JPH07120098A - Engine exhaust heat recovery absorption type hot and chilled water generator - Google Patents

Engine exhaust heat recovery absorption type hot and chilled water generator

Info

Publication number
JPH07120098A
JPH07120098A JP5263238A JP26323893A JPH07120098A JP H07120098 A JPH07120098 A JP H07120098A JP 5263238 A JP5263238 A JP 5263238A JP 26323893 A JP26323893 A JP 26323893A JP H07120098 A JPH07120098 A JP H07120098A
Authority
JP
Japan
Prior art keywords
temperature generator
generator
heat
water
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5263238A
Other languages
Japanese (ja)
Inventor
Kenji Nakajima
謙司 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5263238A priority Critical patent/JPH07120098A/en
Publication of JPH07120098A publication Critical patent/JPH07120098A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To improve the energy efficiency of a hot and chilled water generator by effectively utilizing engine exhaust heat even of a high temperature or a low temperature and to simplify the structure of an apparatus by integrating a high temperature generator, an intermediate temperature generator and a low temperature generator without forming a shell in a pressure-resistant vessel. CONSTITUTION:A generator-integrated unit B in which a high temperature generator 6, an intermediate temperature generator 7, an exhaust gas cooling water heat exchanger 8 and a low temperature generator 9 are integrated is installed outside a shell A which contains a condenser 2, an evaporator 3 and an absorber 4. Steam is generated from dilute solutions in the generators 6 and 7 by engine exhaust gas, and steam is generated from dilute solution in the generator 9 by engine cooling water heated by the engine exhaust gas by the exchanger 8. Further, the solutions in the generators 7, 9 are heated by the steams generated in the generators 6, 7 thereby to increase the amount of steam generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、エンジン排気とエン
ジン冷却水を有効に利用して冷温水を作るようにしたエ
ンジン排熱回収吸収式冷温水機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust heat recovery absorption chiller-heater which effectively utilizes engine exhaust and engine cooling water to produce chilled water.

【0002】[0002]

【従来の技術】従来の基本的な単効用吸収式冷凍機を図
4に示す。そして、図4に基づいて、単効用吸収式冷凍
機の基本原理を説明する。単効用吸収式冷凍機100の
発生器101では、加熱源として燃料ガス、灯油、高圧
蒸気等を使用したバーナ102にて吸収液(稀溶液:臭
化リチウムの溶解度が55重量%程度の小さいもの、す
なわち、水分の割合が大の水溶液)を加熱すると、吸収
液より水蒸気が発生する。この水蒸気は、凝縮器103
で冷却水配管104内を流れる冷却水に熱を与えて凝縮
水となる。
2. Description of the Related Art A conventional basic single-effect absorption refrigerator is shown in FIG. Then, the basic principle of the single-effect absorption refrigerator will be described with reference to FIG. In the generator 101 of the single-effect absorption refrigerating machine 100, a burner 102 that uses fuel gas, kerosene, high-pressure steam, or the like as a heating source absorbs an absorbing liquid (dilute solution: lithium bromide having a small solubility of about 55% by weight). That is, when an aqueous solution having a large water content) is heated, water vapor is generated from the absorbing liquid. This water vapor is condensed by the condenser 103.
Thus, the cooling water flowing in the cooling water pipe 104 is heated to be condensed water.

【0003】この凝縮水は、シェル105内の蒸発器1
06を構成する冷水配管107上に散布され蒸発し、冷
水配管107内を流れる利用冷水から熱を奪って利用冷
水の温度を7℃〜10℃まで低下させる。この利用冷水
を室内に導き、ファンコイルユニット(図示せず)等に
通水して冷房効果を得るようにしている。なお、蒸発器
106で蒸発しきらなかった凝縮水は冷媒ポンプ108
で循環され再度冷水配管107上に散布される。
This condensed water is transferred to the evaporator 1 in the shell 105.
The cold water pipe 107 constituting 06 is evaporated and evaporated, and heat is taken from the used cold water flowing in the cold water pipe 107 to lower the temperature of the used cold water to 7 ° C to 10 ° C. This used cold water is introduced into the room and is passed through a fan coil unit (not shown) or the like to obtain a cooling effect. The condensed water that has not completely evaporated in the evaporator 106 is stored in the refrigerant pump 108.
And is sprayed again on the cold water pipe 107.

【0004】次に、蒸発器106で蒸発した水蒸気は、
シェル105内の吸収器109で散布された吸収液(濃
溶液:臭化リチウムの溶解度が60重量%程度の大きい
もの、すなわち、水分の割合が小の水溶液)に吸収され
ていく。このとき、吸収熱が発生するので、冷却水配管
104内を流れる冷却水で除熱する。
Next, the water vapor evaporated in the evaporator 106 is
The absorption liquid (concentrated solution: one having a high solubility of lithium bromide of about 60% by weight, that is, an aqueous solution having a small water content) is absorbed by the absorber 109 in the shell 105. At this time, since absorbed heat is generated, the cooling water flowing in the cooling water pipe 104 removes the heat.

【0005】濃溶液は発生器101内で水蒸気を発生さ
せた後の吸収液で臭化リチウムの濃度が高くなってい
る。吸収液は濃度が高い程良く水を吸収するので、常に
濃溶液を吸収器109内へ送る必要がある。水を吸収し
た後の吸収液、すなわち、稀溶液は吸収液ポンプ110
で再び発生器101へ循環されてサイクルが完了する。
なお、111は濃溶液と稀溶液とを熱交換させる溶液熱
交換器である。
The concentrated solution is an absorption liquid after steam is generated in the generator 101, and the concentration of lithium bromide is high. Since the higher the concentration of the absorbing solution, the better the water absorption, it is necessary to always send the concentrated solution into the absorber 109. The absorption liquid after absorbing the water, that is, the dilute solution is the absorption liquid pump 110.
Then, it is circulated to the generator 101 again to complete the cycle.
In addition, 111 is a solution heat exchanger which heat-exchanges a concentrated solution and a dilute solution.

【0006】次に、従来の基本的な2重効用吸収式冷凍
機200を図5に示す。なお、201はバーナ202に
より吸収液を加熱する高温発生器で、203は低温発生
器で、204は凝縮器で、205は冷却水配管で、20
6はシェル207内の蒸発器で、208は冷水配管で、
209は冷媒ポンプ、210はシェル207内の吸収器
で、211は吸収液ポンプ、212は高温溶液熱交換器
で、213は低温溶液熱交換器で、214は抽気装置で
ある。
Next, a conventional basic double-effect absorption refrigerator 200 is shown in FIG. In addition, 201 is a high temperature generator that heats the absorbing liquid by a burner 202, 203 is a low temperature generator, 204 is a condenser, 205 is a cooling water pipe, and 20
6 is an evaporator in the shell 207, 208 is cold water piping,
209 is a refrigerant pump, 210 is an absorber in the shell 207, 211 is an absorption liquid pump, 212 is a high temperature solution heat exchanger, 213 is a low temperature solution heat exchanger, and 214 is an extraction device.

【0007】このような2重効用吸収式冷凍機200
は、単効用吸収式冷凍機100と比較すると、高温発生
器201で発生した水蒸気によって低温発生器203を
加熱している。このため、単効用吸収式冷凍機100よ
り発生蒸気量が増大することにより、冷凍効果が増大す
る。ところが、2重効用吸収式冷凍機200では、高温
発生器201で発生する水蒸気が低温発生器203で吸
収液を加熱、濃溶液化するのに十分な飽和温度を有して
いなければならない。このため、バーナ202の燃焼温
度が単効用吸収式冷凍機100のバーナ102の燃焼温
度より高温であることが必要である。
Such a double-effect absorption refrigerator 200
Compared to the single-effect absorption refrigerator 100, the low temperature generator 203 is heated by the steam generated in the high temperature generator 201. Therefore, the amount of steam generated from the single-effect absorption refrigerating machine 100 is increased, so that the refrigerating effect is increased. However, in the double-effect absorption refrigerating machine 200, the steam generated in the high temperature generator 201 must have a saturation temperature sufficient for heating and absorbing the absorbing solution in the low temperature generator 203. Therefore, the combustion temperature of the burner 202 needs to be higher than the combustion temperature of the burner 102 of the single-effect absorption refrigerator 100.

【0008】そこで、単効用吸収式冷凍機100より加
熱源の温度を高温化することが可能な2重効用単効用併
用型のエンジン排熱回収吸収式冷温水機(特開昭58−
99661号公報等)が知られている。このエンジン排
熱回収吸収式冷温水機は、加熱源である高温のエンジン
排気(例えば500℃前後)を高温発生器に導き、排気
温を200℃前後まで下げ、140℃前後の水蒸気を発
生し、低温発生器の加熱源としている。
Therefore, a dual-effect single-effect combined type engine exhaust heat recovery absorption chiller-heater capable of raising the temperature of the heat source from the single-effect absorption chiller 100 (JP-A-58-58).
No. 99661, etc.) is known. This engine exhaust heat recovery absorption-type chiller-heater guides high-temperature engine exhaust (for example, around 500 ° C), which is a heating source, to a high-temperature generator, lowers the exhaust temperature to around 200 ° C, and generates steam at around 140 ° C. , As a heat source for the low temperature generator.

【0009】[0009]

【発明が解決しようとする課題】ところが、従来のエン
ジン排熱回収吸収式冷温水機においては、高温発生器と
低温発生器とが別々に設けられているので、コンパクト
化が図り難いという問題点があった。また、温度の高い
加熱源はなるべく高い温度のままで利用することが望ま
しいが、従来のエンジン排熱回収吸収式冷温水機におい
ては、元々500℃前後という利用効率の高いエネルギ
ーを200℃前後という利用効率の低い加熱源として利
用しており、しかも200℃前後のエンジン排気はその
まま全て捨てられているためエネルギー効率が非常に悪
いという問題点があった。
However, in the conventional engine exhaust heat recovery absorption and chiller-heater, the high-temperature generator and the low-temperature generator are provided separately, so that it is difficult to make them compact. was there. In addition, it is desirable to use a high-temperature heat source at a temperature as high as possible, but in the conventional engine exhaust heat recovery absorption type chiller-heater, the energy with a high utilization efficiency of originally about 500 ° C is about 200 ° C. Since it is used as a heat source with low utilization efficiency, and since the engine exhaust at around 200 ° C is completely discarded as it is, there is a problem that the energy efficiency is very poor.

【0010】なお、高温の加熱源を有効利用する方法の
1つとして排気熱を3段階の温度帯に分けて吸熱する3
重効用サイクルが考えられるが、従来のエンジン排熱回
収吸収式冷温水機にさらに高温発生器を追加する必要が
あるため、構造が複雑となるという問題が生じてしま
う。また、凝縮器、蒸発器、吸収器を内蔵した一体型シ
ェルの中に高温発生器を収める方法も考えられるが、吸
収液を高温化すると内圧が増大することになるので、大
きな一体型シェルを耐圧容器化する必要がありコストが
上昇するという問題も生じてしまう。
As one of the methods for effectively utilizing a high-temperature heat source, exhaust heat is absorbed by dividing it into three stages of temperature zones.
Although a heavy-duty cycle is conceivable, it is necessary to add a high-temperature generator to the conventional engine exhaust heat recovery absorption chiller-heater, which causes a problem of complicated structure. It is also possible to put the high temperature generator in an integrated shell that contains a condenser, evaporator, and absorber, but increasing the temperature of the absorbing liquid will increase the internal pressure. There is also a problem that it is necessary to use a pressure-resistant container and the cost increases.

【0011】この発明は、高温から低温までのエンジン
排熱を有効に利用することによりエネルギー効率を向上
することができ、且つシェルを耐圧容器化することな
く、高温発生器、中温発生器および低温発生器を一体化
することにより機器の構造を簡素化することができるエ
ンジン排熱回収吸収式冷温水機の提供を目的とする。
The present invention makes it possible to improve the energy efficiency by effectively utilizing the engine exhaust heat from high temperature to low temperature, and also, without making the shell into a pressure resistant container, a high temperature generator, a medium temperature generator and a low temperature generator. An object of the present invention is to provide an engine exhaust heat recovery and absorption type chiller-heater which can simplify the structure of the equipment by integrating the generator.

【0012】[0012]

【課題を解決するための手段】この発明は、内部に流入
した水蒸気と冷水とを熱交換させて水蒸気を凝縮させる
凝縮器、この凝縮器で作られた凝縮水と温水とを熱交換
させて凝縮水を蒸発させる蒸発器、およびこの蒸発器で
作られた水蒸気を濃溶液に吸収させる吸収器を内部に収
容したシェルと、このシェルに対して別途設けられ、高
温のエンジン排気と水溶液とを熱交換させて水溶液から
水蒸気を発生させる高温発生器、この高温発生器で発生
した水蒸気および前記高温発生器で熱を奪われた中温の
エンジン排気と水溶液とを熱交換させて水溶液から水蒸
気を発生させる中温発生器、この中温発生器で熱を奪わ
れたエンジン排気とエンジン冷却水とを熱交換させてエ
ンジン冷却水を加熱する冷却水加熱器、および前記中温
発生器で発生した水蒸気および前記冷却水加熱器で加熱
されたエンジン冷却水と水溶液とを熱交換させて水溶液
から水蒸気を発生させる低温発生器を一体化した発生器
一体型ユニットと、前記高温発生器、前記中温発生器お
よび前記低温発生器で発生した凝縮水および水蒸気を前
記シェル内の前記凝縮器へ送る凝縮水流路と、前記高温
発生器、前記中温発生器および前記低温発生器の各々で
残留した濃溶液を前記シェル内の前記吸収器へ送る濃溶
液流路と、前記シェル内の吸収器で作られた稀溶液を前
記高温発生器、前記中温発生器および前記低温発生器の
各々へ分ける稀溶液流路とを備えた技術手段を採用し
た。
SUMMARY OF THE INVENTION According to the present invention, a condenser for condensing steam by heat exchange between steam and cold water that has flowed in, and condensed water and hot water produced by the condenser are heat-exchanged. An evaporator for evaporating condensed water and a shell for accommodating an absorber for absorbing water vapor produced by this evaporator into a concentrated solution, and a shell separately provided for this shell, which is used for the hot engine exhaust and the aqueous solution. A high-temperature generator that heat-exchanges to generate steam from the aqueous solution, steam generated from the high-temperature generator and the medium-temperature engine exhaust heat deprived of heat by the high-temperature generator and the aqueous solution are heat-exchanged to generate steam from the aqueous solution. A medium temperature generator for heating, a cooling water heater for heating the engine cooling water by exchanging heat between the engine exhaust and the engine cooling water deprived of heat by the medium temperature generator, and the medium temperature generator. A generator-integrated unit that integrates a low-temperature generator that heat-exchanges steam and engine cooling water heated by the cooling-water heater with an aqueous solution to generate steam from the aqueous solution, the high-temperature generator, and the intermediate-temperature generation And a condensed water flow path for sending condensed water and steam generated in the low temperature generator to the condenser in the shell, and a concentrated solution remaining in each of the high temperature generator, the intermediate temperature generator and the low temperature generator. A concentrated solution flow path for sending to the absorber in the shell, and a dilute solution flow path for dividing the diluted solution made by the absorber in the shell into each of the high temperature generator, the intermediate temperature generator and the low temperature generator. The technical means with and were adopted.

【0013】[0013]

【作用】この発明によれば、発生器一体型ユニットの高
温発生器で、高温のエンジン排気より水溶液に熱を与え
られると水溶液から水蒸気が発生する。そして、中温発
生器で、高温発生器で熱を奪われた中温のエンジン排気
より水溶液に熱を与えられると水溶液から水蒸気が発生
する。さらに、冷却水加熱器で、中温発生器で熱を奪わ
れたエンジン排気よりエンジン冷却水に熱を与えられる
とエンジン冷却水が加熱される。そして、低温発生器
で、冷却水加熱器で加熱されたエンジン冷却水より水溶
液に熱を与えて水溶液から水蒸気が発生する。
According to the present invention, in the high temperature generator of the generator-integrated unit, when heat is applied to the aqueous solution by the high temperature engine exhaust, steam is generated from the aqueous solution. Then, when heat is applied to the aqueous solution by the medium temperature engine exhaust, which has been deprived of heat by the high temperature generator, steam is generated from the aqueous solution. Furthermore, when heat is given to the engine cooling water by the engine exhaust deprived of heat by the medium temperature generator, the engine cooling water is heated by the cooling water heater. Then, in the low temperature generator, heat is applied to the aqueous solution from the engine cooling water heated by the cooling water heater to generate steam from the aqueous solution.

【0014】一方、高温発生器や中温発生器で発生した
水蒸気は、中温発生器や低温発生器で水溶液に熱を与え
ることにより蒸気発生量が増大する。そして、高温発生
器、中温発生器で発生した水蒸気は各々中温発生器内お
よび低温発生器内で水溶液に熱を与え凝縮する。そし
て、前記凝縮水および低温発生器で発生した水蒸気は、
凝縮水流路を通ってシェル内の凝縮器へ導かれ、この凝
縮器で冷水により凝縮水は顕熱冷却、水蒸気は凝縮さ
れ、この凝縮水は蒸発器で温水により蒸発される。この
とき、冷水は水蒸気より熱を奪って水温が上昇し、温水
は凝縮水に熱を与えるため水温が低下するため、これら
の冷水や温水を利用することにより室内が暖房または冷
房される。
On the other hand, the steam generated in the high temperature generator or the intermediate temperature generator increases the amount of steam generated by applying heat to the aqueous solution in the intermediate temperature generator or the low temperature generator. Then, the steam generated in the high temperature generator and the steam generated in the intermediate temperature generator give heat to the aqueous solution in the intermediate temperature generator and the low temperature generator to condense. Then, the condensed water and the steam generated by the low temperature generator,
The condensed water is guided to the condenser in the shell through the condensed water flow path, the condensed water is sensible cooled by the cold water, the steam is condensed, and the condensed water is evaporated by the warm water in the evaporator. At this time, the cold water takes heat from the steam to raise the water temperature, and the hot water gives heat to the condensed water to lower the water temperature. Therefore, the cold water or hot water is used to heat or cool the room.

【0015】なお、蒸発器で蒸発した水蒸気は吸収器で
濃溶液流路より導かれる高温発生器、中温発生器および
低温発生器内に残留した濃溶液に吸収されて稀溶液とな
り、稀溶液流路を通って高温発生器、中温発生器および
低温発生器の各々へ導かれる。以上の作用により、3重
効用吸収式サイクルが成立する。また、高温発生器、中
温発生器、冷却水加熱器および低温発生器が一体化され
ているのでコンパクト化が図れ、且つシェルの外部に高
温発生器を設けているのでシェルを耐圧容器化する必要
はない。
The water vapor evaporated in the evaporator is absorbed by the concentrated solution remaining in the high temperature generator, the intermediate temperature generator and the low temperature generator, which is guided from the concentrated solution flow path in the absorber, and becomes a diluted solution, resulting in a diluted solution flow. A high temperature generator, a medium temperature generator, and a low temperature generator are led through the path. With the above operation, the triple effect absorption cycle is established. In addition, the high temperature generator, the medium temperature generator, the cooling water heater and the low temperature generator are integrated so that it can be made compact, and since the high temperature generator is provided outside the shell, it is necessary to make the shell a pressure resistant container. There is no.

【0016】[0016]

【実施例】【Example】

〔実施例の構成〕次に、この発明のエンジン排熱回収吸
収式冷温水機を図1ないし図3に示す一実施例に基づい
て説明する。図1はエンジン排熱回収吸収式冷温水機を
示した図で、図2および図3は発生器一体型ユニットを
示した図である。
[Structure of Embodiment] Next, an engine exhaust heat recovery absorption type chiller-heater of the present invention will be described based on an embodiment shown in FIGS. 1 to 3. FIG. 1 is a diagram showing an engine exhaust heat recovery absorption type chiller-heater, and FIGS. 2 and 3 are diagrams showing a generator-integrated unit.

【0017】エンジン排熱回収吸収式冷温水機1は、エ
ンジンEのエンジン排気とエンジン冷却水を有効に利用
して冷水および温水を作るもので、凝縮器2、蒸発器3
および吸収器4等を収容したシェルAと、高温発生器
6、中温発生器7、排気冷却水熱交換器8および低温発
生器9を一体化した発生器一体型ユニットBとを備えて
いる。そして、これらは、内部を凝縮水および水蒸気が
流れる凝縮水配管10、11、内部を濃溶液(臭化リチ
ウムの溶解度が60重量%程度の大きい吸収液、すなわ
ち、水分の割合が小の水溶液)が流れる濃溶液配管1
2、および内部を稀溶液(臭化リチウムの溶解度が55
重量%程度の小さい吸収液、すなわち、水分の割合が大
の水溶液)が流れる稀溶液配管13により接続されてい
る。
The engine exhaust heat recovery / absorption type chiller-heater 1 is for making cold water and hot water by effectively utilizing the engine exhaust gas of the engine E and engine cooling water.
And a shell A accommodating the absorber 4 and the like, and a generator-integrated unit B in which a high temperature generator 6, a medium temperature generator 7, an exhaust cooling water heat exchanger 8 and a low temperature generator 9 are integrated. These are condensed water pipes 10 and 11 in which condensed water and water vapor flow inside, a concentrated solution in the inside (absorption liquid having a large solubility of lithium bromide of about 60% by weight, that is, an aqueous solution having a small water content). Flowing concentrated solution pipe 1
2, and a dilute solution (with a lithium bromide solubility of 55
They are connected by a dilute solution pipe 13 through which an absorbing liquid having a small weight percentage, that is, an aqueous solution having a large water content) flows.

【0018】なお、凝縮水配管10は、本発明の凝縮水
流路であって、高温発生器6および中温発生器7で発生
した水蒸気とその後に凝縮した凝縮水を集めてシェルA
内の凝縮器2へ送る配管である。凝縮水配管11は、本
発明の凝縮水流路であって、低温発生器9で発生した水
蒸気をシェルA内の凝縮器2へ送る配管である。濃溶液
配管12は、本発明の濃溶液流路であって、高温発生器
6、中温発生器7および低温発生器9内で残留した濃溶
液を集めてシェルA内の吸収器4を送る配管である。稀
溶液配管13は、本発明の稀溶液流路であって、シェル
A内で残留した稀溶液を高温発生器6、中温発生器7お
よび低温発生器9の各々に分ける配管である。
The condensed water pipe 10 is the condensed water flow passage of the present invention, and collects the steam generated in the high temperature generator 6 and the intermediate temperature generator 7 and the condensed water condensed thereafter to the shell A.
It is a pipe for sending to the condenser 2 inside. The condensed water pipe 11 is the condensed water flow path of the present invention, and is a pipe for sending the steam generated in the low temperature generator 9 to the condenser 2 in the shell A. The concentrated solution pipe 12 is the concentrated solution flow path of the present invention, and is a pipe for collecting the concentrated solution remaining in the high temperature generator 6, the intermediate temperature generator 7 and the low temperature generator 9 and sending the absorber 4 in the shell A. Is. The dilute solution pipe 13 is the dilute solution flow path of the present invention, and is a pipe for dividing the dilute solution remaining in the shell A into the high temperature generator 6, the intermediate temperature generator 7, and the low temperature generator 9.

【0019】エンジンEは、例えば発電機5を回転駆動
する2000ccのエンジンで、ガソリン油またはディ
ーゼル油等の燃料を燃焼することにより熱が発生する。
このエンジンEは、燃料の燃焼時に発生したエンジン排
気を外部へ排出する排気管14、およびこのエンジンE
を冷却するエンジン冷却水を循環させる冷却水配管15
を備えている。
The engine E is, for example, a 2000 cc engine that drives the generator 5 to rotate, and heat is generated by burning a fuel such as gasoline oil or diesel oil.
The engine E includes an exhaust pipe 14 for exhausting engine exhaust generated during combustion of fuel to the outside, and the engine E.
Cooling water pipe 15 for circulating engine cooling water for cooling the engine
Is equipped with.

【0020】排気管14は、図2に示したように、発生
器一体型ユニットBの高温発生器6内に設けられた複数
の排気流路管16、中温発生器7内に設けられた複数の
排気流路管17、排気冷却水熱交換器8内に設けられた
複数の排気流路管18、およびこれらをそれぞれ接続す
る接続管19、20により構成されている。
As shown in FIG. 2, a plurality of exhaust pipes 16 are provided in the high temperature generator 6 of the generator-integrated unit B, and a plurality of exhaust pipes 14 are provided in the intermediate temperature generator 7. The exhaust passage pipe 17, the plurality of exhaust passage pipes 18 provided in the exhaust cooling water heat exchanger 8, and the connecting pipes 19 and 20 connecting these pipes, respectively.

【0021】なお、複数の排気流路管16〜18の上下
流端には、各々の排気流路管16〜18へエンジン排気
を分配する上流側ヘッダ21〜23、および各々の排気
流路管16〜18よりエンジン排気を集合させる下流側
ヘッダ24〜26がそれぞれ接続されている。接続管1
9は下流側ヘッダ24と上流側ヘッダ22とを接続する
もので、接続管20は下流側ヘッダ25と上流側ヘッダ
23とを接続するものである。
At the upstream and downstream ends of the plurality of exhaust flow passage pipes 16-18, upstream headers 21-23 for distributing engine exhaust to the respective exhaust flow passage pipes 16-18, and each exhaust flow passage pipe. Downstream headers 24 to 26 for collecting engine exhaust from 16 to 18 are connected to each other. Connection tube 1
Reference numeral 9 connects the downstream header 24 and the upstream header 22, and the connection pipe 20 connects the downstream header 25 and the upstream header 23.

【0022】冷却水配管15は、エンジンEのウォータ
ジャケット(図示せず)と発生器一体型ユニットBとを
接続するもので、排気冷却水熱交換器8と低温発生器9
内の複数の冷却水流路管27とを接続する接続管28を
有している。
The cooling water pipe 15 connects a water jacket (not shown) of the engine E and the generator-integrated unit B, and the exhaust cooling water heat exchanger 8 and the low temperature generator 9 are connected.
It has a connecting pipe 28 for connecting with a plurality of cooling water flow passage pipes 27 therein.

【0023】なお、複数の冷却水流路管27の上下流端
には、複数の冷却水流路管27へエンジン冷却水を分配
する上流側ヘッダ29、および複数の冷却水流路管27
よりエンジン冷却水を集合させる下流側ヘッダ30が接
続されている。
At the upstream and downstream ends of the plurality of cooling water passage pipes 27, an upstream header 29 for distributing engine cooling water to the plurality of cooling water passage pipes 27 and a plurality of cooling water passage pipes 27.
A downstream header 30 for collecting more engine cooling water is connected.

【0024】凝縮器2は、例えばクーリングタワー等
(図示せず)で冷却された冷水が冷却水配管Cを介して
流入するコイルチューブ31により構成され、シェルA
内に流入した水蒸気とコイルチューブ31内を流れる冷
水とを熱交換させて水蒸気を凝縮させる。
The condenser 2 is composed of a coil tube 31 into which cold water cooled by a cooling tower or the like (not shown) flows in via a cooling water pipe C, and a shell A
The steam that has flowed into the inside and the cold water that flows inside the coil tube 31 are heat-exchanged to condense the steam.

【0025】蒸発器3は、ビル、スーパーマーケット、
コンビニエンスストア等の室内を冷房するファンコイル
ユニット(図示せず)へ利用水を循環管Dを経て循環さ
せるコイルチューブ32により構成され、凝縮器2で凝
縮された後に絞り部33で減圧した凝縮水とコイルチュ
ーブ32内を流れる利用水(温水)とを熱交換させて凝
縮水を蒸発させる。
The evaporator 3 is used in buildings, supermarkets,
Condensed water that is composed of a coil tube 32 that circulates the used water through a circulation pipe D to a fan coil unit (not shown) that cools the inside of a convenience store or the like, and is condensed in the condenser 2 and then decompressed in the throttle portion 33. And the utilization water (warm water) flowing in the coil tube 32 are heat-exchanged to evaporate the condensed water.

【0026】吸収器4は、吸収液(濃溶液)に蒸発器3
で蒸発した水蒸気を吸収させるもので、吸収される際に
吸収熱が発生するので、コイルチューブ31の上流側に
冷却水配管Cを介して接続されるコイルチューブ34内
を流れる冷水により除熱するようにしている。
The absorber 4 converts the absorbing liquid (concentrated solution) into the evaporator 3
The vaporized water vapor is absorbed by the vaporized water vapor, and absorption heat is generated when the vaporized water vapor is absorbed. Therefore, heat is removed by cold water flowing in the coil tube 34 connected to the upstream side of the coil tube 31 via the cooling water pipe C. I am trying.

【0027】シェルAの内部には、凝縮器2で凝縮した
凝縮水を貯める貯溜皿35、蒸発器3と吸収器4とを区
画する仕切り板36、およびこの仕切り板36の上部に
接続された網目板37が設けられている。
Inside the shell A, a storage tray 35 for storing the condensed water condensed in the condenser 2, a partition plate 36 for partitioning the evaporator 3 and the absorber 4 and an upper portion of the partition plate 36 are connected. A mesh plate 37 is provided.

【0028】高温発生器6は、図2に示したように、内
部に流入した吸収液(稀溶液)と排気管14の複数の排
気流路管16内を流れる高温(例えば500℃)のエン
ジン排気とを熱交換させて吸収液から水蒸気を発生させ
る。
As shown in FIG. 2, the high temperature generator 6 is an engine of high temperature (for example, 500 ° C.) that flows into the exhaust liquid pipes 16 of the exhaust pipe 14 and the absorbing liquid (diluted solution) that has flowed inside. Exhaust gas is generated from the absorbing liquid by exchanging heat with the exhaust gas.

【0029】中温発生器7は、図2に示したように、内
部に流入した吸収液(稀溶液)と排気管14の複数の排
気流路管17内を流れる中温(例えば250℃)のエン
ジン排気とを熱交換させて吸収液から水蒸気を発生させ
る。また、中温発生器7は、図3に示したように、内部
に流入した吸収液(稀溶液)と複数の水蒸気流路管38
内を流れる水蒸気とを熱交換させて吸収液から水蒸気を
発生させる。
As shown in FIG. 2, the intermediate temperature generator 7 is an intermediate temperature engine (for example, 250 ° C.) that flows through the absorbing liquid (diluted solution) and the exhaust pipes 17 of the exhaust pipe 14 as shown in FIG. Exhaust gas is generated from the absorbing liquid by exchanging heat with the exhaust gas. In addition, as shown in FIG. 3, the intermediate temperature generator 7 includes a plurality of water vapor flow path pipes 38 and the absorbing liquid (dilute solution) flowing therein.
Heat is exchanged with water vapor flowing inside to generate water vapor from the absorbing liquid.

【0030】なお、複数の水蒸気流路管38の上下流端
には、複数の水蒸気流路管38へ水蒸気を分配する上流
側ヘッダ39、および複数の水蒸気流路管38より凝縮
水を集合させる下流側ヘッダ40が接続されている。上
流側ヘッダ39には、高温発生器6の内部と連通させる
ための連通管41が接続されている。
At the upstream and downstream ends of the plurality of steam flow passage pipes 38, an upstream header 39 for distributing steam to the plurality of steam flow passage pipes 38, and condensed water from the plurality of steam flow passage pipes 38 are collected. The downstream header 40 is connected. A communication pipe 41 for communicating with the inside of the high temperature generator 6 is connected to the upstream header 39.

【0031】排気冷却水熱交換器8は、本発明の冷却水
加熱器であって、図2に示したように、内部に流入した
エンジン冷却水と排気管14の複数の排気流路管18内
を流れる低温(例えば160℃)のエンジン排気とを熱
交換させてエンジン冷却水を加熱する。
The exhaust cooling water heat exchanger 8 is the cooling water heater of the present invention, and as shown in FIG. 2, the engine cooling water flowing into the inside and a plurality of exhaust passage pipes 18 of the exhaust pipe 14. The engine cooling water is heated by exchanging heat with the low-temperature (for example, 160 ° C.) engine exhaust flowing inside.

【0032】低温発生器9は、図2に示したように、内
部に流入した吸収液(稀溶液)と複数の冷却水流路管2
7内を流れるエンジン冷却水とを熱交換させて吸収液か
ら水蒸気を発生させる。また、低温発生器9は、図3に
示したように、内部に流入した吸収液(稀溶液)と複数
の水蒸気流路管42内を流れる水蒸気とを熱交換させて
吸収液から水蒸気を発生させる。
As shown in FIG. 2, the low temperature generator 9 includes the absorbing liquid (diluted solution) flowing in and a plurality of cooling water flow pipes 2.
Heat is exchanged with the engine cooling water flowing through the inside of 7 to generate steam from the absorbing liquid. Further, as shown in FIG. 3, the low-temperature generator 9 heat-exchanges the absorbing liquid (diluted solution) that has flowed inside and the steam flowing in the plurality of steam flow path tubes 42 to generate steam from the absorbing liquid. Let

【0033】なお、複数の水蒸気流路管42の上下流端
には、複数の水蒸気流路管42へ水蒸気を分配する上流
側ヘッダ43、および複数の水蒸気流路管42より凝縮
水を集合させる下流側ヘッダ44が接続されている。上
流側ヘッダ44には、中温発生器7の内部と連通させる
ための連通管45が接続されている。
At the upstream and downstream ends of the plurality of steam flow passage pipes 42, an upstream header 43 for distributing steam to the plurality of steam flow passage pipes 42, and condensed water is collected from the plurality of steam flow passage pipes 42. The downstream header 44 is connected. A communication pipe 45 for communicating with the inside of the intermediate temperature generator 7 is connected to the upstream header 44.

【0034】発生器一体型ユニットBは、シェルAに対
して別途設けられ、各発生器6、7、9内で吸収液を加
熱して水蒸気を発生させることにより内圧が大きくなる
ため、耐圧容器化されている。
The generator-integrated unit B is separately provided for the shell A, and the internal pressure is increased by heating the absorbing liquid in each of the generators 6, 7, and 9 to generate steam, so that the pressure-resistant container. Has been converted.

【0035】〔実施例の作用〕次に、この実施例のエン
ジン排熱回収吸収式冷温水機1の作用を図1ないし図3
に基づいて簡単に説明する。ここで、図2は発生器一体
型ユニットB内のエンジン排気とエンジン冷却水の流れ
を示した図で、図2は発生器一体型ユニットB内の水蒸
気の流れを示した図である。
[Operation of Embodiment] Next, the operation of the engine exhaust heat recovery and absorption type chiller-heater 1 of this embodiment will be described with reference to FIGS.
A brief description will be given based on. Here, FIG. 2 is a diagram showing a flow of engine exhaust and engine cooling water in the generator-integrated unit B, and FIG. 2 is a diagram showing a flow of water vapor in the generator-integrated unit B.

【0036】エンジンEを作動させることにより発生し
たエンジン排気は、高温発生器6内に流入して上流側ヘ
ッダ21→複数の排気流路管16→下流側ヘッダ24を
通って高温発生器6外へ流出する。そして、高温発生器
6外へ流出したエンジン排気は、接続管19を介して中
温発生器7内に流入して上流側ヘッダ22→複数の排気
流路管17→下流側ヘッダ25を通って中温発生器7外
へ流出する。そして、中温発生器7外へ流出したエンジ
ン排気は、接続管20を介して排気冷却水熱交換器8内
に流入して上流側ヘッダ23→複数の排気流路管18→
下流側ヘッダ26を通って大気へ放出される。
The engine exhaust generated by operating the engine E flows into the high temperature generator 6 and passes through the upstream header 21 → a plurality of exhaust flow passage pipes 16 → downstream header 24 to the outside of the high temperature generator 6. Outflow to. Then, the engine exhaust flowing out of the high temperature generator 6 flows into the intermediate temperature generator 7 through the connecting pipe 19, passes through the upstream header 22 → a plurality of exhaust flow passage pipes 17 → the downstream header 25, and reaches the intermediate temperature. It flows out of the generator 7. Then, the engine exhaust flowing out of the intermediate temperature generator 7 flows into the exhaust cooling water heat exchanger 8 through the connecting pipe 20 and reaches the upstream header 23 → a plurality of exhaust flow passage pipes 18 →
It is discharged to the atmosphere through the downstream header 26.

【0037】一方、エンジンEのウォータジャケット内
で暖められたエンジン冷却水は、冷却水配管15を介し
て排気冷却水熱交換器8内に流入して複数の排気流路管
18内を流れる中温のエンジン排気と熱交換して昇温し
た後に排気冷却水熱交換器8外へ流出する。このとき、
エンジン排気はエンジン冷却水に熱を奪われることによ
り排気温が極低温(例えば90℃)となる。
On the other hand, the engine cooling water warmed in the water jacket of the engine E flows into the exhaust cooling water heat exchanger 8 through the cooling water pipe 15 and flows in the plurality of exhaust passage pipes 18 at an intermediate temperature. After exchanging heat with the engine exhaust and raising the temperature, it flows out of the exhaust cooling water heat exchanger 8. At this time,
The heat of the engine exhaust is taken by the engine cooling water, so that the exhaust temperature becomes extremely low (for example, 90 ° C.).

【0038】そして、排気冷却水熱交換器8外へ流出し
たエンジン冷却水は、接続管28を介して低温発生器9
内に流入して上流側ヘッダ29→複数の冷却水流路管2
7→下流側ヘッダ30を通って低温発生器9外へ流出し
てエンジンEのウォータジャケット内へ戻る。
The engine cooling water flowing out of the exhaust cooling water heat exchanger 8 is connected to the low temperature generator 9 via the connecting pipe 28.
Inflowing into the upstream side header 29 → a plurality of cooling water flow path pipes 2
7 → Outflows to the outside of the low temperature generator 9 through the downstream side header 30 and returns to the inside of the water jacket of the engine E.

【0039】そして、シェルA内で残留した稀溶液は、
稀溶液配管13を通って高温発生器6、中温発生器7お
よび低温発生器9に流れ込む。シェルA内より高温発生
器6内に流れ込んだ稀溶液は、複数の排気流路管16内
を流れる高温(例えば500℃)のエンジン排気と熱交
換して加熱されて水蒸気が発生する。このとき、エンジ
ン排気は稀溶液に熱を奪われることにより排気温が中温
(例えば250℃)となる。
The dilute solution remaining in the shell A is
It flows into the high temperature generator 6, the intermediate temperature generator 7, and the low temperature generator 9 through the dilute solution pipe 13. The rare solution flowing into the high temperature generator 6 from the inside of the shell A is heat-exchanged with high temperature (for example, 500 ° C.) engine exhaust flowing in the plurality of exhaust flow passage pipes 16 to be heated to generate water vapor. At this time, the heat of the engine exhaust is deprived of heat by the dilute solution, so that the exhaust temperature becomes a medium temperature (for example, 250 ° C.).

【0040】なお、高温発生器6内で発生した水蒸気
は、高温発生器6の天井から中温発生器7内へ流入して
連通管41→上流側ヘッダ39→複数の水蒸気流路管3
8→下流側ヘッダ40を通って中温発生器7外へ流出す
る。このように、高温発生器6内で発生した水蒸気は、
複数の水蒸気流路管38を通過する際に中温発生器7内
の稀溶液を加熱して中温発生器7内の稀溶液からの蒸気
発生量を増大させて、自己は凝縮する(潜熱を与え
る)。そして、中温発生器7外へ流出した凝縮水は、凝
縮水配管10を通ってシェルA内の凝縮器2に送り込ま
れる。
The steam generated in the high temperature generator 6 flows from the ceiling of the high temperature generator 6 into the intermediate temperature generator 7 and is connected to the communication pipe 41 → upstream side header 39 → a plurality of steam flow passage pipes 3
8 → Outflow to the outside of the intermediate temperature generator 7 through the downstream header 40. Thus, the steam generated in the high temperature generator 6 is
When passing through the plurality of water vapor flow path pipes 38, the dilute solution in the intermediate temperature generator 7 is heated to increase the amount of vapor generated from the dilute solution in the intermediate temperature generator 7 and self-condenses (provides latent heat. ). Then, the condensed water flowing out of the intermediate temperature generator 7 is sent to the condenser 2 in the shell A through the condensed water pipe 10.

【0041】凝縮器2に送り込まれた水蒸気は、コイル
チューブ31上に散布されてクーリングタワーで冷却さ
れた冷水に熱を与えて凝縮液化されて凝縮水となる。こ
の凝縮水は、シェルA内の貯溜皿35上に貯溜され、絞
り部33で霧化されて蒸発器3でコイルチューブ32上
に散布されて、コイルチューブ32内を流れる利用水か
ら熱を奪って蒸発気化して水蒸気となる。ここで、利用
水は凝縮水に熱を与えるため水温が低下するため、この
利用水をファンコイルユニットへ循環させることにより
室内が冷房される。
The steam sent to the condenser 2 is dispersed on the coil tube 31 and gives heat to the cold water cooled by the cooling tower to be condensed and liquefied to become condensed water. This condensed water is stored on the storage tray 35 in the shell A, atomized by the throttle portion 33, sprayed on the coil tube 32 by the evaporator 3, and heat is taken from the utilization water flowing in the coil tube 32. Vaporize to vapor. Here, since the water used lowers the temperature of the condensed water because it gives heat to the condensed water, the room is cooled by circulating the water used to the fan coil unit.

【0042】一方、高温発生器6内に残留した吸収液は
臭化リチウム水溶液中の水分が減少するため濃溶液とな
り、濃溶液配管12を通ってシェルA内へ戻される。そ
して、シェルA内へ戻された濃溶液は、吸収器4で散布
され、蒸発器3で発生した水蒸気を吸収して稀溶液とな
ってシェルA内に残留し、次のサイクルに移る。
On the other hand, the absorption liquid remaining in the high temperature generator 6 becomes a concentrated solution because the water content in the lithium bromide aqueous solution decreases, and is returned to the shell A through the concentrated solution pipe 12. Then, the concentrated solution returned into the shell A is sprayed by the absorber 4, absorbs the water vapor generated in the evaporator 3 and remains as a diluted solution in the shell A, and moves to the next cycle.

【0043】また、シェルA内より中温発生器7内に流
れ込んだ稀溶液は、複数の排気流路管17内を流れる高
温(例えば250℃)のエンジン排気と熱交換して加熱
されて水蒸気が発生する。このとき、エンジン排気は稀
溶液に熱を奪われることにより排気温が低温(例えば1
60℃)となる。
The dilute solution flowing from the shell A into the intermediate temperature generator 7 is heated by exchanging heat with the high-temperature (for example, 250 ° C.) engine exhaust flowing in the plurality of exhaust passage pipes 17 to generate steam. Occur. At this time, the exhaust gas temperature is low (for example, 1
60 ° C.).

【0044】なお、中温発生器7内で発生した水蒸気
は、中温発生器7の天井から連通管45を介して低温発
生器9内へ流入して上流側ヘッダ43→複数の水蒸気流
路管42→下流側ヘッダ44を通って低温発生器9外へ
流出する。このように、中温発生器7内で発生した水蒸
気は、複数の水蒸気流路管42を通過する際に低温発生
器9内の稀溶液を加熱して低温発生器9内の稀溶液から
の蒸気発生量を増大させて自己は凝縮する。そして、低
温発生器9外へ流出した凝縮水や水蒸気は、凝縮水配管
10を通ってシェルA内の凝縮器2に送り込まれて同様
に作用する。
The steam generated in the intermediate temperature generator 7 flows from the ceiling of the intermediate temperature generator 7 into the low temperature generator 9 through the communication pipe 45, and the upstream header 43 → the plurality of steam flow passage pipes 42. → It flows out of the low temperature generator 9 through the downstream header 44. As described above, the steam generated in the intermediate temperature generator 7 heats the dilute solution in the low temperature generator 9 when passing through the plurality of steam flow pipes 42 to vaporize the dilute solution in the low temperature generator 9. The self-condenses by increasing the generation amount. Then, the condensed water and steam flowing out of the low temperature generator 9 are sent to the condenser 2 in the shell A through the condensed water pipe 10 and act in the same manner.

【0045】さらに、シェルA内より低温発生器9内に
流れ込んだ稀溶液は、複数の冷却水流路管27内を流れ
る高温のエンジン冷却水と熱交換して加熱されて水蒸気
が発生する。なお、低温発生器9内で発生した水蒸気
は、低温発生器9の天井から低温発生器9外へ流出し、
凝縮水配管11を通ってシェルA内の凝縮器2に送り込
まれて同様に作用する。
Further, the dilute solution flowing from the shell A into the low temperature generator 9 is heated by exchanging heat with the high temperature engine cooling water flowing in the plurality of cooling water passage pipes 27 to generate steam. The steam generated in the low temperature generator 9 flows out of the low temperature generator 9 from the ceiling of the low temperature generator 9,
It is sent to the condenser 2 in the shell A through the condensed water pipe 11 and operates in the same manner.

【0046】以上のエンジン排熱回収吸収式冷温水機1
における熱の授受を以下に示す表1にて表す。
The above engine exhaust heat recovery absorption type chiller / heater 1
Table 1 below shows the transfer of heat in.

【表1】 [Table 1]

【0047】〔実施例の効果〕以上のように、エンジン
排熱回収吸収式冷温水機1は、温度の高い加熱源である
エンジン排熱を高温発生器6、中温発生器7および低温
発生器9の3段階の温度帯に分けて吸熱することによ
り、3重効用吸収式サイクルを成立させることができ
る。
[Effects of the Embodiment] As described above, the engine exhaust heat recovery and absorption chiller-heater 1 heats the engine exhaust heat, which is a high-temperature heating source, to the high temperature generator 6, the intermediate temperature generator 7, and the low temperature generator. By absorbing heat in three temperature zones of 9, the triple effect absorption cycle can be established.

【0048】また、このエンジン排熱回収吸収式冷温水
機1は、例えば500℃前後という利用効率の高いエン
ジンEの熱エネルギーを高温発生器6で回収し、例えば
160℃という利用効率の低いエンジンEの熱エネルギ
ーをエンジン冷却水に与えて低温発生器9で回収するよ
うにしているので、高温のエンジン排気から低温のエン
ジン排気までを3段階に渡って有効に利用することによ
り従来の2重効用吸収式冷凍機200と比較してエネル
ギー効率を著しく向上することができる。
Further, the engine exhaust heat recovery and absorption type chiller-heater 1 collects the thermal energy of the engine E, which has a high utilization efficiency of about 500 ° C., by the high temperature generator 6, and the engine with a low utilization efficiency of 160 ° C. Since the heat energy of E is given to the engine cooling water and recovered by the low-temperature generator 9, it is possible to effectively use the high-temperature engine exhaust gas to the low-temperature engine exhaust gas in three stages to achieve the conventional dual Energy efficiency can be remarkably improved as compared with the effect absorption refrigerator 200.

【0049】そして、高温発生器6および中温発生器7
で発生した水蒸気をそれぞれ中温発生器7および低温発
生器9内で稀溶液に熱を与えているので、エンジン排気
およびエンジン冷却水のみにより稀溶液に熱を与えるも
のと比較して蒸気発生量を増大させることができる。
The high temperature generator 6 and the intermediate temperature generator 7
Since the steam generated in step 1 heats the dilute solution in the medium temperature generator 7 and the low temperature generator 9, respectively, the amount of steam generated is compared with that in the case where the dilute solution is heated only by the engine exhaust and engine cooling water. Can be increased.

【0050】また、高温発生器6、中温発生器7、排気
冷却水熱交換器8および低温発生器9が一体化されてい
るので、従来の2重効用吸収式冷凍機200に発生器を
追加したものと比較してコンパクト化が図れ、機器の配
置を簡素化することができる。
Further, since the high temperature generator 6, the intermediate temperature generator 7, the exhaust cooling water heat exchanger 8 and the low temperature generator 9 are integrated, a generator is added to the conventional double effect absorption refrigerator 200. Compared to the above, the size can be reduced and the arrangement of devices can be simplified.

【0051】さらに、シェルAの外部に発生器一体型ユ
ニットBを設置しており、しかも発生器一体型ユニット
Bを耐圧容器化しているので、凝縮器2、蒸発器3およ
び吸収器4を収容したシェルAを耐圧容器化する必要は
なく、低コストを図ることができる。
Further, since the generator-integrated unit B is installed outside the shell A and the generator-integrated unit B is made into a pressure resistant container, the condenser 2, the evaporator 3 and the absorber 4 are accommodated. It is not necessary to make the shell A into a pressure resistant container, and the cost can be reduced.

【0052】〔変形例〕この実施例では、吸収器4に濃
溶液に水蒸気を吸収する際に発生する吸収熱を除熱する
ためのコイルチューブ34を設置したが、吸収熱を除熱
するためのコイルチューブ34を設置しなくても良い。
この実施例では、吸収液として臭化リチウム水溶液を用
いたが、吸収液として他の水溶液を用いても良い。
[Modification] In this embodiment, the absorber 4 is provided with the coil tube 34 for removing the absorption heat generated when absorbing the water vapor in the concentrated solution, but in order to remove the absorption heat. It is not necessary to install the coil tube 34.
In this embodiment, an aqueous lithium bromide solution was used as the absorbing liquid, but another aqueous solution may be used as the absorbing liquid.

【0053】また、凝縮器2のコイルチューブ32とフ
ァンコイルユニットを連結することにより、コイルチュ
ーブ32内を流れる冷水は水蒸気より熱を奪って水温が
上昇して温水となるため、この温水を利用することによ
り室内を暖房することもできる。この実施例のエンジン
排熱回収吸収式冷温水機1のサイクル上、とくに濃溶液
配管12や稀溶液配管13に吸収液の流量を調節するた
めのポンプ、弁装置等の流量調節手段を設置しても良
い。また、内部を、低温発生器6、中温発生器7、高温
発生器9から流出する凝縮水および水蒸気が流れる凝縮
水配管10、11に流量を調節するためのポンプ、弁装
置等の流量調節手段を設置しても良い。
Further, by connecting the coil tube 32 of the condenser 2 and the fan coil unit, the cold water flowing in the coil tube 32 takes heat from the steam and the water temperature rises to become hot water. By doing so, the room can be heated. On the cycle of the engine exhaust heat recovery absorption type chiller-heater 1 of this embodiment, a flow rate adjusting means such as a pump and a valve device for adjusting the flow rate of the absorbing solution is installed especially in the concentrated solution pipe 12 and the dilute solution pipe 13. May be. Further, a flow rate adjusting means such as a pump or a valve device for adjusting a flow rate inside the condensed water pipes 10 and 11 in which condensed water and steam flowing out from the low temperature generator 6, the intermediate temperature generator 7, and the high temperature generator 9 flow. May be installed.

【0054】[0054]

【発明の効果】この発明は、高温のエンジン排気から低
温のエンジン排気までを3段階に分けて有効に回収する
ことができるのでエネルギー効率を向上することができ
る。また、シェルの外部に発生器一体型ユニットを設置
しているので、シェルを耐圧容器化することなく、低コ
スト化を図ることができる。さらに、高温発生器、中温
発生器および低温発生器を一体化しているので機器の構
造を簡素化することができる。
As described above, according to the present invention, the high temperature engine exhaust to the low temperature engine exhaust can be effectively recovered in three stages, so that the energy efficiency can be improved. Further, since the generator-integrated unit is installed outside the shell, the cost can be reduced without using the shell as a pressure resistant container. Furthermore, since the high temperature generator, the intermediate temperature generator and the low temperature generator are integrated, the structure of the device can be simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示した概略図である。FIG. 1 is a schematic view showing an embodiment of the present invention.

【図2】図1の発生器一体型ユニットを示した透視図で
ある。
2 is a perspective view showing the generator-integrated unit of FIG. 1. FIG.

【図3】図1の発生器一体型ユニットを示した透視図で
ある。
FIG. 3 is a perspective view showing the generator-integrated unit of FIG. 1.

【図4】従来の単効用吸収式冷凍機を示した概略図であ
る。
FIG. 4 is a schematic diagram showing a conventional single-effect absorption refrigerator.

【図5】従来の2重効用吸収式冷凍機を示した概略図で
ある。
FIG. 5 is a schematic view showing a conventional double-effect absorption refrigerator.

【符号の説明】[Explanation of symbols]

A シェル B 発生器一体型ユニット E エンジン 1 エンジン排熱回収吸収式冷温水機 2 凝縮器 3 蒸発器 4 吸収器 6 高温発生器 7 中温発生器 8 排気冷却水熱交換器(冷却水加熱器) 9 低温発生器 10 凝縮水配管(凝縮水流路) 11 凝縮水配管(凝縮水流路) 12 濃溶液配管(濃溶液流路) 13 稀溶液配管(稀溶液流路) 14 排気管 A Shell B Generator integrated unit E Engine 1 Engine exhaust heat recovery absorption / cooling water heater 2 Condenser 3 Evaporator 4 Absorber 6 High temperature generator 7 Medium temperature generator 8 Exhaust cooling water heat exchanger (cooling water heater) 9 Low-temperature generator 10 Condensed water pipe (condensed water channel) 11 Condensed water pipe (condensed water channel) 12 Concentrated solution pipe (concentrated solution channel) 13 Dilute solution pipe (diluted solution channel) 14 Exhaust pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(a)内部に流入した水蒸気と冷水とを熱
交換させて水蒸気を凝縮させる凝縮器、 この凝縮器で作られた凝縮水と温水とを熱交換させて凝
縮水を蒸発させる蒸発器、 およびこの蒸発器で作られた水蒸気を濃溶液に吸収させ
る吸収器を内部に収容したシェルと、 (b)このシェルに対して別途設けられ、 高温のエンジン排気と水溶液とを熱交換させて水溶液か
ら水蒸気を発生させる高温発生器、 この高温発生器で発生した水蒸気および前記高温発生器
で熱を奪われた中温のエンジン排気と水溶液とを熱交換
させて水溶液から水蒸気を発生させる中温発生器、 この中温発生器で熱を奪われたエンジン排気とエンジン
冷却水とを熱交換させてエンジン冷却水を加熱する冷却
水加熱器、 および前記中温発生器で発生した水蒸気および前記冷却
水加熱器で加熱されたエンジン冷却水と水溶液とを熱交
換させて水溶液から水蒸気を発生させる低温発生器を一
体化した発生器一体型ユニットと、 (c)前記高温発生器、前記中温発生器および前記低温
発生器で発生した凝縮水および水蒸気を前記シェル内の
前記凝縮器へ送る凝縮水流路と、 (d)前記高温発生器、前記中温発生器および前記低温
発生器の各々で残留した濃溶液を前記シェル内の前記吸
収器へ送る濃溶液流路と、 (e)前記シェル内の吸収器で作られた稀溶液を前記高
温発生器、前記中温発生器および前記低温発生器の各々
へ分ける稀溶液流路とを備えたエンジン排熱回収吸収式
冷温水機。
1. A condenser for condensing steam by heat exchange between steam and cold water flowing into the inside of the condenser, wherein condensed water and hot water produced by the condenser are heat-exchanged to evaporate the condensed water. An evaporator and a shell inside which contains an absorber for absorbing the water vapor produced by this evaporator into a concentrated solution; and (b) a shell provided separately for this shell, which exchanges heat between the hot engine exhaust and the aqueous solution. A high temperature generator for generating steam from the aqueous solution by heating the steam generated by the high temperature generator and the medium temperature engine exhaust heat deprived of heat by the high temperature generator and the aqueous solution to generate steam from the aqueous solution. A generator, a cooling water heater that heats the engine cooling water by exchanging heat between the engine exhaust water that has been deprived of heat by the intermediate temperature generator, and the steam generated by the intermediate temperature generator; A generator-integrated unit in which a low-temperature generator that heat-exchanges engine cooling water heated by the cooling-water heater with an aqueous solution to generate steam from the aqueous solution is integrated; (c) the high-temperature generator; A condensed water flow path for sending condensed water and steam generated in the generator and the low temperature generator to the condenser in the shell; and (d) remaining in each of the high temperature generator, the intermediate temperature generator and the low temperature generator. A concentrated solution flow path for sending the concentrated solution to the absorber in the shell; and (e) a dilute solution made in the absorber in the shell for the high temperature generator, the intermediate temperature generator and the low temperature generator. An engine exhaust heat recovery absorption type chiller-heater equipped with a dilute solution flow path that divides into each.
JP5263238A 1993-10-21 1993-10-21 Engine exhaust heat recovery absorption type hot and chilled water generator Pending JPH07120098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5263238A JPH07120098A (en) 1993-10-21 1993-10-21 Engine exhaust heat recovery absorption type hot and chilled water generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5263238A JPH07120098A (en) 1993-10-21 1993-10-21 Engine exhaust heat recovery absorption type hot and chilled water generator

Publications (1)

Publication Number Publication Date
JPH07120098A true JPH07120098A (en) 1995-05-12

Family

ID=17386699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5263238A Pending JPH07120098A (en) 1993-10-21 1993-10-21 Engine exhaust heat recovery absorption type hot and chilled water generator

Country Status (1)

Country Link
JP (1) JPH07120098A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109718A1 (en) * 2007-03-07 2008-09-12 University Of New Orleans Research & Technology Foundation Integrated cooling, heating, and power systems
KR101392212B1 (en) * 2012-08-13 2014-05-12 (주) 월드에너지 Absorption chiller

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109718A1 (en) * 2007-03-07 2008-09-12 University Of New Orleans Research & Technology Foundation Integrated cooling, heating, and power systems
US8739560B2 (en) 2007-03-07 2014-06-03 University Of New Orleans Research And Technology Foundation, Inc. Integrated cooling, heating, and power systems
US9470114B2 (en) 2007-03-07 2016-10-18 University Of New Orleans Research And Technology Foundation, Inc. Integrated cooling, heating, and power systems
KR101392212B1 (en) * 2012-08-13 2014-05-12 (주) 월드에너지 Absorption chiller

Similar Documents

Publication Publication Date Title
JPS61110852A (en) Absorption heat pump/refrigeration system
CN104567090A (en) Trans-critical cycle double-stage heat absorption providing composite refrigeration system
JPS61110853A (en) Absorption heat pump/refrigeration system
JPH08159594A (en) Multiple effect absorption refrigerator
CN214746567U (en) Refrigerating machine
JPH07120098A (en) Engine exhaust heat recovery absorption type hot and chilled water generator
CN204513843U (en) A kind of trans critical cycle provides two-stage absorption cycle that the composite refrigeration system of heat occurs
JP2004190886A (en) Absorption refrigerating machine and absorption refrigerating system
KR20080094985A (en) Hot-water using absorption chiller
JP2004198087A (en) Absorption refrigerating device, and absorption refrigerating system
JP4266697B2 (en) Absorption refrigerator
CN213578192U (en) Absorption heat pump device utilizing solar heat
JPH07151417A (en) Engine exhaust heat recovery/absorption cold/hot water supplier
CN115371285B (en) Absorption heat exchange system
JP2005147447A (en) Ammonia-water non-azeotropic mixture medium circulation system
US11609028B2 (en) Liquid ammonia, sodium nitrate and lithium bromide absorption refrigeration system
JP4282225B2 (en) Absorption refrigerator
JP3986633B2 (en) Heat utilization system
JPS6122225B2 (en)
JPS5899661A (en) Engine waste-heat recovery absorption type cold and hot water machine
JP3469144B2 (en) Absorption refrigerator
JP3488953B2 (en) Absorption type simultaneous cooling / heating water supply type heat pump
JPH08313108A (en) Absorbing type refrigerating machine using exhaust heat of engine
JP3429906B2 (en) Absorption refrigerator
CN112762634A (en) Refrigerating machine