JPS6094726A - Processing method for translucent conductive film - Google Patents

Processing method for translucent conductive film

Info

Publication number
JPS6094726A
JPS6094726A JP20199683A JP20199683A JPS6094726A JP S6094726 A JPS6094726 A JP S6094726A JP 20199683 A JP20199683 A JP 20199683A JP 20199683 A JP20199683 A JP 20199683A JP S6094726 A JPS6094726 A JP S6094726A
Authority
JP
Japan
Prior art keywords
conductive film
film
thin film
laser beam
ctf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20199683A
Other languages
Japanese (ja)
Other versions
JPH0712031B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Kenji Ito
健二 伊藤
Satsuki Watabe
渡部 五月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP58201996A priority Critical patent/JPH0712031B2/en
Publication of JPS6094726A publication Critical patent/JPS6094726A/en
Publication of JPH0712031B2 publication Critical patent/JPH0712031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Abstract

PURPOSE:To form an open groove by selective removal of only the titled film by a method wherein an object to be processed in which said film has been formed on a translucent organic resin thin film is scanned by irradiation with pulse laser beams. CONSTITUTION:In the case of irradiating the translucent conductive film on said resin thin film with laser beams, it is possible to selectively remove only the conductive film without long-time (several ten msec or more) irradiation with the laser beam to one place, or by making the scanning speed suitable. For practical use, it is preferable that the resin thin film is a heat-resisting translucent organic thin film capable of continual use at 150-300 deg.C or more. Besides, the conductive film is preferably in the range of 300Angstrom -1mum; its thickness of 300Angstrom or less does not suffice the conductive film, and that of 1mum or more practically disables the removal of only the conductive film without damaging the base.

Description

【発明の詳細な説明】 (1) この発明は、透光性導電膜(以下CTFという)を透光
性有機樹脂薄膜(以下OFという)上に形成させた被加
工物にパルスレーザ光を照射して開溝を形成することを
目的とする。
Detailed Description of the Invention (1) This invention involves irradiating a workpiece with pulsed laser light on which a transparent conductive film (hereinafter referred to as CTF) is formed on a transparent organic resin thin film (hereinafter referred to as OF). The purpose is to form an open groove.

この発明は、連続使用上限温度が150〜3oo℃にお
いて使用可能な透光性OF上に形成された酸化インジュ
ームまたは酸化スズを主成分とするCTFに対し、先端
温度が1500〜220(1”cのパルス状のレーザ光
を照射して走査加工し、OF上のCTFのみを選択的に
除去し、開溝を形成することを目的とする。
This invention provides a CTF with a tip temperature of 1500 to 220 (1" The purpose of the present invention is to selectively remove only the CTF on the OF by irradiating a pulsed laser beam of c to perform scanning processing, thereby forming an open groove.

従来、レーザ光を用いてCTFを除去し開溝に形成する
方法では、基板にガラス板、セラミック板等の耐熱性の
基板が用いられてきた。これらはレーザ光の高温に対し
耐えられる基板であるが、価格が高価であり、破損しや
すいという欠点を有していた。
Conventionally, in the method of removing CTF and forming an open groove using a laser beam, a heat-resistant substrate such as a glass plate or a ceramic plate has been used as the substrate. Although these substrates can withstand the high temperatures of laser light, they have the drawbacks of being expensive and easily damaged.

しかし、ディスプレー装置等への応用を考えた時、この
基板として可曲性の有機薄膜の使用がめられてきた。本
発明はこのOF上のCTFに対して(2) レーザ光を照射した時、このOFを損傷せずにCTFを
除去することができる条件のあることを実験的に検討し
たところ、そのレーザ光を1つの場所に長時間(数十m
秒以上)照射することなく、また走査(スキャン)スピ
ードを適切化することによりCTFのみを選択的に除去
することが可能であることを見いだした。
However, when considering application to display devices, etc., it has been recommended to use flexible organic thin films as the substrate. The present invention is directed to (2) the CTFs on the OF after experimentally examining the existence of conditions under which the CTFs can be removed without damaging the OF when irradiated with a laser beam. in one place for a long time (several tens of meters)
It has been found that it is possible to selectively remove only CTF by optimizing the scanning speed and without irradiation (longer than 2 seconds).

即ち、レーザ光の照射によりOFは熱伝導率が小さい(
一般には1〜7×10′4Ca1/sec/cT1/℃
/cm)ため、同じ位置に繰り返しレーザパルスを加え
ると、この有機樹脂は劣化し炭化して切断されてしまう
。しかしその繰り返しを1回または数回とすると、この
OFの熱伝導率がCTFの1 /10’であるため、逆
にCTFのみを選択的にレーザ光の照射された場所のみ
除去することができることを見いだした。
In other words, the OF has a low thermal conductivity due to laser light irradiation (
Generally 1~7×10'4Ca1/sec/cT1/℃
/cm), so if laser pulses are repeatedly applied to the same position, this organic resin will deteriorate, carbonize, and be cut. However, if this process is repeated once or several times, the thermal conductivity of this OF is 1/10' of that of the CTF, so it is possible to selectively remove only the CTF from the area irradiated with the laser beam. I found it.

以下にその実施例を図面に従って記す。Examples thereof will be described below according to the drawings.

OFとして例えば住友ベークライト製スミライトps−
1300を用いた。このOFは、連続使用上限温度18
0℃、熱伝導率4.3 X 10 ′4Cal / s
ec / cd / ”C(3) /cII+、光線透光率86.3%(100μの厚さと
する)。
For example, Sumitomo Bakelite's Sumilite ps-
1300 was used. This OF has a continuous use upper limit temperature of 18
0℃, thermal conductivity 4.3 x 10'4Cal/s
ec/cd/”C(3)/cII+, light transmittance 86.3% (assuming a thickness of 100μ).

表面抵抗率5.4 X1014Ω、体積抵抗率1.7 
Xl0I”ΩcI11をその代表例として有する。
Surface resistivity 5.4 x 1014Ω, volume resistivity 1.7
A representative example thereof is Xl0I''ΩcI11.

このOF上にスパッタ法にてITOを700 人の厚さ
に形成させた。するとそのシート抵抗は200Ω/口を
有していた。
ITO was formed on this OF to a thickness of 700 mm by sputtering. Its sheet resistance then had 200Ω/hole.

第1図はこの0F(1)上のcrp (2)に対しプロ
ーブ(3)、< 4 )、テスタ(5)の2端子法にて
その抵抗を測定した。
In FIG. 1, the resistance of crp (2) on this 0F (1) was measured using a two-terminal method using a probe (3), <4) and a tester (5).

さらにここにYAGレーザ(発光波長1.06μ、焦点
距離5抛m、光径50μ)を照射した。その条件として
、繰り返し同時に6KIlz、平均出力1.3W、スキ
ャンスピード(走査速度、以下SSという) 60cm
/分とした。すると第1図に示すごとき開溝(10)。
Furthermore, this was irradiated with a YAG laser (emission wavelength 1.06 μm, focal length 5 m, light diameter 50 μm). The conditions are: 6 KIlz at the same time repeatedly, average output 1.3 W, scan speed (hereinafter referred to as SS) 60 cm.
/ minute. Then, an open groove (10) as shown in FIG. 1 is formed.

(10’)を得ることができた。(10') could be obtained.

この時電子顕微鏡にて調べたが、OF裏表面何等の損傷
もまた部分的な劣化も見られなかった。このレーザ光は
1600℃以上の温度を有すると推察されるが、連続使
用上限温度が180℃程度の低い耐熱性しか有さないO
Fに何等損傷を与えなかった。
At this time, the back surface of the OF was examined using an electron microscope, and no damage or partial deterioration was observed on the back surface of the OF. It is estimated that this laser beam has a temperature of 1600℃ or higher, but O
No damage was caused to F.

(4) 即ち、叶−トのCTFに対し、選択的に開溝(10)、
(10’)を作製することができることがわかった。
(4) That is, selectively opening the groove (10) with respect to the CTF of the leaf plate,
It was found that (10') can be produced.

その」−12つのプローブ間にはIMΩ以上の抵抗(巾
は10I11とする)を得ることができた。
It was possible to obtain a resistance of IMΩ or more (the width is 10I11) between the 12 probes.

第2図はレーザ光の繰り返し周波数を可変にしたもので
、開溝が形成される場合の電気抵抗を示す。
FIG. 2 shows the electrical resistance when the repetition frequency of the laser beam is varied and an open groove is formed.

図面において、SS 60c+a/分の平均出力0.8
W。
In the drawing, average output of SS 60c+a/min 0.8
W.

光径50μのYAG レーデを用いた。するとその周波
数を10Jlzより下げてゆくと曲線(9)は7KHz
以下で不連続にIMΩ以上となって電気的にアイソレイ
シジンを行うことができるようになったことが判明した
A YAG radar with a light diameter of 50 μm was used. Then, when the frequency is lowered from 10 Jlz, the curve (9) becomes 7 KHz.
It was found that the resistance became discontinuously higher than IMΩ and electrical isolation became possible.

しかしこの周波数が4Kllz以下ではこのCTFに加
えて下地のOFをもその中心部(ガウス分布のエネルギ
密度の最も高い領域)で損傷してしまった。
However, when this frequency was 4 Kllz or less, in addition to this CTF, the underlying OF was also damaged at its center (the region where the energy density of the Gaussian distribution was highest).

このことにより、OF上のCTFのLS (レーザスク
ライブ)には(11)に示す範囲が適していた。
As a result, the range shown in (11) was suitable for LS (laser scribing) of CTF on the OF.

さらに、この下地のOFに損傷を与えることなくCTF
のみを除去する範囲を調べたところ、第3図(5) を得た。
Furthermore, CTF can be applied without damaging the underlying OF.
When we investigated the range in which only 100% of the 100% carbon dioxide was removed, we obtained Figure 3 (5).

即ち、SSを0〜150cm /分、平均出力0〜3W
、繰り返し周波数6KH2、焦点距離50cm、レーザ
光の直径50μのYAG レーザとすると、領域15即
ち点^。
That is, SS 0~150cm/min, average output 0~3W
, a YAG laser with a repetition frequency of 6KH2, a focal length of 50cm, and a laser beam diameter of 50μ, the region 15, or point^.

B、 C,D、 E、 Fで囲まれる範囲はOFの損傷
がなく CTPのみで除去することができた。
The area surrounded by B, C, D, E, and F had no damage to the OF and could be removed only by CTP.

さらに領域(13)はCTFすらも除去することができ
ない領域であり、領域(12)はパルス光がCTF上で
連続せず、破線のごとく不連続な大溝を得たのみであっ
た。領域(14)はCTFのみならず下地のOFに対し
ても損傷を与えてしまった領域であった。
Further, in region (13), even the CTF could not be removed, and in region (12), the pulsed light was not continuous on the CTF, and only a discontinuous large groove was obtained as shown by the broken line. Area (14) was an area where damage was caused not only to the CTF but also to the underlying OF.

このことにより下地のOFに対して損傷を与えることな
く 、CTFのみを選択的に開溝として除去す返し周波
数を15KHzとした場合である。この場合はCTFの
みを選択的にLSを行う領域は(15)より(16)に
移動している。
As a result, only the CTF was selectively removed as an open groove without damaging the underlying OF, and the repetition frequency was set to 15 KHz. In this case, the area where LS is performed selectively on only the CTF has moved from (15) to (16).

またCTFの厚さを1000人よりも厚く (1μ以下
)(6) すると、この領域は縦方向に移動した。また下地のOF
を他のop例えばスミライトFS−1100(IIL温
度インデックス 240℃)等のより耐熱性とするとこ
の最適類J137(15)も大きく拡げることができた
Furthermore, when the thickness of the CTF was made thicker than 1000 people (less than 1 μm) (6), this region shifted in the vertical direction. Also, the OF of the base
By making it more heat resistant than other ops, such as Sumilite FS-1100 (IIL temperature index 240° C.), this optimal class J137 (15) could be greatly expanded.

CTPを1μ以上とすると、この領域(15)が狭くな
り、実用性がない。
If the CTP is 1 μ or more, this region (15) becomes narrow and is not practical.

これらのことより、実用的にはOFが150〜300℃
またはそれ以上の連続使用の可能な耐熱性の透光性有機
薄膜であることが好ましい。またCTFは300人〜1
μの範囲であることが好ましい。即ち300Å以下では
導電膜が十分でなく、1μ以上は下地を損傷セずにCT
Fのみを除去することが実質的に不可能であった。
From these facts, practically the OF is 150 to 300℃.
It is preferable that the film be a heat-resistant, light-transmitting organic thin film that can be used continuously for a period of 20 to 30 minutes or more. Also, CTF is 300 people to 1
It is preferably in the range of μ. In other words, if the conductive film is less than 300 Å, the conductive film is not sufficient, and if it is more than 1 μm, CT can be performed without damaging the underlying layer.
It was virtually impossible to remove only F.

もちろん、このCTFはミクロに平面状であっても針状
(テクスチャー)をしていても、またITO(#化スズ
が10重量%以下添加された酸化インジューム)上に酸
化スズが100〜500人の厚さに形成された2層膜を
用いてもよいことはいうまでも(7) (水で10〜100倍に希釈)またはアセトン、水、そ
の他の洗浄溶液にこの処理薄膜を浸漬し、超音波洗浄を
して付着物を除去することは有効である。
Of course, this CTF may be microscopically planar or acicular (textured), and may contain 100-500% of tin oxide on ITO (indium oxide containing 10% by weight or less of tin oxide). It goes without saying that a two-layer membrane formed to a human thickness may be used (7) (diluted 10 to 100 times with water) or by immersing the treated thin membrane in acetone, water, or other cleaning solution. It is effective to remove deposits by ultrasonic cleaning.

以上の説明より明らかなごとく、本発明はOF上のCT
Fに対し、レーザ光を照射してそのCTFのみに開溝を
形成して除去することが可能になった。
As is clear from the above explanation, the present invention is applicable to CT on OF.
It has become possible to remove F by irradiating it with a laser beam and forming an open groove only in the CTF.

さらにこのCTFに形成された開溝は線ではなくレーザ
光または下地にXY方向に移動し種々の形状を作製する
ことができる。しかし、その際、レーザ光が同一点を何
度(10回以上)も照射するとこの領域での温度が上昇
し、下地を損傷させてしまうため作動には注意を要する
Furthermore, the open grooves formed in this CTF are not lines, but can be moved in the X and Y directions using laser light or on the substrate to produce various shapes. However, in this case, if the same point is irradiated with the laser beam many times (10 times or more), the temperature in this area will rise and the underlying layer will be damaged, so care must be taken during operation.

このようなバターニングを行うことにより、表示用ディ
スプレーへの応用が可能となった。
By performing such buttering, it has become possible to apply it to displays.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は有機薄膜上の透光性導電膜に開溝を形成した図
面である。 第2図はレーザ光の繰り返し周波数と開溝の形成条件と
の関係を示す。 第3図はレーザ光のスキャンスピードおよび平(8) 均出力との関係を示す。 特許出願人 草1■ くり′!+1L(用S丸老((KHi)/j 、lr−
,1
FIG. 1 is a drawing in which grooves are formed in a transparent conductive film on an organic thin film. FIG. 2 shows the relationship between the repetition frequency of the laser beam and the conditions for forming the open grooves. FIG. 3 shows the relationship between the scanning speed of the laser beam and the average (8) average output. Patent applicant grass 1■ Chestnut'! +1L (for S Maruo ((KHi)/j, lr-
,1

Claims (1)

【特許請求の範囲】 1、透光性の絶縁表面を有する有機樹脂薄膜上に酸化イ
ンジュ−ムまたは酸化スズを主成分とする透光性導電膜
を形成し、前記導電膜にパルスレーザ光の走査加工によ
り開溝を形成することを特徴とする透光性導電膜の加工
方法。 2、特許請求の範囲第1項において、レーザ光は有機樹
脂薄膜を損傷しない程度のスキャンスピードおよび平均
出力を有し、かつ透光性導電膜を連続的に切断する程度
の平均出力、繰り返し周波数およびスキャンスピードを
有することを特徴とする透光性導電膜の加工方法。 3、特許請求の範囲第1項において、レーザ光を照射し
た後、洗浄することにより開溝またはその近傍の残存物
を除去することを特徴とする透光性導電膜の加工方法。
[Claims] 1. A light-transmitting conductive film containing indium oxide or tin oxide as a main component is formed on an organic resin thin film having a light-transmitting insulating surface, and a pulsed laser beam is applied to the conductive film. A method for processing a translucent conductive film, characterized by forming an open groove by scanning processing. 2. In claim 1, the laser beam has a scanning speed and average output that does not damage the organic resin thin film, and has an average output and repetition frequency that is sufficient to continuously cut the transparent conductive film. and a scanning speed. 3. A method of processing a transparent conductive film according to claim 1, which comprises removing residues in or near the open grooves by cleaning after irradiating the laser beam.
JP58201996A 1983-10-27 1983-10-27 Processing method of translucent conductive film Expired - Lifetime JPH0712031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58201996A JPH0712031B2 (en) 1983-10-27 1983-10-27 Processing method of translucent conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58201996A JPH0712031B2 (en) 1983-10-27 1983-10-27 Processing method of translucent conductive film

Publications (2)

Publication Number Publication Date
JPS6094726A true JPS6094726A (en) 1985-05-27
JPH0712031B2 JPH0712031B2 (en) 1995-02-08

Family

ID=16450207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58201996A Expired - Lifetime JPH0712031B2 (en) 1983-10-27 1983-10-27 Processing method of translucent conductive film

Country Status (1)

Country Link
JP (1) JPH0712031B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS5788733A (en) * 1980-09-22 1982-06-02 Texas Instruments Inc Method of forming pattern by sublimation
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712568A (en) * 1980-06-02 1982-01-22 Rca Corp Method of producing solar battery
JPS5753986A (en) * 1980-07-25 1982-03-31 Eastman Kodak Co
JPS5788733A (en) * 1980-09-22 1982-06-02 Texas Instruments Inc Method of forming pattern by sublimation
JPS57176778A (en) * 1981-03-31 1982-10-30 Rca Corp Solar battery array

Also Published As

Publication number Publication date
JPH0712031B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
Swain et al. Improving the bulk laser damage resistance of potassium dihydrogen phosphate crystals by pulsed laser irradiation
JP4880820B2 (en) Laser assisted machining method
Serafetinides et al. Ultra-short pulsed laser ablation of polymers
JPH0563274B2 (en)
US6689544B2 (en) Ablation enhancement layer
CN103993261A (en) Preparation method of transparent conductive thin film with grating structure
Hrabovsky et al. Surface structuring of kapton polyimide with femtosecond and picosecond ir laser pulses
TW201017762A (en) Method for patterning crystalline indium tim oxide
JPS6094726A (en) Processing method for translucent conductive film
JP2540501B2 (en) Laser processing method
Foltyn et al. Multiple-shot laser damage thresholds of ultraviolet reflectors at 248 and 308 nanometers
Stafe et al. Pulsed laser ablated craters on aluminum in gaseous and aqueous environments
JPS60102289A (en) Laser working method of film on organic resin
JPS63215390A (en) Light machining method
JPS60260393A (en) Optical processing of light-transmitting conductive film
JPH02317A (en) Thin film working method
Račiukaitis et al. Laser structuring of conducting films on transparent substrates
KR100913151B1 (en) Method and apparatus of descaling metal using pulse laser-induced shock wave
EP4159357A1 (en) Method of and apparatus for cutting a substrate or preparing a substrate for cleaving
Phillips et al. Modification of electrical conductivity and surface structure in polymers using ultraviolet laser radiation
JPH0899186A (en) Laser beam machine
Prokuratov et al. Analysis of the possibility of lasers' usage for cleaning lead and zinc exterior sculpture
Brannon et al. Pulsed 532 nm laser wirestripping: Removal of dye-doped polyurethane insulation
JPS60102288A (en) Laser working method of film on organic resin
CN105762233B (en) The method of ultrasonic transduction coupled laser irradiation optimization transparent conductive film performance