなくなるので、部品
点数を削減し、構造の簡素化を図ることが可能となるも
のである。
As described in detail above, according to the present invention, the flow control valve provided in the liquid injection circuit is
Since a predetermined refrigerant flow rate is secured even in the valve closed position, if the discharge gas temperature rises sharply when the compressor is started, etc., even if there is a delay in the valve opening operation of the flow control valve,
At least the predetermined amount of liquid refrigerant can be supplied to the compressor. Therefore, it is possible to prevent the discharge temperature from being overheated due to the valve opening delay of the flow rate control valve, and effectively avoid the damage of the compressor. In particular, since it is not necessary to additionally use a bypass pipe and a capillary tube as in the conventional case, the number of parts can be reduced and the structure can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷凍装置の冷媒回路図である。FIG. 1 is a refrigerant circuit diagram of a refrigerating apparatus of the present invention.

【図2】流量制御弁の縦断側面図である。FIG. 2 is a vertical sectional side view of a flow control valve.

【図3】流量制御弁の弁体部分の拡大縦断側面図であ
る。
FIG. 3 is an enlarged vertical side view of a valve body portion of the flow control valve.

【図4】流量制御弁の弁開度と冷媒流量の関係を示す図
である。
FIG. 4 is a diagram showing a relationship between a valve opening degree of a flow rate control valve and a refrigerant flow rate.

【図5】圧縮機の吐出ガス温度の時間推移を示す図であ
る。
FIG. 5 is a diagram showing a time transition of a discharge gas temperature of a compressor.

【図6】圧縮機内のスクロールの縦断側面図である。FIG. 6 is a vertical sectional side view of a scroll in the compressor.

【図7】容量制御装置の動作を説明するための圧縮機の
低圧の時間推移を示す図である。
FIG. 7 is a diagram showing a time transition of a low pressure of the compressor for explaining the operation of the capacity control device.

【図8】流量制御弁の感温筒内に二種混合冷媒を封入し
た場合の冷凍装置各部の温度及び圧力の時間推移を示す
図である。
FIG. 8 is a diagram showing a time transition of temperature and pressure of each part of the refrigeration apparatus when the two-type mixed refrigerant is enclosed in the temperature sensitive cylinder of the flow control valve.

【図9】流量制御弁の感温筒内に封入される冷媒の特性
を示す図である。
FIG. 9 is a diagram showing the characteristics of the refrigerant sealed in the temperature sensitive cylinder of the flow control valve.

【図10】従来の流量制御弁を用いた場合の冷凍装置各
部の温度及び圧力の時間推移を示す図である。
FIG. 10 is a diagram showing a time transition of temperature and pressure of each part of the refrigeration system when a conventional flow control valve is used.

【符号の説明】[Explanation of symbols]

A 圧縮機 B 凝縮器 C 受液器 D 膨張弁 E 蒸発器 K3 リキッドインジェクション回路 SV1 電磁弁 V 流量制御弁 A compressor B condenser C liquid receiver D expansion valve E evaporator K3 liquid injection circuit SV1 solenoid valve V flow control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、凝縮器、受液器、減圧装置及び
蒸発器を順次環状に接続すると共に、前記受液器から前
記圧縮機に液冷媒を供給するリキッドインジェクション
回路を設け、このリキッドインジェクション回路には開
閉弁と流量制御弁とを介設して成る冷凍装置において、
前記流量制御弁は前記圧縮機の吐出ガス温度に基づいて
弁開度を調整すると共に、弁閉位置においても所定の冷
媒流量を確保することを特徴とする冷凍装置。
1. A compressor, a condenser, a liquid receiver, a decompression device and an evaporator are sequentially connected in an annular shape, and a liquid injection circuit for supplying a liquid refrigerant from the liquid receiver to the compressor is provided. In the refrigeration system in which the on-off valve and the flow control valve are provided in the injection circuit,
The refrigerating apparatus, wherein the flow rate control valve adjusts a valve opening degree based on a discharge gas temperature of the compressor and ensures a predetermined refrigerant flow rate even in a valve closed position.
JP17612293A 1993-06-22 1993-06-22 Refrigerating device Pending JPH0712409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17612293A JPH0712409A (en) 1993-06-22 1993-06-22 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17612293A JPH0712409A (en) 1993-06-22 1993-06-22 Refrigerating device

Publications (1)

Publication Number Publication Date
JPH0712409A true JPH0712409A (en) 1995-01-17

Family

ID=16008065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17612293A Pending JPH0712409A (en) 1993-06-22 1993-06-22 Refrigerating device

Country Status (1)

Country Link
JP (1) JPH0712409A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116995A (en) * 2004-01-26 2004-04-15 Hitachi Ltd Refrigerating unit
JP2007271181A (en) * 2006-03-31 2007-10-18 Fujitsu General Ltd Air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004116995A (en) * 2004-01-26 2004-04-15 Hitachi Ltd Refrigerating unit
JP2007271181A (en) * 2006-03-31 2007-10-18 Fujitsu General Ltd Air conditioner

Similar Documents

Publication Publication Date Title
TWI223054B (en) Refrigeration system and method of controlling a refrigeration system
JP4639413B2 (en) Scroll compressor and air conditioner
KR20040064479A (en) Driving control method for a heat pump system
JP2004218964A (en) Refrigerating plant
JPH0712409A (en) Refrigerating device
JP3125824B2 (en) Scroll compressor with overheat prevention device
JP2002221376A (en) Refrigerating cycle
JP3819678B2 (en) Heat pump air conditioner
US20060288732A1 (en) Refrigeration cycle
JPH1137579A (en) Refrigerator
JP2923133B2 (en) Refrigeration equipment
JP2925827B2 (en) Injection valve for refrigeration cycle
JP3505209B2 (en) Refrigeration equipment
JPH11118264A (en) Freezer adapted to hfc refrigerant
JP3248235B2 (en) Operating method of binary refrigeration apparatus and its apparatus
JPH11237126A (en) Refrigerating device coping with hfc series refrigerant
JPH01139965A (en) Operation controller for refrigerator
JPH07260262A (en) Refrigerating device
JP2002061990A (en) Refrigerating cycle
JP2001289519A (en) Refrigerating apparatus
JP2005147544A (en) Heat pump water heater
JPH0798159A (en) Discrete air-conditioner
JP3182529B2 (en) Discharge superheat control device
JP3813228B2 (en) Refrigeration equipment
JPS58178891A (en) Electromagnetic vibration type compressor