JPH02287105A - Absolute length measuring instrument - Google Patents

Absolute length measuring instrument

Info

Publication number
JPH02287105A
JPH02287105A JP1108507A JP10850789A JPH02287105A JP H02287105 A JPH02287105 A JP H02287105A JP 1108507 A JP1108507 A JP 1108507A JP 10850789 A JP10850789 A JP 10850789A JP H02287105 A JPH02287105 A JP H02287105A
Authority
JP
Japan
Prior art keywords
light source
laser light
length measuring
measurement
absolute length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1108507A
Other languages
Japanese (ja)
Other versions
JPH07119568B2 (en
Inventor
Toshitsugu Ueda
敏嗣 植田
Eiji Ogita
英治 荻田
Katsumi Isozaki
克巳 磯崎
Katsuya Ikezawa
克哉 池澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1108507A priority Critical patent/JPH07119568B2/en
Publication of JPH02287105A publication Critical patent/JPH02287105A/en
Publication of JPH07119568B2 publication Critical patent/JPH07119568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily generate light with plural wavelengths required for absolute length measurement by using a composite resonance laser light source which uses a nearby external mirror as a light source for measurement. CONSTITUTION:The composite resonator type laser light source 20 constituted by arranging a laser light source 21 and a nearby external mirror 22 while a specific gap (d) is held is used as the light source 20 for length measurement. The gap (d) of this laser light source 20 is varied by a PZT actuator 23 which is applied with a high voltage by a high-voltage driver 24 to generate plural wavelengths. The laser light Pout emitted by the light source 20 is used to derive the distance to a corner cube 2 as an object of measurement through the same operation as before. Consequently, the light with the plural wavelengths required for the absolute length measurement is easily found by the simple constitution.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、レーザ光の干渉を利用して、波長を単位とし
た高精度の測長を行う事が出来ると共に、アブソリュー
トな測長出力を得る事の出来る測長器に関するものであ
る。
[Detailed Description of the Invention] <Industrial Application Field> The present invention makes it possible to perform high-precision length measurement in units of wavelength by utilizing laser light interference, and also to provide absolute length measurement output. This is about a length measuring device that can be obtained.

〈従来の技術〉 第3図は従来のこの種のアブフリュー1−測長器の一例
を示す構成図であり、マイケルソンの干渉光学系を利用
したものである。
<Prior Art> FIG. 3 is a block diagram showing an example of a conventional Abflu 1 length measuring device of this type, which utilizes a Michelson interference optical system.

第3図において、1は波長の異なる複数のコヒーレント
な光(λ1〜λ4)を選択的に発生するレーザ光源、2
はハーフミラ−13は光の位相遅れ量をヘテロダイン検
出する為に基準側の光を変調する音響光学変調器(以下
、単にAO変調器という)、4はAO変調器を一定周波
数fbで駆動する変調信号源、5.6はキューブコーナ
であり、キューブコーナ5は測長動作に応じて移動する
測長側のキューブコーナ、キューブコーナ6は一定の距
離に固定された基準側のキューブコーナである。7はフ
ォトディテクタ、8はフォトディテクタ7の出力に含ま
れる位相遅れ量を検出する位相差計である。
In FIG. 3, 1 is a laser light source that selectively generates a plurality of coherent lights (λ1 to λ4) with different wavelengths; 2
The half mirror 13 is an acousto-optic modulator (hereinafter simply referred to as an AO modulator) that modulates the light on the reference side in order to heterodyne detect the amount of phase delay of the light, and 4 is a modulator that drives the AO modulator at a constant frequency fb. The signal source 5.6 is a cube corner, the cube corner 5 is a cube corner on the length measurement side that moves according to the length measurement operation, and the cube corner 6 is a cube corner on the reference side that is fixed at a constant distance. 7 is a photodetector, and 8 is a phase difference meter that detects the amount of phase delay included in the output of the photodetector 7.

レーザ光源1は例えば一定波長の光源11とその波長を
任意の量だけシフトさせる波長シフタ12により構成さ
れ、任意の波長の光を順次発生する。演算回路9は測定
に使用された光の波長とその時の位相遅れ量との関係か
らキューブコーナ5までの距離を求めるものである。
The laser light source 1 includes, for example, a light source 11 with a constant wavelength and a wavelength shifter 12 that shifts the wavelength by an arbitrary amount, and sequentially generates light with an arbitrary wavelength. The arithmetic circuit 9 calculates the distance to the cube corner 5 from the relationship between the wavelength of the light used for measurement and the amount of phase delay at that time.

この様に構成された測長器において、光の角周波数をω
、AO変調器3における変調角周波数をωb (=2π
fb)とし、レーザ光源1から出射される光の振幅vO
を VO=sinωt         ・・・■とすると
、AO変調器3により変調された光の振幅V1は Vl =Sin (ω+ωb ) t    −■キュ
ーブコーナ5を介して戻って来た光の振幅V2は V2  =sin  (ωt+φ)・・・■となる。な
お、−φは基準側及び測長側の各光路における光路長の
差に対応して発生する位相遅れ量である。
In a length measuring device configured in this way, the angular frequency of light is ω
, the modulation angular frequency in the AO modulator 3 is ωb (=2π
fb), and the amplitude vO of the light emitted from the laser light source 1 is
When VO=sinωt...■, the amplitude V1 of the light modulated by the AO modulator 3 is Vl = Sin (ω+ωb) t -■ The amplitude V2 of the light returning via the cube corner 5 is V2 = sin (ωt+φ)...■. Note that -φ is the amount of phase delay that occurs in response to the difference in optical path length between the optical paths on the reference side and the length measurement side.

フォトディテクタ7上では、上記の■、■式に示される
様な2つの光が重畳されるので、入射する光の振幅は Vl +V2 =sin  (ω+ωb) を十Sin  (ωt+φ
)=2Sin(ωt トωbt/2+φ)・COS  
((ωbt−φ)/2)  ・・・■の様にVl 、V
2の和となる。ここで、フォトデイチクタフの出力は入
射する光の振幅の2乗に比例するので、理論的には (Vl +V2 ) 2 一4sin 21. (ω十ωb/2) t+φ1・c
os2((ωbt−φ)/2) ・・・■となるが、フ
ォトディテクタ7は光の周波数には応答出来ず、平均値
を示す様になるので、その出力Vpは VD =2+2cos  (ωbt−φ)  ・・・■
となる。
On the photodetector 7, the two lights as shown in the above formulas 1 and 2 are superimposed, so the amplitude of the incident light is Vl + V2 = sin (ω + ωb) + 10 Sin (ωt + φ
)=2Sin(ωt ωbt/2+φ)・COS
((ωbt-φ)/2) ...Vl, V as in ■
It becomes the sum of 2. Here, since the output of the photodetector is proportional to the square of the amplitude of the incident light, theoretically (Vl +V2) 2 - 4sin 21. (ω1ωb/2) t+φ1・c
os2((ωbt-φ)/2)...■However, the photodetector 7 cannot respond to the frequency of light and shows the average value, so its output Vp is VD = 2+2cos (ωbt-φ )...■
becomes.

従って、AO変調器3における変調角周波数ωbがわか
っていれば、フォトディテクタ7の出力Vpの値から位
相遅れ量を算出する事が出来る。
Therefore, if the modulation angular frequency ωb in the AO modulator 3 is known, the amount of phase delay can be calculated from the value of the output Vp of the photodetector 7.

同様にこの位相遅れ量を異った波長に対応して順次測定
し、これらの測定結果を連立方程式として解く事により
測定対象までの距離を求める事が出来る。
Similarly, by sequentially measuring the amount of phase delay corresponding to different wavelengths and solving these measurement results as simultaneous equations, the distance to the measurement target can be determined.

又、第4図は大きな波長差を得る為に発生波長の異なる
レーザ光源を複数個使用して、これらのレーザ光源の出
力光を選択的に出射する様にしな構成のものである。
Further, FIG. 4 shows a configuration in which a plurality of laser light sources with different generation wavelengths are used to obtain a large wavelength difference, and the output lights of these laser light sources are selectively emitted.

この様な構成によれば、2つのレーザ光源10a、10
bから出射した波長の異る光をキューブコーナ5.6を
互いに逆向きに通過する様にして一方の信号の位相差信
号を基準1!1(例えばフォトディテクタ7a)、他方
の位相差信号を測長側(フォトディテクタ7b)で受光
し、それらの位相差信号の位相差から距離を求める様に
したものである。
According to such a configuration, two laser light sources 10a, 10
Light beams of different wavelengths emitted from b are passed through the cube corner 5.6 in opposite directions, and the phase difference signal of one signal is used as a reference 1!1 (for example, photodetector 7a), and the phase difference signal of the other signal is measured. Light is received on the long side (photodetector 7b), and the distance is determined from the phase difference between these phase difference signals.

〈発明が解決しようとする課題〉 しかしながら、上記従来技術に示すアブソリュート測長
器の例に示す様に、アブソリュートな測長を行う為には
波長の異る光が複数必要であり、一般的には大きな波長
差を得る為には、第4図に示す様に発生波長の異なるレ
ーザ光源を複数個使用して、これらのレーザ光源の出力
光を選択的に出射する様にしており、又、第3図に示す
様に、小さな波長差は波長を任意の量だけシフトさせる
波長シフタにより得ている。従って、多波長を発生する
レーザ光源の構成は複雑なものであるという課題があっ
た。
<Problem to be solved by the invention> However, as shown in the example of the absolute length measuring device shown in the above-mentioned prior art, in order to perform absolute length measurement, multiple lights of different wavelengths are required. In order to obtain a large wavelength difference, multiple laser light sources with different generation wavelengths are used as shown in Figure 4, and the output light of these laser light sources is selectively emitted. As shown in FIG. 3, a small wavelength difference is obtained by a wavelength shifter that shifts the wavelength by an arbitrary amount. Therefore, there is a problem in that the configuration of a laser light source that generates multiple wavelengths is complicated.

本発明は上記従来技術の課題を踏まえて成されたもので
あり、レーザ光源に近接外部鏡を組合せた複合共振器型
レーザ光源を使用した構成としたものであり、簡単な構
成でアブソリュートな測長に必要な複数の波長を発生さ
せる事の出来るレザ光源を備えたアブソリュート測長器
を提供する事を目的としたものである。
The present invention has been made based on the above-mentioned problems of the prior art, and has a configuration using a composite resonator type laser light source in which a laser light source is combined with a close-in external mirror, and allows absolute measurement with a simple configuration. The purpose of this invention is to provide an absolute length measuring device equipped with a laser light source that can generate multiple wavelengths necessary for measuring length.

く課題を解決するための手段〉 上記課題を解決する為の本発明の構成は、少なくとも2
つ以上の波長の異なるレーザ光を切り換えて、測定対象
までの距離に応じた光の位相遅れ量を順次測定すると共
に、これらの波長と位相遅れ址との関係から前記J11
定対象までの距離を求める様にしたマイケルソンの干渉
光学系を用いたアブソリュート測長器において、測長用
光源とじて近接外部鏡を用いた複合共振器型レーザ光源
を使用した事を特徴とするものである。
Means for Solving the Problems> The configuration of the present invention for solving the above problems includes at least two
The amount of phase delay of the light is sequentially measured according to the distance to the measurement target by switching laser beams with different wavelengths, and the J11 described above is determined based on the relationship between these wavelengths and the phase delay.
This is an absolute length measuring device that uses Michelson's interference optical system to determine the distance to a target, and is characterized by the use of a complex resonator type laser light source using a close-up external mirror as the light source for length measurement. It is something to do.

く作用〉 この様に、近接外部鏡を用いた複合共振器型レーザ光源
を測長用光源として使用する事により、アブソリュート
な測長に必要な複数の波長を発生させるレーザ光源の構
成を簡単なものとする事が出来る。
In this way, by using a composite resonator laser light source using a close external mirror as a light source for length measurement, it is possible to easily configure the laser light source that generates the multiple wavelengths required for absolute length measurement. It can be made into something.

〈実施例〉 以下、本発明を図面に基づいて説明する。<Example> Hereinafter, the present invention will be explained based on the drawings.

第1図は本発明に係わるアブソリュート測長器の一実施
例を示す構成図である。なお、第1図において第3図と
同一要素には同一符号をイ1して重複する説明は省略す
る。
FIG. 1 is a configuration diagram showing an embodiment of an absolute length measuring device according to the present invention. In FIG. 1, the same elements as those in FIG. 3 are denoted by the same reference numerals, and redundant explanations will be omitted.

第1図において、20は複合共振器型レーザ光源であり
、21は両面取り出し型のレーザ光源であり、片端面2
1aに反射防止膜がコーティングされている。22は近
接外部鏡であり、近接外部鏡22の面22aとレーザ光
源21の片端面21aとは所定の隙間dを保うて平行配
置さねており、レーザ光源21は外部の反射鏡22より
なる複合共振器j7F、 ′?iとなっている。23は
近接外部鏡22に取り付けたp z ’r’アクチュエ
ータ(以下、単にP Z ’1”という)であり、高電
圧ドライバ24により電圧を印加する事によって図に示
す矢印方向に可変出来るものである。
In FIG. 1, 20 is a composite resonator type laser light source, 21 is a double-sided laser light source, and one end surface 2
1a is coated with an antireflection film. Reference numeral 22 denotes a proximal external mirror, and the surface 22a of the proximal external mirror 22 and one end surface 21a of the laser light source 21 are arranged parallel to each other with a predetermined gap d maintained. The composite resonator j7F, ′? i. 23 is a pz 'r' actuator (hereinafter simply referred to as PZ '1') attached to the proximal external mirror 22, which can be varied in the direction of the arrow shown in the figure by applying voltage with a high voltage driver 24. be.

上記構成において、レーザ光源21から近接外部鏡22
に出射されなレーザ光は近接外部鏡22の面22aとレ
ーザ光源21の片端面21aとの隙間d内で共振し、隙
間dの間隔に依存した共振モードを有する波長(又は周
波数)の出力光Pou1となってレーザ光源21から出
力される。一方、高電圧ドライバ24からP Z T 
23に電圧を印加すると、PZT23は図に示す矢印の
方向に変位し、P Z i’ 23に取り付けた近接外
部鏡22が変位する事になり、外部共振器長(隙間d)
が変位する。その為、レーザ光源21と近接外部鏡22
の隙間dに依存した共振モードの波長が変化する事にな
る。つまり、複合共振器型レーザ光源はPZT23に取
り付けた近接外部鏡22を変位させる事により、レーザ
光の波長(又は周波数)を制御しており、その変位はP
Z’T’23に印加する高電圧ドライバ24からの電圧
によって行うものである。
In the above configuration, from the laser light source 21 to the close external mirror 22
The laser beam emitted resonates within the gap d between the surface 22a of the proximal external mirror 22 and one end surface 21a of the laser light source 21, and output light with a wavelength (or frequency) having a resonance mode depending on the distance of the gap d. The light becomes Pou1 and is output from the laser light source 21. On the other hand, P Z T from the high voltage driver 24
When a voltage is applied to 23, PZT 23 is displaced in the direction of the arrow shown in the figure, and the proximity external mirror 22 attached to PZ i' 23 is displaced, and the external resonator length (gap d)
is displaced. Therefore, the laser light source 21 and the close external mirror 22
The wavelength of the resonant mode will change depending on the gap d. In other words, the compound cavity type laser light source controls the wavelength (or frequency) of the laser beam by displacing the close external mirror 22 attached to the PZT 23, and the displacement is P
This is done by the voltage from the high voltage driver 24 applied to Z'T'23.

この様な構成において、複合共振器型レーザ光源20か
ら出射されたレーザ光poutは従来例で示したアブフ
リュー1−測長器と同様の動作を行い測定対象(キュー
ブコーナ5)までの距離を求めるものである。
In such a configuration, the laser beam pout emitted from the composite resonator type laser light source 20 operates in the same manner as the Abflu 1-length measuring device shown in the conventional example to determine the distance to the measurement target (cube corner 5). It is something.

ここで、第2図は複合共振器型レーザ光源20の発振波
長を示す図である。レーザ光源21と外部反射鏡22の
隙間dを高電圧ドライバ24により電圧を印加されたP
ZT23で可変させる事により、第2図に示す様にその
発振波長はステップ状に変化する。又、変化するステッ
プ数(最大変化量Δf1)と1ステツプの変化量Δf2
は隙間dの絶対値とレーザ光源21の片端面21aにコ
ーティングした反射防止膜の反射率により変化する。従
って、隙間dの値を適当な値に設定する事により、数’
I’ Hzオーダー(例えば、図中A点とB点の波長差
)と数10GHzオーダー(例えば、図中C点とD点の
波長差)の周波数差を同時に得る事が出来る事になる。
Here, FIG. 2 is a diagram showing the oscillation wavelength of the composite resonator type laser light source 20. A voltage is applied to the gap d between the laser light source 21 and the external reflecting mirror 22 by the high voltage driver 24.
By varying the ZT23, the oscillation wavelength changes stepwise as shown in FIG. In addition, the number of changing steps (maximum amount of change Δf1) and the amount of change per one step Δf2
varies depending on the absolute value of the gap d and the reflectance of the antireflection film coated on one end surface 21a of the laser light source 21. Therefore, by setting the value of the gap d to an appropriate value, the number '
It is possible to simultaneously obtain frequency differences on the order of I' Hz (for example, the wavelength difference between points A and B in the figure) and on the order of several tens of GHz (for example, the wavelength difference between points C and D in the figure).

又、レーザ光源21の注入を流を可変させる事により、
数100MHzの周波数を得る事が出来るので、アブソ
リュートな測長に必要な複数の周波数差を1つのレーザ
光源で全て得る事が出来るものである。
Also, by varying the injection flow of the laser light source 21,
Since it is possible to obtain a frequency of several 100 MHz, it is possible to obtain all the multiple frequency differences necessary for absolute length measurement with one laser light source.

〈発明の効果〉 以上、実施例と共に具体的に説明した様に、本発明によ
れば、少なくとも2つ以上の波長の異なるレーザ光を切
り換えて、測定対象までの距離に応じた光の位相遅れ量
を順次測定すると共に、これらの波長と位相遅れ量との
関係から前記測定対象までの距離を求める様にしたマイ
ケルソンの干渉光学系を用いたアブソリュート測長器に
おいて、測長用光源として近接外部鏡を用いた複合共振
器型レーザ光源を使用した構成とする事により、簡単な
構成で(1つのレーザ光源)でアブソリュートな測長に
必要な複数の波長を発生させる事の出来るレーザ光源を
備えたアブソリュート測長器を実現する事が出来る。
<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, at least two laser beams with different wavelengths are switched, and the phase delay of the light is determined according to the distance to the measurement target. In an absolute length measuring device that uses Michelson's interference optical system, which sequentially measures the amount of light and determines the distance to the measurement target from the relationship between the wavelength and phase delay amount, a close-up light source is used as a light source for length measurement. By using a complex resonator laser light source using an external mirror, we have created a laser light source that can generate multiple wavelengths necessary for absolute length measurement with a simple configuration (one laser light source). It is possible to realize an absolute length measuring device equipped with the following functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアブソリュート測長器の一実施
例を示す構成図、第2図は第1図の装置に用いられる複
合共振器型レーザ光源の発振波長を示す図、第3図及び
第4図は従来例である。 2・・・ハーフミラ−13・・・音警光学変調器、4・
・・変調信号源、5.6・・・キューブコーナ、7・・
・フ第1・ディテクタ、8・・・位相差計、9・・・演
算回路、20・・・複合共振器型レーザ光源、21・・
・レーザ光源、22・・・近接外部鏡、23・・・PZ
Tアクチュエータ、24・・・高電圧ドライバ、21a
・・・レーザ光源21の片端面、22a・・・近接外部
鏡面。  L
FIG. 1 is a block diagram showing an embodiment of an absolute length measuring device according to the present invention, FIG. 2 is a diagram showing the oscillation wavelength of a composite resonator type laser light source used in the device shown in FIG. 1, and FIG. FIG. 4 shows a conventional example. 2...Half mirror 13...Sound warning optical modulator, 4.
...Modulation signal source, 5.6...Cube corner, 7...
- First detector, 8... Phase difference meter, 9... Arithmetic circuit, 20... Complex resonator type laser light source, 21...
・Laser light source, 22... Proximity external mirror, 23... PZ
T actuator, 24...high voltage driver, 21a
. . . One end surface of the laser light source 21, 22a . . . Proximate external mirror surface. L

Claims (1)

【特許請求の範囲】[Claims] 少なくとも2つ以上の波長の異なるレーザ光を切り換え
て、測定対象までの距離に応じた光の位相遅れ量を順次
測定すると共に、これらの波長と位相遅れ量との関係か
ら前記測定対象までの距離を求める様にしたマイケルソ
ンの干渉光学系を用いたアブソリュート測長器において
、測長用光源として近接外部鏡を用いた複合共振器型レ
ーザ光源を使用した事を特徴とするアブソリュート測長
器。
By switching at least two or more laser beams with different wavelengths, the amount of phase delay of the light is sequentially measured according to the distance to the measurement target, and the distance to the measurement target is determined from the relationship between these wavelengths and the amount of phase delay. An absolute length measuring device using a Michelson interference optical system designed to obtain the following: An absolute length measuring device characterized by using a composite resonator type laser light source using a close external mirror as a length measuring light source.
JP1108507A 1989-04-27 1989-04-27 Absolute length measuring machine Expired - Lifetime JPH07119568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1108507A JPH07119568B2 (en) 1989-04-27 1989-04-27 Absolute length measuring machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1108507A JPH07119568B2 (en) 1989-04-27 1989-04-27 Absolute length measuring machine

Publications (2)

Publication Number Publication Date
JPH02287105A true JPH02287105A (en) 1990-11-27
JPH07119568B2 JPH07119568B2 (en) 1995-12-20

Family

ID=14486535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1108507A Expired - Lifetime JPH07119568B2 (en) 1989-04-27 1989-04-27 Absolute length measuring machine

Country Status (1)

Country Link
JP (1) JPH07119568B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131752A (en) * 1976-04-28 1977-11-04 Agency Of Ind Science & Technol Precise length measuring method utilizing oscillation area of two freq uencies of laser beams
JPS62135708A (en) * 1985-12-10 1987-06-18 Yokogawa Electric Corp Measuring instrument for three-dimensional shape

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131752A (en) * 1976-04-28 1977-11-04 Agency Of Ind Science & Technol Precise length measuring method utilizing oscillation area of two freq uencies of laser beams
JPS62135708A (en) * 1985-12-10 1987-06-18 Yokogawa Electric Corp Measuring instrument for three-dimensional shape

Also Published As

Publication number Publication date
JPH07119568B2 (en) 1995-12-20

Similar Documents

Publication Publication Date Title
EP0401799B1 (en) Length measuring apparatus
US4969742A (en) Integrated optic wavemeter
US4759628A (en) Wavelength scanning interferometry and interferometer employing laser diode
AU6212899A (en) Optical phase detector
US4789241A (en) Optical fiber sensing systems having acoustical optical deflection and; modulation devices
JP5421013B2 (en) Positioning device and positioning method
JP5511162B2 (en) Multi-wavelength interference displacement measuring method and apparatus
US6897961B2 (en) Heterodyne lateral grating interferometric encoder
US6720548B2 (en) Optical sampling waveform measuring apparatus aiming at achieving wider band
JPH02287105A (en) Absolute length measuring instrument
JP2726881B2 (en) Backscattered light measurement device
JP4607312B2 (en) Optical frequency measurement system
US6064482A (en) Interferometric measuring device for form measurement on rough surfaces
JPH06331314A (en) Method and apparatus for measuring displacement
JPS62135703A (en) End measuring machine
JP2993836B2 (en) Interferometer using coherence degree
RU2124185C1 (en) Optical gyroscope with passive ring resonator
JP2003043435A (en) Optical frequency comb generator
JPH0323844B2 (en)
JPH11274643A (en) Variable wavelength semiconductor laser light source
JPH02189412A (en) Optical fiber gyroscope
JPH05100200A (en) Phase shifter
JPH0774762B2 (en) Laser frequency meter
JPH07260418A (en) Method for measuring displacement
JPS62229007A (en) 3-d shape measuring apparatus