JP3182529B2 - Discharge superheat control device - Google Patents

Discharge superheat control device

Info

Publication number
JP3182529B2
JP3182529B2 JP26907692A JP26907692A JP3182529B2 JP 3182529 B2 JP3182529 B2 JP 3182529B2 JP 26907692 A JP26907692 A JP 26907692A JP 26907692 A JP26907692 A JP 26907692A JP 3182529 B2 JP3182529 B2 JP 3182529B2
Authority
JP
Japan
Prior art keywords
pipe
valve
discharge
pressure
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26907692A
Other languages
Japanese (ja)
Other versions
JPH0694334A (en
Inventor
伴雄 岡田
潔 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP26907692A priority Critical patent/JP3182529B2/en
Publication of JPH0694334A publication Critical patent/JPH0694334A/en
Application granted granted Critical
Publication of JP3182529B2 publication Critical patent/JP3182529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は圧縮式冷凍サイクルの冷
媒制御に際し、圧縮機の吐出側冷媒の過熱度を制御する
ための吐出過熱度制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a discharge superheat control device for controlling the superheat of the refrigerant on the discharge side of a compressor when controlling refrigerant in a compression refrigeration cycle.

【0002】[0002]

【従来の技術】圧縮機、凝縮器、膨張弁及び蒸発器を主
要構成部品とした圧縮式冷凍サイクルの冷媒制御におい
ては、一般的には、蒸発器の出口の冷媒温度が、一定に
なるように膨張弁により制御を行ない、圧縮機の吸入ガ
スの過熱度の制御を行なっている。
2. Description of the Related Art In a refrigerant control of a compression refrigeration cycle having a compressor, a condenser, an expansion valve and an evaporator as main components, the refrigerant temperature at the outlet of the evaporator generally becomes constant. The control is performed by an expansion valve to control the degree of superheat of the intake gas of the compressor.

【0003】従来のこのような冷媒制御システムにおい
ては、蒸発温度が下降して圧縮機の吸入圧力が低くなる
と、圧力比が大きくなり、圧縮機の体積効率が低下す
る。また、圧縮機を駆動する電動モータは、圧縮機の圧
力比の増大によって、電動機の入力は大きくなるので、
それに伴って電動機損失が大きくなり、発熱量が多くな
る。それに対し、電動モータは循環する冷媒により冷却
されているので、冷媒循環量の減少もあり必然的に電動
機の温度は上昇し、電動機の破損を招くことがある。
In such a conventional refrigerant control system, when the evaporation temperature decreases and the suction pressure of the compressor decreases, the pressure ratio increases and the volume efficiency of the compressor decreases. In addition, the electric motor driving the compressor increases the input of the electric motor due to an increase in the pressure ratio of the compressor.
As a result, the motor loss increases and the amount of heat generated increases. On the other hand, since the electric motor is cooled by the circulating refrigerant, the amount of the circulated refrigerant is reduced, so that the temperature of the electric motor naturally rises and the electric motor may be damaged.

【0004】このような従来の冷媒制御システムの欠点
を解消するため、膨張弁の流量を制御する感熱筒を圧縮
機と凝縮機の間の吐出系統に設けることが提案されてい
る。この場合には、吐出ガス温度を検出するので、電動
機の発熱部を冷却した冷媒の温度上昇と、冷媒ガスの圧
縮による温度上昇の両方の温度を加味して膨張弁を開く
ため、吐出ガス温度は常に一定の過熱度に制御される。
それにより冷媒循環量を電動機の発熱を下げるのに必要
な冷媒量を余分に流し電動機の破損を防いでいる。
[0004] In order to solve such a disadvantage of the conventional refrigerant control system, it has been proposed to provide a heat-sensitive cylinder for controlling the flow rate of an expansion valve in a discharge system between a compressor and a condenser. In this case, since the discharge gas temperature is detected, the expansion valve is opened in consideration of both the temperature rise of the refrigerant that has cooled the heat generating portion of the electric motor and the temperature rise due to the compression of the refrigerant gas. Is always controlled to a constant degree of superheat.
As a result, the amount of refrigerant circulating is increased by the amount of refrigerant necessary to reduce the heat generated by the motor, thereby preventing damage to the motor.

【0005】[0005]

【発明が解決しようとする課題】上記圧縮機からの吐出
ガス温度に応じて膨張弁を制御するようにした装置にお
いては、この冷凍サイクルの始動時には、圧縮機の吐出
側の圧力は直ちに上昇するのに対し、吐出側管路の冷媒
温度はかなりの時間遅れをもって上昇する。したがっ
て、吐出側管路の外壁に固定した感温筒は、吐出冷媒ガ
スの温度上昇、それによる管路の温度上昇、更には管路
の温度上昇によって加熱される感温筒の温度上昇の順で
温度が上昇するため、冷凍サイクルの始動時から感温筒
の温度上昇までの時間遅れが大きく、膨張弁はなかなか
開かず、冷凍サイクルの低圧側、即ち圧縮機の吸入側の
圧力はどんどん低下し、真空近くなるため、いわゆる低
圧カットの状態になってしまい正常な作動が行なわれな
くなり、また定常状態に達するのに多くの時間を要する
欠点もあった。
In the apparatus in which the expansion valve is controlled in accordance with the temperature of the gas discharged from the compressor, the pressure on the discharge side of the compressor immediately rises when the refrigeration cycle is started. On the other hand, the refrigerant temperature in the discharge-side conduit rises with a considerable time delay. Therefore, the temperature-sensitive cylinder fixed to the outer wall of the discharge-side pipe increases the temperature of the discharged refrigerant gas, thereby increasing the temperature of the pipe, and further increasing the temperature of the temperature-sensitive cylinder heated by the temperature increase of the pipe. As the temperature rises, the time delay from the start of the refrigeration cycle to the temperature rise of the temperature sensing cylinder is large, the expansion valve does not open easily, and the pressure on the low pressure side of the refrigeration cycle, that is, the suction side of the compressor, decreases rapidly. However, since the pressure is close to the vacuum, a so-called low-pressure cut state occurs, so that normal operation is not performed. Further, there is a disadvantage that it takes much time to reach a steady state.

【0006】また、除霜時等において、膨張弁を強制的
に開放する必要がある時は、その開放制御のための制御
部品を別設する必要があり、冷凍機が高価となる欠点も
あった。
When it is necessary to forcibly open the expansion valve at the time of defrosting or the like, it is necessary to separately provide a control part for controlling the opening of the expansion valve, and there is a disadvantage that the refrigerator becomes expensive. Was.

【0007】したがって、本発明は、圧縮機の吐出側管
路に膨張弁作動用感温筒を設けて吐出過熱度を制御する
装置において、始動時から定常運転状態に速やかに立ち
上げることができ、低圧カットが行なわれないように
し、また膨張弁を必要に応じ強制開放する手段を安価な
設備により行なうようにした吐出過熱度制御装置を提供
することを目的とする。
Therefore, according to the present invention, in a device for controlling the degree of discharge superheat by providing a temperature-sensitive cylinder for operating an expansion valve in a discharge-side pipe of a compressor, it is possible to quickly start up from a start to a steady operation state. It is another object of the present invention to provide a discharge superheat degree control device in which low pressure cut is not performed, and a means for forcibly opening an expansion valve as necessary is performed by inexpensive equipment.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するため、圧縮機の吐出側管路に膨張弁作動用感温筒
を設けて吐出過熱度を制御する吐出過熱度制御弁と、膨
張弁の均圧管を圧縮機の吐出側管路と吸込側管路のいず
れかに切換接続可能にする三方弁とを設け、あるいは膨
張弁の均圧管を絞りを介して圧縮機の吐出側管路に接続
するとともに開閉弁を介して吸込側管路に接続したもの
であり、それにより圧縮機の吐出管路に膨張弁作動用感
温筒を設けた吐出過熱度を制御する装置において、始動
時から定常運転に速やかに立ちあげることができ、低圧
カットが行なわれないようにし、また膨張弁を必要に応
じ強制開放する手段を安価な設備により行なうようにし
たものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a discharge superheat control valve for controlling a discharge superheat by providing a temperature sensing cylinder for operating an expansion valve in a discharge pipe of a compressor. A three-way valve that allows the pressure equalizing pipe of the expansion valve to be switchably connected to either the discharge side pipe or the suction side pipe of the compressor, or the pressure equalizing pipe of the expansion valve is connected to the discharge side of the compressor via a throttle. In a device for controlling the degree of superheat of the discharge, which is connected to the pipe line and connected to the suction side pipe line via an on-off valve, thereby providing a temperature-sensitive cylinder for operating the expansion valve in the discharge pipe line of the compressor, It is possible to quickly start up a steady operation from the start, prevent low pressure cutting, and perform means for forcibly opening the expansion valve as necessary using inexpensive equipment.

【0009】[0009]

【作用】本発明は、上記のように構成したので、上記三
方弁を用いた装置における冷凍サイクルの定常作動時に
は、三方弁は均圧管を吐出管路に切換え接続しており、
したがって、吐出管路に設けた感温筒の作動ガス圧と吐
出側管路の冷媒ガス圧の均衡により膨張弁の開度制御が
行なわれる。一方、冷凍サイクルの始動時及び除霜運転
時には、三方弁は均圧管を吸込側管路に切換え接続し、
感温筒の作動ガス圧に対向する圧力を低くし、実質的に
感温筒の温度が上昇して作動ガス圧が大きくなった状態
と同じ状態になるため、膨張弁は強制的に開放する。
According to the present invention, the three-way valve switches and connects the pressure equalizing pipe to the discharge pipe during steady operation of the refrigeration cycle in the apparatus using the three-way valve.
Therefore, the opening of the expansion valve is controlled by the balance between the working gas pressure of the temperature-sensitive cylinder provided in the discharge pipe and the refrigerant gas pressure in the discharge pipe. On the other hand, at the start of the refrigeration cycle and at the time of defrosting operation, the three-way valve switches and connects the equalizing pipe to the suction side pipeline,
The pressure that opposes the working gas pressure of the temperature-sensitive cylinder is reduced, and the expansion valve is forcibly opened because the temperature of the temperature-sensitive cylinder rises and becomes the same as the state where the working gas pressure increases. .

【0010】また、上記開閉弁を用いた装置における冷
凍サイクルの定常作動時には、開閉弁は閉じており、し
たがって、吐出側管路に設けた感温筒の作動ガスと絞り
を介して導入された吐出側管路の冷媒ガス圧の均衡によ
り膨張弁の開度制御が行なわれる。一方、冷凍サイクル
の始動時及び除霜運転時には、開閉弁が開放し、均圧管
に対しては絞りを介して連通する吐出側管路側圧力より
も開閉弁を介して連通する吸込側圧力の影響が大きく、
したがって、均圧管の圧力が低下して感温筒の作動ガス
圧に対向する圧力が低くなり、実質的に感温筒の温度が
上昇して作動ガス圧が大きくなった状態と同じ状態とな
るため、膨張弁は強制的に開放する。
When the refrigeration cycle in the apparatus using the above-mentioned on-off valve is in a steady operation, the on-off valve is closed, and therefore, the gas is introduced through the working gas of the temperature-sensitive cylinder provided in the discharge side pipe and the throttle. The degree of opening of the expansion valve is controlled by balancing the refrigerant gas pressure in the discharge-side pipe. On the other hand, at the start of the refrigeration cycle and at the time of defrosting operation, the on-off valve is opened, and the influence of the suction-side pressure communicating through the on-off valve on the pressure equalizing pipe rather than the discharge-side pipe-side pressure communicating with the throttle through the throttle. Is large,
Therefore, the pressure in the pressure equalizing tube decreases, the pressure opposing the working gas pressure of the temperature-sensitive cylinder decreases, and the temperature becomes substantially the same as the state in which the temperature of the temperature-sensitive cylinder increases and the working gas pressure increases. Therefore, the expansion valve is forcibly opened.

【0011】[0011]

【実施例】本発明の実施例を図面に沿って説明する。図
1に示す冷凍サイクルにおいて、圧縮機1の吐出管2か
らの冷媒は、四方切換弁3の切換えにより、室外熱交換
ユニット4への管路と、室内熱交換ユニット5への管路
のいずれかへ送られる。この冷凍サイクルを冷房用とし
て用いる際には、四方切換弁3は吐出管管路を室外熱交
換ユニット4側へ切換えており、この室外熱交換ユニッ
ト4は凝縮器として作用し、凝縮冷媒は、膨張弁6を通
り蒸発器として作用する室内熱交換ユニット5を通って
四方切換弁3を介し圧縮機1に戻る。以下、この冷凍サ
イクルを冷房用として用いた場合について説明し、従っ
て室外熱交換ユニット4を凝縮器7とし、室内熱交換ユ
ニット5を蒸発器8として述べる。
An embodiment of the present invention will be described with reference to the drawings. In the refrigeration cycle shown in FIG. 1, the refrigerant from the discharge pipe 2 of the compressor 1 is switched between a four-way switching valve 3 and a pipe to the outdoor heat exchange unit 4 or a pipe to the indoor heat exchange unit 5. Sent to When this refrigeration cycle is used for cooling, the four-way switching valve 3 switches the discharge pipe line to the outdoor heat exchange unit 4 side, and the outdoor heat exchange unit 4 acts as a condenser, and the condensed refrigerant is It returns to the compressor 1 via the four-way switching valve 3 through the indoor heat exchange unit 5 acting as an evaporator through the expansion valve 6. Hereinafter, a case where this refrigeration cycle is used for cooling will be described. Therefore, the outdoor heat exchange unit 4 will be described as a condenser 7 and the indoor heat exchange unit 5 will be described as an evaporator 8.

【0012】膨張弁6は、弁本体10に設けた第1管路
11と第2管路12とを連通する弁孔13を備え、この
弁孔13には弁体14を備える。弁体14は、弁本体1
0の上部に設けたダイアフラム15と当金16を介して
ロッド17により連結しており、ダイアフラム15は、
その上側作動室18と下側作動室19との差圧により作
動する。
The expansion valve 6 has a valve hole 13 communicating the first pipe line 11 and the second pipe line 12 provided in the valve body 10, and the valve hole 13 has a valve element 14. The valve body 14 is a valve body 1
0 is connected to a diaphragm 15 provided on the upper part of the cylinder 0 by a rod 17 via a contact 16.
It operates by the pressure difference between the upper working chamber 18 and the lower working chamber 19.

【0013】上側作動室18には、圧縮機1の吐出管2
に密接状態に固定した感温筒21とキャピラリチューブ
22を介して連通しており、下側作動室19は、均圧管
23により三方弁30を介して吐出管2と吸込管9に対
して、いずれか一方に切換接続可能に連通している。弁
体14はスプリング24により常時閉方向に付勢されて
おり、ダイアフラム15により上下方向に摺動するロッ
ド17が連結している。ロッド17の外周にはシールパ
ッキン25を備え、弁本体10に固定したナット26に
支持されるスプリング27により押圧されている。ま
た、第1管路11と第2管路12間は弁孔13をバイパ
スするように、絞り28によって連通している。
The upper working chamber 18 includes a discharge pipe 2 of the compressor 1.
The lower working chamber 19 is connected to the discharge pipe 2 and the suction pipe 9 via the three-way valve 30 by the pressure equalizing pipe 23 and the temperature-sensitive cylinder 21 fixed in close contact with the pipe. It is connected to one of them so as to be switchable. The valve body 14 is normally urged in a closing direction by a spring 24, and a rod 17 that slides in a vertical direction is connected by a diaphragm 15. A seal packing 25 is provided on the outer periphery of the rod 17, and is pressed by a spring 27 supported by a nut 26 fixed to the valve body 10. The first pipe 11 and the second pipe 12 communicate with each other by a throttle 28 so as to bypass the valve hole 13.

【0014】上記冷凍サイクルの始動に際しては、三方
弁30を均圧管23が吸込管9と連通するように切換え
ておく。圧縮機が駆動されて吸込管9の圧力が低下する
と、その圧力は三方弁30、均圧管23を介して膨張弁
6の下側作動室19に作用する。そのため、予め下側作
動室19が、吐出管2の高圧側に連通している状態で、
感温筒21の温度に対応した上側作動室18との圧力均
衡により、膨張弁の開度制御を行なうように設定された
この膨張弁6に対し、下側作動室19に吐出管の圧力よ
りはるかに低い吸込管の圧力が導入されるため、膨張弁
は強制的に開放される。
When starting the refrigerating cycle, the three-way valve 30 is switched so that the pressure equalizing pipe 23 communicates with the suction pipe 9. When the pressure of the suction pipe 9 is reduced by driving the compressor, the pressure acts on the lower working chamber 19 of the expansion valve 6 via the three-way valve 30 and the equalizing pipe 23. Therefore, in a state where the lower working chamber 19 is in communication with the high pressure side of the discharge pipe 2 in advance,
With respect to the expansion valve 6 set to control the opening of the expansion valve by the pressure balance with the upper working chamber 18 corresponding to the temperature of the temperature sensing cylinder 21, the pressure of the discharge pipe is applied to the lower working chamber 19. Because much lower suction tube pressure is introduced, the expansion valve is forced open.

【0015】それにより、吐出管2の高圧冷媒ガスは凝
縮器7で液化し、その一部は、絞り28を介して蒸発器
8に至り、他は、膨張弁6の弁孔13を通って膨張し、
蒸発器8に入り、室内の冷房作用を行ない、四方切換弁
3を介して圧縮機1の吸込管9に設けたアキュムレータ
20を通って圧縮機1に戻る。
As a result, the high-pressure refrigerant gas in the discharge pipe 2 is liquefied in the condenser 7, and a part thereof reaches the evaporator 8 through the throttle 28, and the others pass through the valve hole 13 of the expansion valve 6. Inflated,
After entering the evaporator 8, the room is cooled and returned to the compressor 1 through the accumulator 20 provided in the suction pipe 9 of the compressor 1 via the four-way switching valve 3.

【0016】この冷凍サイクルの始動後、所定時間を経
て定常作動状態になると、三方切換弁30を切換え、均
圧管23を吐出管2と連通させる。それにより予め設定
された感温筒の温度に対応した作動ガス圧力と吐出管の
冷媒ガス圧の均衡により膨張弁の開度制御が行なわれ
る。
After the refrigeration cycle is started, when a steady state is reached after a predetermined time, the three-way switching valve 30 is switched, and the pressure equalizing pipe 23 is communicated with the discharge pipe 2. Thus, the opening degree of the expansion valve is controlled by the balance between the working gas pressure corresponding to the preset temperature of the temperature sensing cylinder and the refrigerant gas pressure of the discharge pipe.

【0017】上記実施例においては、この冷凍回路を冷
房用として用いた例を示したが、暖房用として用いる際
には、四方切換3を切換え、吐出管2を室内熱交換ユニ
ット5に連通し、吸込管9を室外熱交換ユニット4に連
通させる。この時、膨張弁6には第2管路12から第1
管路11に冷媒が流通することとなるが、三方弁の切換
により作動制御される膨張弁の作用は上記と同様であ
る。
In the above embodiment, an example in which this refrigeration circuit is used for cooling is shown. However, when used for heating, the four-way switch 3 is switched to connect the discharge pipe 2 to the indoor heat exchange unit 5. Then, the suction pipe 9 is communicated with the outdoor heat exchange unit 4. At this time, the first valve is connected to the expansion valve 6 from the second pipe 12.
Although the refrigerant flows through the pipeline 11, the operation of the expansion valve, the operation of which is controlled by switching the three-way valve, is the same as described above.

【0018】また、この冷凍回路の定常運転状態におい
て、蒸発器の除霜を行なう必要がある時には、制御装置
により、上記始動時と同様に三方切換弁を切換え、膨張
弁6を強制的に開放する装置をそのまま使用することが
できるので、除霜のための特別の装置を必要とせず安価
なものとすることができる。
When it is necessary to perform defrosting of the evaporator in the normal operation state of the refrigeration circuit, the control device switches the three-way switching valve and forcibly opens the expansion valve 6 in the same manner as at the start. Since the device for performing the defrosting can be used as it is, no special device for defrosting is required, and the device can be made inexpensive.

【0019】本発明における膨張弁を強制的に開放する
手段として、図1に示す均圧管の配管に代えて、図2に
示すように配管してもよい。即ち、均圧管23を絞り3
6を介して吐出管2に連通するとともに、開閉弁37を
介して吸込管9に連通したものであり、通常作動時には
開閉弁37を閉じ、絞り36を介して吐出管2に連通さ
せた状態で使用する。
As means for forcibly opening the expansion valve in the present invention, a pipe as shown in FIG. 2 may be used instead of the pipe of the pressure equalizing pipe shown in FIG. That is, the pressure equalizing tube 23 is
6 communicates with the discharge pipe 2 via the open / close valve 37, and communicates with the suction pipe 9 via the open / close valve 37. In a normal operation, the open / close valve 37 is closed and communicates with the discharge pipe 2 via the throttle 36. Used in.

【0020】一方、始動時及び除霜時には、開閉弁37
を開放すると、吸込管9内の低い冷媒ガス圧が開閉弁3
7を介して均圧管23に至り、膨張弁の下側作動室に作
用して強制的に開閉させる点は、図1に示した装置と同
様である。なお、この装置においては、図1に示した装
置のように、定常運転時に三方弁を通して均圧管に冷媒
ガス圧を導入する必要がないので、安定した制御が可能
であり、安価な弁を利用でき設備費を低減することがで
きる。また、この開閉弁を冷凍サイクルの停止時に開放
することにより、吸込管と吐出管を絞りを介して接続し
た状態とし、停止後、速やかに吸込管と吐出管の圧力を
均衡させ、再始動時の作動開始時間の短縮化を図ること
もできる。
On the other hand, during startup and defrosting, the on-off valve 37
Is opened, the low refrigerant gas pressure in the suction pipe 9 causes the on-off valve 3
7 is the same as the device shown in FIG. 1 in that it reaches the pressure equalizing pipe 23 via the, and acts on the lower working chamber of the expansion valve to forcibly open and close. In this device, unlike the device shown in FIG. 1, there is no need to introduce refrigerant gas pressure into the equalizing pipe through a three-way valve during steady operation, so stable control is possible, and an inexpensive valve is used. Equipment cost can be reduced. In addition, by opening this on-off valve when the refrigeration cycle is stopped, the suction pipe and the discharge pipe are connected via a throttle, and after the stop, the pressures of the suction pipe and the discharge pipe are quickly balanced, and when restarting, Can be shortened.

【0021】なお、上記各装置における膨張弁として、
図3に示すような膨張弁を使用してもよい。即ち、ロッ
ド43の上端面には、均圧管45からの圧力を受け、そ
の下端面には第2管路47の圧力を受けるように構成し
ている。
As the expansion valve in each of the above devices,
An expansion valve as shown in FIG. 3 may be used. That is, the upper end surface of the rod 43 receives the pressure from the pressure equalizing tube 45, and the lower end surface receives the pressure of the second conduit 47.

【0022】この膨張弁40を前記冷凍サイクルの膨張
弁の代わりに用い、均圧管45を三方切換弁48の切換
えにより吐出管2に連通させるとともに、冷凍サイクル
を冷房装置として用いる際には、この膨張弁40の弁体
への作動圧力は以下のようなバランスをなす。
When the expansion valve 40 is used in place of the expansion valve of the refrigeration cycle, the equalizing pipe 45 is connected to the discharge pipe 2 by switching a three-way switching valve 48, and when the refrigeration cycle is used as a cooling device, The operating pressure on the valve body of the expansion valve 40 has the following balance.

【0023】即ち、ダイヤフラム41の上側作動室50
に作用する感温筒51からの圧力をPt、均圧管45か
らの吐出管の圧力をPhとし、また、凝縮機に連なる第
1管路46の圧力はほぼ吐出管の圧力Phであり、蒸発
器に連なる第2管路の圧力をPiとし、ダイヤフラム4
1の面積をA、連結ロッド43の面積をB、弁孔44の
面積をαとし、第1スプリング51の押圧力をW1、第
2スプリング52の押圧力をW2とすると、 APt+BPh+αPi=APh+W1+BPi+αPh+W2 の関係式が成立し、この式は、 APt=〔A−(B−α)〕Ph+(B−α)Pi+(W1+W2) となり、弁孔44は連結ロッド43より充分に小径とす
ると、 α<<Bで B−α≒B となる。 また、W1+W2=W=F×A とすると、 Pt=(A−B/A)Ph+(B/A)Pi+F となる。
That is, the upper working chamber 50 of the diaphragm 41
The pressure from the temperature-sensitive cylinder 51 acting on the pressure equalizing pipe 45 is Pt, the pressure of the discharge pipe from the pressure equalizing pipe 45 is Ph, and the pressure of the first pipe line 46 connected to the condenser is almost the pressure Ph of the discharge pipe. The pressure in the second conduit connected to the vessel is Pi, and the diaphragm 4
1 is A, the area of the connecting rod 43 is B, the area of the valve hole 44 is α, the pressing force of the first spring 51 is W1, and the pressing force of the second spring 52 is W2. The following equation holds: APt = [A− (B−α)] Ph + (B−α) Pi + (W1 + W2) When the valve hole 44 has a sufficiently smaller diameter than the connecting rod 43, α << B B−α ≒ B. If W1 + W2 = W = F × A, then Pt = (A−B / A) Ph + (B / A) Pi + F.

【0024】ここで、冷媒ガスが第1管路46から第2
管路47に流れる冷房運転時には、第2管路の圧力Pi
は吸込管圧力Psと略等しいので、 Pt=(A−B/A)Ph+(B/A)Ps+F となり、この式から吸込管内圧力が低くなると膨張弁は
開放しやすくなる。これは低圧圧力が低くなると、吐出
温度がより高くなるので、吐出側の絶対温度の上りすぎ
を防ぐ効果がある。
Here, the refrigerant gas flows from the first pipe 46 to the second pipe 46.
During the cooling operation flowing through the pipe 47, the pressure Pi of the second pipe is
Is substantially equal to the suction pipe pressure Ps, so that Pt = (A−B / A) Ph + (B / A) Ps + F. From this equation, it is easy to open the expansion valve when the suction pipe pressure decreases. This has the effect of preventing the absolute temperature on the discharge side from rising too high, because the lower the low pressure, the higher the discharge temperature.

【0025】一方、この膨張弁40を暖房用として用い
る際には、第2管路47から第1管路46に冷媒が流れ
るが、その際には、第2管路圧力Piは吐出管圧力Ph
と等しく、上記式は Pt=Ph+F となり、このことから、この膨張弁は、吸込管内の圧力
の影響を全く受けないことがわかる。したがって、冷房
運転時は、暖房運転時より吐出過熱度が低く設定される
ことになる。これは冷房時と暖房時での最適吐出過熱度
が異なるとき有効である。なお、ここでは冷房時の方が
吐出過熱度の設定値を低くするようにしたが、弁継手の
取付け方向を逆にすると、暖房時の方が設定値を低くで
きることは明白である。
On the other hand, when the expansion valve 40 is used for heating, the refrigerant flows from the second pipe 47 to the first pipe 46. At this time, the second pipe pressure Pi is equal to the discharge pipe pressure. Ph
Is equal to Pt = Ph + F, which indicates that this expansion valve is not affected by the pressure in the suction pipe at all. Therefore, during the cooling operation, the discharge superheat degree is set lower than during the heating operation. This is effective when the optimum discharge superheat degrees during cooling and during heating are different. Here, the set value of the discharge superheat degree is set lower during cooling, but it is apparent that the set value can be set lower during heating if the mounting direction of the valve joint is reversed.

【0026】なお、上記の弁は、前記三方切換弁を用い
る装置への適用のほか、図2に示す開閉弁を用いた装置
に適用することもできる。
The valve described above can be applied not only to an apparatus using the three-way switching valve but also to an apparatus using an on-off valve shown in FIG.

【0027】[0027]

【発明の効果】本発明は、上記のように構成し作用する
ので、圧縮機の吐出側管路に膨張弁作動用感温筒を設け
て吐出過熱度を制御する装置において、始動時から定常
運転状態に速やかに立ち上げることができる。したがっ
て、吸込側圧力が低下し過ぎることによる低圧カットを
行なうことがなく、安定した運転を行なうことができ
る。また、除霜時等において、膨張弁を強制的に開放す
る必要があるときも、同じ装置を用いることにより、強
制的に開放することが可能であり、特別の装置を用いる
ことがないので、設備費が安価となる。
Since the present invention is constructed and operates as described above, an apparatus for controlling the degree of discharge superheat by providing a temperature-sensitive cylinder for operating an expansion valve in the discharge-side pipe of the compressor is a method for controlling the degree of superheat from the start. It is possible to quickly start up in the operating state. Therefore, stable operation can be performed without performing low pressure cut due to excessive reduction of the suction side pressure. Also, when the expansion valve needs to be forcibly opened at the time of defrosting or the like, it is possible to forcibly open the expansion valve by using the same device, and there is no need to use a special device. Equipment costs are reduced.

【0028】また、均圧管を絞りを介して圧縮機の吐出
管路に接続するとともに、開閉弁を介して吸込側に接続
した装置においては、装置の停止時に、開閉弁を開放す
ることにより吸込管と吐出管とを絞りを介して接続さ
せ、圧力を均衡させる時間を短縮し、装置の再始動を速
やかに行なうことが可能となる。
In a device in which the pressure equalizing pipe is connected to the discharge line of the compressor via a throttle and connected to the suction side via an on-off valve, the suction valve is opened by opening the on-off valve when the apparatus is stopped. The pipe and the discharge pipe are connected via a throttle, so that the time for balancing the pressure can be reduced, and the apparatus can be restarted quickly.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施態様を示す冷凍サイクル図で
ある。
FIG. 1 is a refrigeration cycle diagram showing a first embodiment of the present invention.

【図2】同他の実施態様を示す一部の冷凍サイクル図で
ある。
FIG. 2 is a partial refrigeration cycle diagram showing another embodiment.

【図3】同冷凍サイクルに用いる他の膨張弁を用いた冷
凍サイクル図である。
FIG. 3 is a refrigeration cycle diagram using another expansion valve used in the refrigeration cycle.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 吐出管 3 四方切換弁 4 室外熱交換ユニット 5 室内熱交換ユニット 6 膨張弁 9 吸入管 10 弁本体 11 第1管路 12 第2管路 13 弁孔 14 弁体 15 ダイヤフラム 17 ロッド 18 上側作動室 19 下側作動室 21 感温筒 22 キャピラリチューブ 23 均圧管 24 スプリング 27 スプリング 28 絞り 30 三方切換弁 36 絞り 37 開閉弁 DESCRIPTION OF SYMBOLS 1 Compressor 2 Discharge pipe 3 Four-way switching valve 4 Outdoor heat exchange unit 5 Indoor heat exchange unit 6 Expansion valve 9 Suction pipe 10 Valve body 11 First pipe 12 Second pipe 13 Valve hole 14 Valve body 15 Diaphragm 17 Rod 18 Upper working chamber 19 Lower working chamber 21 Temperature sensing tube 22 Capillary tube 23 Equalizing tube 24 Spring 27 Spring 28 Restrictor 30 Three-way switching valve 36 Restrictor 37 On-off valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−28957(JP,A) 実開 昭56−128477(JP,U) 実開 昭62−95257(JP,U) 実公 昭61−2454(JP,Y2) (58)調査した分野(Int.Cl.7,DB名) F25B 41/06 F25B 1/00 304 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-28957 (JP, A) JP-A-56-128477 (JP, U) JP-A-62-95257 (JP, U) 2454 (JP, Y2) (58) Field surveyed (Int. Cl. 7 , DB name) F25B 41/06 F25B 1/00 304

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機の吐出側管路に膨張弁作動用感温
筒を設けて吐出過熱度を制御する吐出過熱度制御弁と、
膨張弁の均圧管を圧縮機の吐出管路と吸入管路のいずれ
かに切換接続可能にする三方弁とを設けたことを特徴と
する吐出過熱度制御装置。
1. A discharge superheat control valve for controlling a discharge superheat by providing an expansion valve operating temperature-sensitive cylinder in a discharge side pipe of a compressor;
A discharge superheat control device, comprising: a three-way valve that allows a pressure equalizing pipe of an expansion valve to be selectively connected to one of a discharge pipe and a suction pipe of a compressor.
【請求項2】 圧縮機の吐出側管路に膨張弁作動用感温
筒を設けて吐出過熱度を制御する吐出過熱度制御弁と、
膨張弁の均圧管を、圧縮機の吐出管路に接続する絞り
と、吸込側管路に接続する開閉弁とを設けたことを特徴
とする吐出過熱度制御装置。
2. A discharge superheat control valve that controls a discharge superheat by providing an expansion valve operating temperature-sensitive cylinder in a discharge-side pipe of the compressor.
A discharge superheat control device, comprising: a throttle connecting an equalizing pipe of an expansion valve to a discharge pipe of a compressor; and an on-off valve connecting to a suction pipe.
JP26907692A 1992-09-14 1992-09-14 Discharge superheat control device Expired - Fee Related JP3182529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26907692A JP3182529B2 (en) 1992-09-14 1992-09-14 Discharge superheat control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26907692A JP3182529B2 (en) 1992-09-14 1992-09-14 Discharge superheat control device

Publications (2)

Publication Number Publication Date
JPH0694334A JPH0694334A (en) 1994-04-05
JP3182529B2 true JP3182529B2 (en) 2001-07-03

Family

ID=17467331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26907692A Expired - Fee Related JP3182529B2 (en) 1992-09-14 1992-09-14 Discharge superheat control device

Country Status (1)

Country Link
JP (1) JP3182529B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532027A1 (en) * 1995-08-31 1997-03-06 Koenig & Bauer Albert Ag Method and device for removing trimming strips located on pin needles
DE102010033518A1 (en) * 2010-08-05 2012-02-09 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Air conditioning and method of operating an air conditioner

Also Published As

Publication number Publication date
JPH0694334A (en) 1994-04-05

Similar Documents

Publication Publication Date Title
EP0921364B1 (en) Pulsed flow for capacity control
JPH079331B2 (en) Operation control method for heat pump type air conditioner
JP3208923B2 (en) Operation control device for air conditioner
JP2500519B2 (en) Operation control device for air conditioner
JP2002174463A (en) Refrigerating apparatus
JP3182529B2 (en) Discharge superheat control device
JPH1073328A (en) Cooler
KR100531838B1 (en) Pressure balance apparatus for compressor of airconditioner
JPH0627588B2 (en) Air conditioner
JPH06194008A (en) Discharge superheat degree control valve
JP3505209B2 (en) Refrigeration equipment
JP3099574B2 (en) Air conditioner pressure equalizer
EP0077414A1 (en) Air temperature conditioning system
JP3143140B2 (en) Refrigeration equipment
JPH11237126A (en) Refrigerating device coping with hfc series refrigerant
KR101114326B1 (en) Cooling cycling apparatus and the control method of the same
JPH03122460A (en) Operating controller for refrigerating machine
JPS592454Y2 (en) Heat pump refrigeration equipment
JPH01305267A (en) Refrigerator
JPH11118264A (en) Freezer adapted to hfc refrigerant
JP3081372B2 (en) Refrigeration equipment
JP3780955B2 (en) Refrigeration equipment
JPH08100944A (en) Operation controller for air conditioner
JP3338229B2 (en) Operating method of air conditioner
KR20050071937A (en) The method for control to pressure equilibrium of air-conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010227

LAPS Cancellation because of no payment of annual fees