JPH07119568B2 - Absolute length measuring machine - Google Patents

Absolute length measuring machine

Info

Publication number
JPH07119568B2
JPH07119568B2 JP1108507A JP10850789A JPH07119568B2 JP H07119568 B2 JPH07119568 B2 JP H07119568B2 JP 1108507 A JP1108507 A JP 1108507A JP 10850789 A JP10850789 A JP 10850789A JP H07119568 B2 JPH07119568 B2 JP H07119568B2
Authority
JP
Japan
Prior art keywords
laser light
light source
distance
length measuring
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1108507A
Other languages
Japanese (ja)
Other versions
JPH02287105A (en
Inventor
敏嗣 植田
英治 荻田
克巳 磯崎
克哉 池澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1108507A priority Critical patent/JPH07119568B2/en
Publication of JPH02287105A publication Critical patent/JPH02287105A/en
Publication of JPH07119568B2 publication Critical patent/JPH07119568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、レーザ光の干渉を利用して、波長を単位とし
た高精度の測長を行う事が出来る共に、アフゾリュート
な測長出力を得る事の出来る測長器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention makes it possible to perform highly accurate length measurement in units of wavelength by utilizing interference of laser light, and to provide an afsolute length measurement output. It is about the length measuring instrument that can be obtained.

<従来の技術> 第3図は従来のこの種のアブソリュート測長器の一例を
示す構成図であり、マイケルソンの干渉光学系を利用し
たものである。
<Prior Art> FIG. 3 is a block diagram showing an example of a conventional absolute length measuring instrument of this type, which utilizes Michelson's interference optical system.

第3図において、1は波長の異なる複数のコヒーレント
な光(λ1〜λ4)を選択的に発生するレーザ光源、2
はハーフミラー、3は光の位相遅れ量をヘテロダイン検
出する為に基準側の光を変調する音響光学変調器(以
下、単にAO変調器という)、4はAO変調器を一定周波数
fbで駆動する変調信号源、5、6はキューブコーナであ
り、キューブコーナ5は測長動作に応じて移動する測長
側のキューブコーナ、キューブコーナ6は一定の距離に
固定された基準側のキューブコーナである。7はフォト
ディテクタ、8はフォトディテクタ7の出力に含まれる
位相遅れ量を検出する位相差計である。
In FIG. 3, reference numeral 1 is a laser light source for selectively generating a plurality of coherent lights (λ1 to λ4) having different wavelengths, and 2
Is a half mirror, 3 is an acousto-optic modulator that modulates the light on the reference side to detect the amount of phase delay of the light (hereinafter, simply referred to as AO modulator), 4 is an AO modulator with a constant frequency
The modulation signal sources 5 and 6 driven by fb are cube corners. The cube corner 5 is a cube corner on the length measuring side that moves according to the length measuring operation, and the cube corner 6 is a cube corner on the reference side fixed at a fixed distance. It is a cube corner. Reference numeral 7 is a photodetector, and 8 is a phase difference meter for detecting the amount of phase delay included in the output of the photodetector 7.

レーザ光源1は例えば一定波長の光源11とその波長を任
意の量だけシフトさせる波長シフタ12により構成され、
任意の波長の光を順次発生する。演算回路9は測定に使
用された光の波長とその時の位相遅れ量との関係からキ
ューブコーナ5までの距離を求めるものである。
The laser light source 1 is composed of, for example, a light source 11 having a constant wavelength and a wavelength shifter 12 that shifts the wavelength by an arbitrary amount.
Light having an arbitrary wavelength is sequentially generated. The arithmetic circuit 9 determines the distance to the cube corner 5 from the relationship between the wavelength of light used for measurement and the amount of phase delay at that time.

この様に構成された測長器において、光の角周波数を
ω、AO変調器3における変調角周波数をωb(=2πf
b)とし、レーザ光源1から出射される光の振幅V0を V0=sin ω t … とすると、AO変調器3により変調された光の振幅V1は V1=sin(ω+ωb)t … キューブコーナ5を介して戻って来た光の振幅V2は V2=sin(ωt+φ) … となる。なお、φは基準側及び測長側の各光路における
光路長の差に対応して発生する位相遅れ量である。
In the length measuring device configured in this way, the angular frequency of light is ω, and the modulation angular frequency of the AO modulator 3 is ωb (= 2πf
b) and the amplitude V0 of the light emitted from the laser light source 1 is V0 = sin ω t ... The amplitude V1 of the light modulated by the AO modulator 3 is V1 = sin (ω + ωb) t. The amplitude V2 of the light returned via V2 becomes V2 = sin (ωt + φ). Note that φ is a phase delay amount that occurs corresponding to the difference in optical path length between the reference side optical path and the length measuring side optical path.

フォトディテクタ7上では、上記の、式に示される
様な2つの光が重畳されるので、入射する光の振幅は V1+V2 =sin(ω+ωb)t+sin(ωt+φ) =2sin(ωt+ωbt/2+φ) ・cs{(ωbt−φ)/2} … の様にV1、V2の和となる。ここで、フォトディテクタ7
の出力は入射する光の振幅の2乗に比例するので、理論
的には (V1+V2) =4sin2{(ω+ωb/2)t+φ} ・cos2{(ωbt−φ)/2} … となるが、フォトディテクタ7は光の周波数には応答出
来ず、平均値を示す様になるので、その出力Vpは Vp=2+2cos(ωbt−φ) … となる。
On the photodetector 7, since the two lights as shown in the above formula are superimposed, the amplitude of the incident light is V1 + V2 = sin (ω + ωb) t + sin (ωt + φ) = 2sin (ωt + ωbt / 2 + φ) .cs {( ωbt−φ) / 2} is the sum of V1 and V2. Here, the photo detector 7
Since the output of is proportional to the square of the amplitude of the incident light, theoretically it is (V1 + V2) 2 = 4sin 2 {(ω + ωb / 2) t + φ} ・ cos 2 {(ωbt−φ) / 2}… However, since the photodetector 7 cannot respond to the frequency of light and shows an average value, its output Vp is Vp = 2 + 2cos (ωbt−φ).

従って、AO変調器3における変調角周波数ωbがわかっ
ていれば、フォトディテクタ7の出力Vpの値から位相遅
れ量を算出する事が出来る。
Therefore, if the modulation angular frequency ωb in the AO modulator 3 is known, the phase delay amount can be calculated from the value of the output Vp of the photodetector 7.

同様にこの位相遅れ量を異った波長を対応して順次測定
し、これらの測定結果を連立方程式として解く事により
測定対象までの距離を求める事が出来る。
Similarly, the distance to the object to be measured can be obtained by sequentially measuring the wavelengths having different amounts of phase delay correspondingly and solving these measurement results as simultaneous equations.

又、第4図は大きな波長差を得る為に発生波長の異なる
レーザ光源を複数個使用して、これらのレーザ光源の出
力光を選択的に出射する様にした構成のものである。
Further, FIG. 4 shows a configuration in which a plurality of laser light sources having different generation wavelengths are used to obtain a large wavelength difference and the output light of these laser light sources is selectively emitted.

この様な構成によれば、2つのレーザ光源10a、10bから
出射した波長の異る光をキューブコーナ5、6を互いに
逆向きに通過する様にして一方の信号の位相信号を基準
側(例えばフォトデイテクタ7a)、他方の位相差信号を
測長側(フォトデイテクタ7b)で受光し、それらの位相
差信号の位相差から距離を求める様にしたものである。
According to such a configuration, the lights having different wavelengths emitted from the two laser light sources 10a and 10b are passed through the cube corners 5 and 6 in opposite directions, and the phase signal of one signal is set to the reference side (for example, The photodetector 7a) and the other phase difference signal are received by the length measuring side (photodetector 7b), and the distance is obtained from the phase difference of those phase difference signals.

<発明が解決しようとする課題> しかしながら、上記従来技術に示すアブソリュート測長
器の例に示す様に、アブソリュートな測長を行う為には
波長の異る光が複数の必要であり、一般的には大きな波
長差を得る為には、第4図に示す様に発生波長の異なる
レーザ光源を複数個使用して、これらのレーザ光源の出
力光を選択的に出射する様にしており、又、第3図に示
す様に、小さな波長差は波長を任意の量だけシフトさせ
る波長シフタにより得ている。従って、他波長を発生す
るレーザ光源の構成は複雑なものであるという課題があ
った。
<Problems to be Solved by the Invention> However, as shown in the example of the absolute length measuring device shown in the above-mentioned prior art, a plurality of lights having different wavelengths are required to perform an absolute length measurement. In order to obtain a large wavelength difference, a plurality of laser light sources having different generation wavelengths are used as shown in FIG. 4 to selectively emit the output light of these laser light sources. As shown in FIG. 3, a small wavelength difference is obtained by a wavelength shifter that shifts the wavelength by an arbitrary amount. Therefore, there is a problem that the configuration of the laser light source that generates another wavelength is complicated.

本発明は上記従来技術の課題を踏まえて成されたもので
あり、レーザ光源に近接外部鏡を組合せた複合共振器型
レーザ光源を使用しかつ、レーザ光源と近接外部鏡の間
に所定の距離を設け、その距離を駆動手段を用いて変化
させて距離に依存する共振モードの波長を変化させる様
にし、簡単な構成でアブソリュートな測長に必要な複数
の波長を発生させる事の出来るレーザ光源を備えたアフ
ソリュート測長器の提供する事を目的としたものであ
る。
The present invention has been made in view of the above problems of the prior art, and uses a compound resonator type laser light source in which a laser light source is combined with a proximity external mirror, and a predetermined distance between the laser light source and the proximity external mirror. A laser light source capable of generating a plurality of wavelengths required for absolute length measurement with a simple configuration by changing the distance by using driving means to change the wavelength of the resonance mode depending on the distance. It is intended to provide an afsolute length measuring instrument equipped with.

<課題を解決するための手段> 上記課題を解決する為の本発明の構成は、少なくとも2
つ以上の波長の異なるレーザ光を切り換えて、測定対象
までの距離に応じた光の位相遅れ量を順次測定すると共
に、これらの波長と位相遅れ量との関係から前記測定対
象までの距離を求める様にしたマイケルソンの干渉光学
系を用いたアブソリュート測長器において、レーザ光源
と近接外部鏡の間に所定の距離を設け、該距離を駆動手
段を用いて変化させる事により前記距離に依存する共振
モードの波長を変化させる事を特徴とするものである。
<Means for Solving the Problems> The configuration of the present invention for solving the above problems is at least 2
By switching the laser light of two or more different wavelengths, the phase delay amount of light according to the distance to the measurement target is sequentially measured, and the distance to the measurement target is obtained from the relationship between these wavelengths and the phase delay amount. In the absolute length measuring instrument using Michelson's interference optical system as described above, a predetermined distance is provided between the laser light source and the proximity external mirror, and the distance is changed by using the driving means, thereby depending on the distance. It is characterized by changing the wavelength of the resonance mode.

<作用> この様に、近接外部鏡を用いた複合共振器型レーザ光源
を測長用光源として使用する事により、アブソリュート
な測長に必要な複数の波長を発生させるレーザ光源の構
成を簡単なものとする事が出来る。
<Operation> As described above, by using the composite resonator type laser light source using the proximity external mirror as the light source for length measurement, the configuration of the laser light source that generates a plurality of wavelengths required for absolute length measurement can be simplified. It can be done.

<実施例> 以下、本発明を図面に基づいて説明する。<Examples> Hereinafter, the present invention will be described with reference to the drawings.

第1図は本発明に係わるアブソリュート測長器の一実施
例を示す構成図である。なお、第1図において第3図と
同一要素には同一符号を付して重複する説明は省略す
る。
FIG. 1 is a block diagram showing an embodiment of an absolute length measuring device according to the present invention. In FIG. 1, the same elements as those in FIG. 3 are designated by the same reference numerals, and duplicate description will be omitted.

第1図において、20は複合共振器型レーザ光源であり、
21は両面取り出し型のレーザ光源であり、片端面21aに
反射防止膜がコーティングされている。22は近接外部鏡
であり、近接外部鏡22の面22aとレーザ光源21の片端面2
1aとは所定の隙間dを保って平行配置されており、レー
ザ光源21は外部の反射鏡22よりなる複合共振器構造とな
っている。23は近接外部鏡22に取り付けたPZTアクチュ
エータ(以下、単にPZTという)である、高電圧ドライ
バ24により電圧を印加する事によって図に示す矢す方向
に可変出来るものである。
In FIG. 1, reference numeral 20 denotes a compound resonator type laser light source,
Reference numeral 21 denotes a double-sided laser light source, one end surface 21a of which is coated with an antireflection film. Reference numeral 22 denotes a close-up external mirror, and the surface 22a of the close-up external mirror 22 and one end surface 2 of the laser light source 21.
The laser light source 21 and the laser light source 21 are arranged in parallel with each other with a predetermined gap d therebetween, and the laser light source 21 has a composite resonator structure including an external reflecting mirror 22. Reference numeral 23 is a PZT actuator (hereinafter simply referred to as PZT) attached to the proximity external mirror 22, which can be changed in the arrow direction shown in the figure by applying a voltage by a high voltage driver 24.

上記構成において、レーザ光源21から近接外部鏡22の出
射されたレーザ光は近接外部鏡22の面22aとレーザ光源2
1の片端面21aとの隙間d内で共振し、隙間dの間隔に依
存した共振モードを有する波長(又は周波数)の出力光
Poutとなってレーザ光源21から出力される。一方、高電
圧ドライア24からPZT23に電圧を印加すると、PZT23は図
に示す矢印の方向に変位し、PZT23に取り付けた近接外
部鏡22が変位する事になり、外部共振器長(隙間d)が
変位する。その為、レーザ光源21と近接外部鏡22の隙間
dに依存した共振モードの波長が変化する事になる。つ
まり、複合共振器型レーザ光源はPZT23に取り付けた近
接外部鏡22を変位させる事により、レーザ光の波長(又
は周波数)を制御しておき、その変位はPZT23に印加す
る高電圧ドライバ24からの電圧によって行うものであ
る。
In the above-mentioned configuration, the laser light emitted from the laser light source 21 to the proximity external mirror 22 and the surface 22a of the proximity external mirror 22 and the laser light source 2
Output light having a wavelength (or frequency) that resonates in the gap d with the one end face 21a of 1 and has a resonance mode depending on the gap d
It becomes Pout and is output from the laser light source 21. On the other hand, when a voltage is applied from the high voltage drier 24 to the PZT23, the PZT23 is displaced in the direction of the arrow shown in the figure, and the proximity external mirror 22 attached to the PZT23 is displaced, and the external cavity length (gap d) is increased. Displace. Therefore, the wavelength of the resonance mode changes depending on the gap d between the laser light source 21 and the proximity external mirror 22. That is, the compound resonator type laser light source controls the wavelength (or frequency) of the laser light by displacing the proximity external mirror 22 attached to the PZT 23, and the displacement is from the high voltage driver 24 applied to the PZT 23. It is done by voltage.

この様な構成において、複合共振器型レーザ光源20から
出射されたレーザ光Poutは従来例で示したアブソリュー
ト測長器と同様の動作を行い測定対象(キューブコーナ
5)までの距離を求めるものである。
In such a configuration, the laser light Pout emitted from the composite resonator type laser light source 20 performs the same operation as the absolute length measuring device shown in the conventional example to obtain the distance to the measurement target (cube corner 5). is there.

ここで、第2図は複合共振器型レーザ光源20の発振波長
を示す図である。レーザ光源21と外部反射鏡22の隙間d
を高電圧ドライバ24により電圧を印加されたPZT23で可
変させる事により、第2図に示す様にその発振波長はス
テップ状に変化する。又、変化するステップ数(最大変
化量Δf1)と1ステップの変化量Δf2は隙間dの絶対値
とレーザ光源21の片端面21aにコーディングした反射防
止膜の反射率により変化する。従って、隙間dの値を適
当な値に設定する事により、数THzオーダー(例えば、
図中A点とB点の波長差)と数10GHzオーダー(例え
ば、図中C点とD点の波長差)の周波数差を同時に得る
事が出来る事になる。又、レーザ光源21の注入電流を可
変させる事により、数100MHzの周波数を得る事が出来る
ので、アブソリュートな測長に必要な複数の周波数差を
1つのレーザ光源で全て得る事が出来るものである。
Here, FIG. 2 is a diagram showing the oscillation wavelength of the compound resonator type laser light source 20. The gap d between the laser light source 21 and the external reflecting mirror 22
Is varied by the PZT 23 to which a voltage is applied by the high voltage driver 24, the oscillation wavelength thereof changes stepwise as shown in FIG. Further, the number of changing steps (maximum change amount Δf1) and the change amount Δf2 in one step change depending on the absolute value of the gap d and the reflectance of the antireflection film coded on the one end face 21a of the laser light source 21. Therefore, by setting the value of the gap d to an appropriate value, several THz order (for example,
It is possible to simultaneously obtain a frequency difference on the order of several tens GHz (for example, a wavelength difference between points C and D in the figure) and a wavelength difference between points A and B in the figure. Further, by changing the injection current of the laser light source 21, it is possible to obtain a frequency of several hundred MHz, so that it is possible to obtain a plurality of frequency differences required for absolute length measurement with one laser light source. .

<発明の効果> 以上、実施例と共に具体的に説明した様に、本発明によ
れば、少なくとも2つ以上の波長の異なるレーザ光を切
り換えて、測定対象までの距離に応じた光の位相の遅れ
量を順次測定すると共に、これらの波長と位相遅れ量と
の関係から前期測定対象までの距離を求める様にしたマ
イケルソンの干渉光学系を用いたアブソリュート測長器
において、レーザ光源と近接外部鏡の間に所定の距離を
設け、該距離を駆動手段を用いて変化させる事により前
記距離に依存する共振モードの波長を変化させるように
したので、簡単な構成で(1つのレーザ光源)でアブソ
リュートな測長に必要な複数の波長を発生させる事の出
来るレーザ光源を備えたアブソリュート測長器を実現す
る事が出来る。
<Effect of the Invention> As described above in detail with reference to the embodiments, according to the present invention, at least two or more laser lights having different wavelengths are switched to change the phase of light according to the distance to the measurement target. In the absolute length measuring device using Michelson's interferometric optical system, which measures the delay amount one after another and finds the distance to the measurement target from the relationship between these wavelengths and the phase delay amount, the laser light source and the proximity external A predetermined distance is provided between the mirrors, and the wavelength of the resonance mode depending on the distance is changed by changing the distance by using the driving means. Therefore, with a simple configuration (one laser light source) It is possible to realize an absolute length measuring instrument equipped with a laser light source capable of generating a plurality of wavelengths required for absolute length measurement.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係わるアブソリュート測長器の一実施
例を示す構成図、第2図は第1図の装置に用いられる複
合共振器型レーザ光源の発振波長を示す図、第3図及び
第4図は従来例である。 2……ハーフミラー、3……音響光学変調器、4……変
調信号源、5、6……キューブコーナ、7……フォトデ
ィテクタ、8……位相差計、9…演算回路、20……複合
共振器型レーザ光源、21……レーザ光源、22……近接外
部鏡、23……PZTアクチュエータ、24……高電圧ドライ
バ、21a……レーザ光源21の片端面、22a……近接外部鏡
面。
FIG. 1 is a block diagram showing an embodiment of an absolute length measuring device according to the present invention, FIG. 2 is a diagram showing an oscillation wavelength of a composite resonator type laser light source used in the apparatus of FIG. 1, FIG. FIG. 4 shows a conventional example. 2 ... Half mirror, 3 ... Acousto-optic modulator, 4 ... Modulation signal source, 5, 6 ... Cube corner, 7 ... Photo detector, 8 ... Phase difference meter, 9 ... Arithmetic circuit, 20 ... Composite Resonator type laser light source, 21 ... Laser light source, 22 ... Proximity external mirror, 23 ... PZT actuator, 24 ... High voltage driver, 21a ... One end face of laser light source 21, 22a ... Proximity external mirror surface.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも2つ以上の波長の異なるレーザ
光を切り換えて、測定対象迄の距離に応じた光の位相遅
れ量を順次測定すると共に、これらの波長と位相遅れ量
の関係から前記測定対象までの距離を求める様にしたマ
イケルソンの干渉光学系を用いたアブソリュート測長器
において、レーザ光源と近接外部鏡の間に所定の距離を
設け、該距離を駆動手段を用いて変化させる事により前
記距離に依存する共振モードの波長を変化させる事を特
徴とするアブソリュート測長器。
1. At least two or more laser lights having different wavelengths are switched to sequentially measure a phase delay amount of light according to a distance to a measurement object, and the measurement is performed based on the relationship between these wavelengths and the phase delay amount. In an absolute length measuring instrument using Michelson's interference optical system designed to obtain the distance to the object, a predetermined distance is provided between the laser light source and the proximity external mirror, and the distance is changed by using driving means. The absolute length measuring instrument is characterized in that the wavelength of the resonance mode depending on the distance is changed by.
JP1108507A 1989-04-27 1989-04-27 Absolute length measuring machine Expired - Lifetime JPH07119568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108507A JPH07119568B2 (en) 1989-04-27 1989-04-27 Absolute length measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108507A JPH07119568B2 (en) 1989-04-27 1989-04-27 Absolute length measuring machine

Publications (2)

Publication Number Publication Date
JPH02287105A JPH02287105A (en) 1990-11-27
JPH07119568B2 true JPH07119568B2 (en) 1995-12-20

Family

ID=14486535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108507A Expired - Lifetime JPH07119568B2 (en) 1989-04-27 1989-04-27 Absolute length measuring machine

Country Status (1)

Country Link
JP (1) JPH07119568B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131752A (en) * 1976-04-28 1977-11-04 Agency Of Ind Science & Technol Precise length measuring method utilizing oscillation area of two freq uencies of laser beams
JPS62135708A (en) * 1985-12-10 1987-06-18 Yokogawa Electric Corp Measuring instrument for three-dimensional shape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131752A (en) * 1976-04-28 1977-11-04 Agency Of Ind Science & Technol Precise length measuring method utilizing oscillation area of two freq uencies of laser beams
JPS62135708A (en) * 1985-12-10 1987-06-18 Yokogawa Electric Corp Measuring instrument for three-dimensional shape

Also Published As

Publication number Publication date
JPH02287105A (en) 1990-11-27

Similar Documents

Publication Publication Date Title
EP0401799B1 (en) Length measuring apparatus
EP0193742B1 (en) Wavelength scanning interferometry and interferometer employing laser diode
JPS61207903A (en) Heterodyne interferometer system
Ishii Recent developments in laser-diode interferometry
US4865450A (en) Dual photoelastic modulator heterodyne interferometer
JP5421013B2 (en) Positioning device and positioning method
US6897961B2 (en) Heterodyne lateral grating interferometric encoder
US4708481A (en) Method of and apparatus for optically measuring displacement
JPH07119568B2 (en) Absolute length measuring machine
US6507404B1 (en) Method and apparatus for measuring optical wavelength
JP2993836B2 (en) Interferometer using coherence degree
JPS62135703A (en) End measuring machine
JPH0641844B2 (en) Length measuring instrument
JPH0695003B2 (en) Length measuring instrument
JPH026236B2 (en)
US5363191A (en) Fibre optic sensor array reading device
JPH07181005A (en) Multi-wavelength phase interference and interferometer
JPH01161110A (en) Fringe scan type phase interferometer
JPH0648364Y2 (en) Laser frequency meter
JP2004077223A (en) Optical heterodyne interferometer
JPH0648366Y2 (en) Laser frequency meter
JPH0714836Y2 (en) Laser frequency meter
Drabarek et al. Laser diode for interferometric applications
JPH02232504A (en) Displacement measuring apparatus
JPH0695004B2 (en) Three-dimensional shape measuring device