JPH0712031B2 - Processing method of translucent conductive film - Google Patents

Processing method of translucent conductive film

Info

Publication number
JPH0712031B2
JPH0712031B2 JP58201996A JP20199683A JPH0712031B2 JP H0712031 B2 JPH0712031 B2 JP H0712031B2 JP 58201996 A JP58201996 A JP 58201996A JP 20199683 A JP20199683 A JP 20199683A JP H0712031 B2 JPH0712031 B2 JP H0712031B2
Authority
JP
Japan
Prior art keywords
laser light
ctf
conductive film
light
pulsed laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58201996A
Other languages
Japanese (ja)
Other versions
JPS6094726A (en
Inventor
舜平 山崎
健二 伊藤
五月 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58201996A priority Critical patent/JPH0712031B2/en
Publication of JPS6094726A publication Critical patent/JPS6094726A/en
Publication of JPH0712031B2 publication Critical patent/JPH0712031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Description

【発明の詳細な説明】 この発明は、透光性導電膜(以下CTFという)を透光性
有機樹脂薄膜(以下OFという)上に形成させた被加工物
にパルスレーザ光を照射して開溝を形成することを目的
とする。なお、CTFの熱伝導率は1.5Cal/sec/cm2/℃/cm
である。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a translucent conductive film (hereinafter referred to as CTF) is formed on a translucent organic resin thin film (hereinafter referred to as OF) by irradiating a work piece with pulsed laser light and opening. The purpose is to form a groove. The thermal conductivity of CTF is 1.5 Cal / sec / cm 2 / ° C / cm
Is.

この発明は、連続使用上限温度が150〜300℃において使
用可能な透光性OF上に形成された酸化インジュームまた
は酸化スズを主成分とするCTFに対し、先端温度が1500
〜2200℃のパルス状のレーザ光を照射して走査加工し、
OF上のCTFのみを選択的に除去し、開溝を形成すること
を目的とする。
This invention has a tip temperature of 1500 for CTF containing indium oxide or tin oxide formed on a transparent OF that can be used at a continuous use upper limit temperature of 150 to 300 ° C.
Irradiate pulsed laser light at ~ 2200 ℃
The purpose is to selectively remove only CTF on OF to form an open groove.

従来、レーザ光を用いてCTFを除去し開溝に形成する方
法では、基板にガラス板、セラミック板等の耐熱性の基
板が用いられてきた。これらはレーザ光の高温に対し耐
えられる基板であるが、価格が高価であり、破損しやす
いという欠点を有していた。
Conventionally, in the method of removing the CTF by using laser light to form the groove, a heat resistant substrate such as a glass plate or a ceramic plate has been used as the substrate. These are substrates that can withstand the high temperature of laser light, but they have the drawbacks that they are expensive and easily damaged.

しかし、ディスプレー装置等への応用を考えた時、この
基板として可曲性の有機薄膜の使用が求められてきた。
本発明はこのOF上のCTFに対してレーザ光を照射した
時、このOFを損傷せずにCTFを除去することができる条
件のあることを実験的に検討したところ、そのレーザ光
を1つの場所に長時間(数十m秒以上)照射することな
く、また走査(スキャン)スピードを適切化することに
よりCTFのみを選択的に除去することが可能であること
を見いだした。
However, when considering application to a display device or the like, it has been required to use a flexible organic thin film as the substrate.
In the present invention, when the CTF on the OF is irradiated with laser light, it is experimentally studied that there is a condition that the CTF can be removed without damaging the OF. It was found that it is possible to selectively remove only CTF without irradiating the place for a long time (tens of milliseconds or more) and by optimizing the scanning speed.

即ち、レーザ光の照射によりOFは熱伝導率が小さい(一
般には1〜7×10-4Cal/sec/cm2/℃/cm)ため、同じ位
置に繰り返しレーザパルスを加えると、この有機樹脂は
劣化し炭化して切断されてしまう。しかしその繰り返し
を1回または数回とすると、このOFの熱伝導率がCTFの1
/103であるため、逆にCTFのみを選択的にレーザ光の照
射された場所のみ除去することができることを見いだし
た。
That is, OF has a small thermal conductivity due to the irradiation of laser light (generally 1 to 7 × 10 −4 Cal / sec / cm 2 / ° C./cm), so if a laser pulse is repeatedly applied to the same position, this organic resin Is deteriorated, carbonized and cut. However, if the repetition is done once or several times, the thermal conductivity of this OF is 1 of CTF.
Since a / 10 3 found that it is possible only to remove only the irradiated locations selectively laser beam CTF reversed.

以下にその実施例を図面に従って記す。An embodiment will be described below with reference to the drawings.

OFとして例えば住友ベークライト製スミライトFS−1300
を用いた。このOFは、連続使用上限温度180℃、熱伝導
率4.3×10-4Cal/sec/cm2/℃/cm、光線透光率86.3%(1
00μの厚さとする)、表面抵抗率5.4×1014Ω、体積抵
抗率1.7×1016Ωcmをその代表例として有する。
For example, Sumitomo Bakelite Sumilite FS-1300
Was used. This OF has a maximum continuous use temperature of 180 ° C, thermal conductivity of 4.3 × 10 -4 Cal / sec / cm 2 / ° C / cm, light transmittance of 86.3% (1
The surface resistivity is 5.4 × 10 14 Ω and the volume resistivity is 1.7 × 10 16 Ωcm.

このOF上にスパッタ法にてITOを700Åの厚さに形成させ
た。するとそのシート抵抗は200Ω/□を有していた。
ITO was formed on this OF to a thickness of 700 Å by a sputtering method. Then, the sheet resistance had 200 Ω / □.

第1図はこのOF(1)上のCTF(2)に対しプロープ
(3),(4)、テスタ(5)の2端子法にてその抵抗
を測定した。
Figure 1 shows the resistance of CTF (2) on OF (1) measured by the two-terminal method of probes (3), (4) and tester (5).

さらにここにYAGレーザ(発光波長1.06μ、焦点距離50m
m、光径50μ)を照射した。その条件として、繰り返し
同時に6KHz,平均出力1.3W,スキャンスピード(走査速
度、以下SSという)60cm/分とした。すると第1図に示
すごとき開溝(10)、(10')を得ることができた。
Furthermore, YAG laser (emission wavelength 1.06μ, focal length 50m
m, light diameter 50 μ). The conditions were as follows: 6 KHz repeatedly, average output 1.3 W, scan speed (scan speed, hereinafter referred to as SS) 60 cm / min. Then, the open grooves (10) and (10 ') as shown in FIG. 1 could be obtained.

この時電子顕微鏡にて調べたが、OF表面は何等の損傷も
また部分的な劣化も見られなかった。このレーザ光は16
00℃以上の温度を有すると推察されるが、連続使用上限
温度が180℃程度の低い耐熱性しか有さないOFに何等損
傷を与えなかった。
At this time, examination by an electron microscope showed that the OF surface did not show any damage or partial deterioration. This laser light is 16
It is presumed that it has a temperature of 00 ° C or higher, but it did not cause any damage to OF, which has a low heat resistance of about 180 ° C for continuous use.

即ち、OF上のCTFに対し、選択的に開溝(10)、(10')
を作製することができることがわかった。その上、2つ
のプロープ間には1MΩ以上の抵抗(巾は1cmとする)を
得ることができた。
That is, with respect to CTF on OF, selectively open grooves (10), (10 ')
It has been found that can be manufactured. Moreover, a resistance of 1 MΩ or more (width of 1 cm) was obtained between the two probes.

第2図はレーザ光の繰り返し周波数を可変にしたもの
で、開溝が形成される場合の電気抵抗を示す。
FIG. 2 shows the electric resistance when the repetitive frequency of the laser light is made variable and an open groove is formed.

図面において、SS 60cm/分の平均出力0.8W,光径50μのY
AGレーザを用いた。するとその周波数を10KHzより下げ
てゆくと曲線(9)は7KHz以下で不連続に1MΩ以上とな
って電気的にアイソレイションを行うことができるよう
になったことが判明した。
In the drawing, SS 60 cm / min average output 0.8 W, light diameter 50 μY
An AG laser was used. Then, it was found that when the frequency was lowered below 10 KHz, the curve (9) became discontinuously above 1 MΩ at 7 KHz or less, and electrical isolation could be performed.

しかしこの周波数が4KHz以下ではこのCTFに加えて下地
のOFをもその中心部(ガウス分布のエネルギ密度の最も
高い領域)で損傷してしまった。
However, at frequencies below 4 KHz, in addition to this CTF, the underlying OF was also damaged at its center (the region with the highest Gaussian energy density).

このことにより、OF上のCTFのLS(レーザスクライブ)
には(11)に示す範囲が適していた。
This allows CTF LS (laser scribe) on OF
The range shown in (11) was suitable for.

さらに、この下地のOFに損傷を与えることなくCTFのみ
を除去する範囲を調べたところ、第3図を得た。
Further, when the range where only CTF was removed without damaging OF of the underlayer was investigated, FIG. 3 was obtained.

即ち、SSを0〜150cm/分、平均出力0〜3W、繰り返し周
波数6KHz、焦点距離50cm、レーザ光の直径50μのYAGレ
ーザとすると、領域15即ち点A,B,C,D,E,Fで囲まれる範
囲はOFの損傷がなくCTFのみで除去することができた。
That is, if SS is 0 to 150 cm / min, average output 0 to 3 W, repetition frequency 6 KHz, focal length 50 cm, and laser light diameter 50 μ YAG laser, then region 15 or points A, B, C, D, E, F The area surrounded by was not damaged by OF and could be removed only by CTF.

さらに領域(13)はCTFすらも除去することができない
領域であり、領域(12)はパルス光がCTF上で連続せ
ず、破線のごとく不連続な穴溝を得たのみであった。領
域(14)はCTFのみならず下地のOFに対しても損傷を与
えてしまった領域であった。
Further, the region (13) is a region where even the CTF cannot be removed, and the region (12) was such that the pulsed light was not continuous on the CTF and only a discontinuous groove was obtained as shown by the broken line. Region (14) was a region that damaged not only the CTF but also the OF underlayer.

このことにより下地のOFに対して損傷を与えることな
く、CTFのみを選択的に開溝として除去することのでき
る領域(15)があることがわかった。
From this, it was found that there is a region (15) in which only CTF can be selectively removed as an open groove without damaging OF of the underlying layer.

点A',B',C',D',E',F'に囲まれた領域(16)は、レーザ
パルス光繰り返し周波数を15KHzとした場合である。レ
ーザパルス光の繰り返し周波数を6KHzから15KHzに増加
した場合、透光性導電膜(2)のみに選択的にレーザス
クライブを行う領域は、第3図における符号(15)より
(16)に平行移動している。
The region (16) surrounded by the points A ', B', C ', D', E ', and F'is when the laser pulse light repetition frequency is 15 KHz. When the repetition frequency of the laser pulse light is increased from 6 KHz to 15 KHz, the region where the laser scribing is selectively performed only on the transparent conductive film (2) moves in parallel from (15) to (16) in FIG. is doing.

またCTFの厚さを1000Åよりも厚く(1μ以下)する
と、この領域は縦方向に移動した。また下地のOFを他の
OF例えばスミライトFS-1100(UL温度インデックス240
℃)等のより耐熱性とするとこの最適領域(15)も大き
く拡げることができた。
When the CTF thickness was thicker than 1000Å (1μ or less), this region moved vertically. Also, the OF of the base is
OF For example Sumilite FS-1100 (UL temperature index 240
If the heat resistance is higher (° C), this optimum region (15) could be expanded greatly.

CTFを1μ以上とすると、この領域(15)が狭くなり、
実用性がない。
If CTF is 1μ or more, this region (15) becomes narrower,
It is not practical.

これらのことより、実用的にはOFが150〜300℃またはそ
れ以上の連続使用の可能な耐熱性の透光性有機薄膜であ
ることが好ましい。またCTFは300Å〜1μの範囲である
ことが好ましい。即ち300Å以下では導電膜が十分でな
く、1μ以上は下地を損傷せずにCTFのみを除去するこ
とが実質的に不可能であった。
From these facts, it is practically preferable to use a heat-resistant translucent organic thin film capable of continuous use with OF of 150 to 300 ° C. or higher. Further, the CTF is preferably in the range of 300Å to 1 µ. That is, if the film thickness is 300 Å or less, the conductive film is insufficient, and if it is 1 μm or more, it is substantially impossible to remove only CTF without damaging the base.

もちろん、このCTFはミクロに平面状であっても針状
(テクスチャー)をしていても、またITO(酸化スズが1
0重量%以下添加された酸化インジューム)上に酸化ス
ズが100〜500Åの厚さに形成された2層膜を用いてもよ
いことはいうまでもない。
Of course, this CTF, whether microscopically flat or needle-shaped (texture)
It goes without saying that a two-layer film in which tin oxide is formed to a thickness of 100 to 500Å on indium oxide (0 wt% or less) may be used.

またこのレーザ光を照射してしまった後、希弗酸(水で
10〜100倍に希釈)またはアセトン、水、その他の洗浄
溶液にこの処理薄膜を浸漬し、超音波洗浄をして付着物
を除去することは有効である。
Also, after irradiating this laser beam, dilute hydrofluoric acid (with water
It is effective to dip this treated thin film in 10 to 100 times dilution) or acetone, water, or other cleaning solution and perform ultrasonic cleaning to remove the deposits.

以上の説明より明らかなごとく、本発明はOF上のCTFに
対し、レーザ光を照射してそのCTFのみに開溝を形成し
て除去することが可能になった。
As is clear from the above description, according to the present invention, it is possible to irradiate the CTF on OF with a laser beam to form an open groove only in the CTF and remove it.

さらにこのCTFに形成された開溝は線ではなくレーザ光
または下地にXY方向に移動し種々の形状を作製すること
ができる。しかし、その際、レーザ光が同一点を何度
(10回以上)も照射するとこの領域での温度が上昇し、
下地を損傷させてしまうため作動には注意を要する。
Further, the open groove formed in this CTF can move in the XY direction to the laser beam or the base instead of the line to form various shapes. However, at that time, if the laser beam irradiates the same point many times (10 times or more), the temperature in this region rises,
Exercise caution because it damages the substrate.

このようなパターニングを行うことにより、表示用ディ
スプレーへの応用が可能となった。
By performing such patterning, application to a display for display becomes possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は有機薄膜上の透光性導電膜に開溝を形成した図
面である。 第2図はレーザ光の繰り返し周波数と開溝の形成条件と
の関係を示す。 第3図はレーザ光のスキャンスピードおよび平均出力と
の関係を示す。
FIG. 1 is a drawing in which an opening is formed in a transparent conductive film on an organic thin film. FIG. 2 shows the relationship between the repetition frequency of laser light and the conditions for forming open grooves. FIG. 3 shows the relationship between the laser beam scan speed and the average output.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡部 五月 東京都世田谷区北烏山7丁目21番21号 株 式会社半導体エネルギー研究所内 (56)参考文献 特開 昭57−12568(JP,A) 特開 昭57−53986(JP,A) 特開 昭57−176778(JP,A) 特開 昭57−88733(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor May Watanabe 7-21-21 Kitakarasuyama, Setagaya-ku, Tokyo Inside Semiconductor Energy Laboratory Co., Ltd. (56) References JP-A-57-12568 (JP, A) JP-A-57-53986 (JP, A) JP-A-57-176778 (JP, A) JP-A-57-88733 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】有機樹脂薄膜上に酸化インジュームまたは
酸化スズを主成分とする透光性導電膜を形成した後、前
記透光性導電膜にパルスレーザ光を照射し、パルスレー
ザ光の照射された透光性導電膜に開溝を形成する有機樹
脂上被膜のレーザ加工方法において、 パルスレーザ光のパルス繰り返し周波数は、6KHzないし
15KHzで、パルスレーザ光の走査速度(cm/分)を横軸に
し、パルスレーザ光の平均出力(W)を縦軸にした座標
における次の点(45、0.5)、(120、3.0)、(120、3.
5)、(90、3.5)、(15、1.0)、(15、0.5)で囲まれ
る範囲でパルスレーザ光の走査速度(cm/分)、および
パルスレーザ光の平均出力(W)を制御することによ
り、有機樹脂薄膜に損傷を与えることなくレーザ加工す
ることを特徴とする有機樹脂上被膜のレーザ加工方法。
1. A light-transmitting conductive film containing indium oxide or tin oxide as a main component is formed on an organic resin thin film, and then the light-transmitting conductive film is irradiated with pulsed laser light. In the laser processing method of the organic resin upper film for forming the open groove in the translucent conductive film, the pulse repetition frequency of the pulse laser light is 6 KHz or
The following points (45, 0.5), (120, 3.0) in the coordinates where the horizontal axis represents the scanning speed (cm / min) of the pulsed laser light and the vertical axis represents the average output (W) of the pulsed laser light at 15 KHz. (120, 3.
5), (90, 3.5), (15, 1.0), control the scanning speed (cm / min) of pulsed laser light and the average output (W) of pulsed laser light within the range surrounded by (15, 0.5) By doing so, a laser processing method for an organic resin upper film, which is characterized by performing laser processing without damaging the organic resin thin film.
JP58201996A 1983-10-27 1983-10-27 Processing method of translucent conductive film Expired - Lifetime JPH0712031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201996A JPH0712031B2 (en) 1983-10-27 1983-10-27 Processing method of translucent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201996A JPH0712031B2 (en) 1983-10-27 1983-10-27 Processing method of translucent conductive film

Publications (2)

Publication Number Publication Date
JPS6094726A JPS6094726A (en) 1985-05-27
JPH0712031B2 true JPH0712031B2 (en) 1995-02-08

Family

ID=16450207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201996A Expired - Lifetime JPH0712031B2 (en) 1983-10-27 1983-10-27 Processing method of translucent conductive film

Country Status (1)

Country Link
JP (1) JPH0712031B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4292092A (en) * 1980-06-02 1981-09-29 Rca Corporation Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery
US4315096A (en) * 1980-07-25 1982-02-09 Eastman Kodak Company Integrated array of photovoltaic cells having minimized shorting losses
US4388517A (en) * 1980-09-22 1983-06-14 Texas Instruments Incorporated Sublimation patterning process
FR2503457B1 (en) * 1981-03-31 1987-01-23 Rca Corp SOLAR CELL SYSTEM CONNECTED IN SERIES ON A SINGLE SUBSTRATE

Also Published As

Publication number Publication date
JPS6094726A (en) 1985-05-27

Similar Documents

Publication Publication Date Title
AU2010235991B2 (en) Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source or electromagnetic radiation
JP3398376B2 (en) Method of manufacturing via hole in polymer dielectric layer
US7998838B2 (en) Method and apparatus for scribing a line in a thin film using a series of laser pulses
US6689544B2 (en) Ablation enhancement layer
Tseng et al. Electrode patterning on PEDOT: PSS thin films by pulsed ultraviolet laser for touch panel screens
CN104475979B (en) A kind of laser etching method of transparent conductive film
CN103993261A (en) Preparation method of transparent conductive thin film with grating structure
JP2003037314A (en) Etching method for transparent electrode of touch screen using laser
JPH0712031B2 (en) Processing method of translucent conductive film
KR101385235B1 (en) Fine TCO patterning method using the laser scribing
JPH0713954B2 (en) Liquid crystal display device manufacturing method
JPH0688149B2 (en) Light processing method
JP2540501B2 (en) Laser processing method
Hsiao et al. Fabrication of electrodes on the aluminum doped zinc oxide thin films using an ultraviolet laser direct-patterning technology
CN114985955B (en) Double-scribing laser edge cleaning process
Poowongsaroj et al. Nanosecond pulsed laser scribing of fluorine-doped tin oxide coated on glass substrate
Guzzo et al. Laser ablation as a processing technique for metallic and polymer layered structures
JPH0712032B2 (en) Laser processing method for organic resin coating
CN116174910A (en) Metal film light-transmitting window and method and device for preparing same based on laser stripping technology
Hsiung Femtosecond laser-induced crystallization of amorphous indium tin oxide film on glass substrate for patterning applications
Hsiao et al. Edge isolation of transparent conductive polymer (TCP) thin films on flexible substrates using UV laser ablation
Mikschl et al. The influence of laser induced consolidation on the ablation threshold of nanoparticulate ITO-layers
JP3374889B2 (en) Thin film processing method
Tanaka et al. Effects of wavelengths on processing indium tin oxide thin films using diode-pumped Nd: YLF laser
JPS6384073A (en) Optical processing method of translucent conductive film