JPH07260418A - Method for measuring displacement - Google Patents

Method for measuring displacement

Info

Publication number
JPH07260418A
JPH07260418A JP5241394A JP5241394A JPH07260418A JP H07260418 A JPH07260418 A JP H07260418A JP 5241394 A JP5241394 A JP 5241394A JP 5241394 A JP5241394 A JP 5241394A JP H07260418 A JPH07260418 A JP H07260418A
Authority
JP
Japan
Prior art keywords
light
measuring
measured
phase
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5241394A
Other languages
Japanese (ja)
Inventor
Kenji Sato
健司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5241394A priority Critical patent/JPH07260418A/en
Publication of JPH07260418A publication Critical patent/JPH07260418A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure micro displacement on the surface of an object highly accurately by causing a measuring light subjected to phase variation to interfere with a reference light to produce an interfering light and then measuring fringes using a specific comparison value. CONSTITUTION:A reference light and a measuring light are subjected to regulation of phase variation through a phase modulator 8 prior to returning back to a 3dB coupler 17. The phase variation is regulated by applying a predetermined rectangular voltage in synchronism with a transmitter 20 by means of a DA converter 18 through an analog switch 19. One or both of the reference light and the measuring light are then subjected to phase modulation in stepwise as shown by a formula for an interval of 0<=t<=n (t is a time variable) and the average intensity of interfering light during that interval is employed as a comparison value. In the formula, n is an integer of 2 or above, tau is the time interval of stepwise phase modulation, and the function S(X) is a binary step function defined such that S(X)=0 for X<0 and S(X)=1 for X>=0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光干渉による、
被測定物の微小部分の変位、移動方向を測定する方法に
関する。
BACKGROUND OF THE INVENTION The present invention is based on laser light interference.
The present invention relates to a method for measuring the displacement and movement direction of a minute portion of an object to be measured.

【0002】[0002]

【従来の技術】レーザ、エレクトロニクス、マイクロコ
ンピュータ、センサ素子等の発達に伴い、可干渉性に優
れるレーザ光を用いて光学的干渉により被測定物の表面
の微小部分の変位、移動方向を測定する方法が普及して
いる。この測定方法は、非接触で行うことができ、かつ
高精度であるため、例えば結晶ウェハ、光学部品、X線
用ミラー等の表面粗さの測定に利用されている。
2. Description of the Related Art With the development of lasers, electronics, microcomputers, sensor elements, etc., laser light having excellent coherence is used to measure the displacement and moving direction of a minute portion of the surface of an object to be measured by optical interference. The method is popular. Since this measuring method can be performed in a non-contact manner and has high accuracy, it is used for measuring the surface roughness of crystal wafers, optical components, X-ray mirrors, and the like.

【0003】このような光学的干渉による変位測定方法
の一つとして、二組のマイケルソン型干渉系を組み合わ
せ、測定光と、π/2の位相差をもつ二つの干渉光とを
干渉させ、変位の方向と移動方向とを測定する方法が知
られている。その方法を図3によって説明する。
As one of such displacement measuring methods by optical interference, two sets of Michelson type interference systems are combined to make the measuring light interfere with two interference lights having a phase difference of π / 2. A method of measuring the direction of displacement and the direction of movement is known. The method will be described with reference to FIG.

【0004】レーザダイオード1から発光されたレーザ
光は、偏波保持型光ファイバー2を介して光導波路基板
3に導かれ、光導波路のY分岐4及び3dBカップラ
5、6で3つに分割される。分割された光のうちの2つ
は、光導波路基板3の端面に設けられた反射鏡7で反射
され、参照光として3dBカップラ5、6に戻ってく
る。
The laser light emitted from the laser diode 1 is guided to the optical waveguide substrate 3 via the polarization-maintaining optical fiber 2 and divided into three by the Y branch 4 of the optical waveguide and the 3 dB couplers 5 and 6. . Two of the split lights are reflected by the reflecting mirror 7 provided on the end face of the optical waveguide substrate 3 and return to the 3 dB couplers 5 and 6 as reference lights.

【0005】他方、光導波路基板3の中央を通るもう一
つの光は、位相変調器8を通って光導波路基板3の端面
から出射される。この出射光は回折により広がってしま
うので、集光レンズ9によって平行光とされる。この平
行光は、被測定物10の表面で反射され、逆の光路を辿
って光導波路基板3に導かれ、位相変調器8、Y分岐1
1を通って3dBカップラ5、6に戻ってくる。3dB
カップラ5、6は、反射鏡7から反射してきた参照光と
被測定物10から反射してきた測定光とを干渉させ、そ
の干渉光はマルチモード光ファイバー12を介して光検
出用ダイオード13、14に導かれる。光検出用ダイオ
ード13、14に導かれた干渉光は電気信号に変換さ
れ、それぞれコンパレータ15、16を介して干渉信号
L’、R’として出力される。
On the other hand, another light passing through the center of the optical waveguide substrate 3 passes through the phase modulator 8 and is emitted from the end face of the optical waveguide substrate 3. Since this emitted light spreads due to diffraction, it is converted into parallel light by the condenser lens 9. This parallel light is reflected on the surface of the DUT 10, is guided to the optical waveguide substrate 3 by following the opposite optical path, and is guided by the phase modulator 8 and the Y branch 1.
Return to 3dB couplers 5 and 6 through 1. 3 dB
The couplers 5 and 6 interfere with the reference light reflected from the reflecting mirror 7 and the measurement light reflected from the DUT 10, and the interference light passes through the multimode optical fiber 12 to the photodetection diodes 13 and 14. Be guided. The interference light guided to the photodetection diodes 13 and 14 is converted into electric signals and output as interference signals L ′ and R ′ through the comparators 15 and 16, respectively.

【0006】二つの参照光の強度は、完全に同じに得ら
れることが不可能であるため、比較用参照電圧VREF1
REF2が、コンパレータ15、16のそれぞれ印加され
る。
Since it is impossible to obtain the intensities of the two reference lights exactly the same, the comparison reference voltage V REF1 ,
V REF2 is applied to each of the comparators 15 and 16.

【0007】2つの光ファイバー12に導かれる2つの
干渉出力L、Rは、相互にπ/2の位相差を有するよう
に光路長が調整され、被測定物10の位置が光路長が変
化する方向に変位すると、干渉出力L、Rは図4の上段
のように変化し、干渉信号L’、R’もこれに応じて図
4の下段のように変化する。このようにして得られた干
渉信号L’とR’の位相関係、パルス数(フリンジ計
測)から、被測定物10の微小変位、移動方向が求めら
れる。
The optical path lengths of the two interference outputs L and R guided to the two optical fibers 12 are adjusted so that they have a phase difference of π / 2 with each other, and the position of the DUT 10 changes in the optical path length direction. When it is displaced to, the interference outputs L and R change as shown in the upper stage of FIG. 4, and the interference signals L ′ and R ′ also change accordingly as shown in the lower stage of FIG. From the phase relationship between the interference signals L ′ and R ′ thus obtained and the number of pulses (fringe measurement), the minute displacement and moving direction of the DUT 10 can be obtained.

【0008】[0008]

【発明が解決しようとする課題】このようなマイケルソ
ン干渉系を用いた光学的干渉による変位測定をフリンジ
計測により行う場合、正弦波である干渉出力L、Rを矩
形波の信号L’、R’として、2値数に変換するために
は、干渉出力の中間値である比較値が必要となる。従来
この比較値は、干渉出力をアナログ回路によって平均化
したり、手動により調整、設定したりしていた。
When displacement measurement by optical interference using such a Michelson interferometer is performed by fringe measurement, interference outputs L and R which are sine waves are converted into rectangular wave signals L'and R. In order to convert into a binary number as', a comparison value which is an intermediate value of the interference output is required. Conventionally, this comparison value has been obtained by averaging the interference output by an analog circuit or manually adjusting and setting it.

【0009】しかし、干渉出力をアナログ的に平均する
方法では、常に干渉出力が変化していなければ正確な比
較値が得られない。また、手動による比較値の設定で
は、被測定物が動くものであったり、印刷物のように白
色と黒色のコントラストの大きいものであったりする
と、測定中に光の反射率や測定光の受光効率が大きく変
化し、正確な変位測定ができない。
However, in the method of averaging the interference outputs in an analog manner, an accurate comparison value cannot be obtained unless the interference outputs are constantly changing. When setting the comparison value manually, if the object to be measured is moving or the printed material has a large contrast between white and black, the reflectance of light and the light receiving efficiency of the measuring light during measurement Changes greatly, and accurate displacement measurement is not possible.

【0010】本発明は、上記のような問題点に鑑みてな
されたものであり、その目的とするところは、同一光源
のレーザ光を測定光と参照光とに分割して該測定光を被
測定物に照射し、該被測定物から反射され該参照光との
光路差の変化によって位相変化の生じた該測定光を該参
照光と干渉させ、得られた干渉光を比較値を用いてフリ
ンジ計測し、該被測定物の表面の微小変位と移動方向を
測定するに際し、正確な比較値を与えて精度良く微小部
分の変位、移動方向を測定する方法を提供することであ
る。
The present invention has been made in view of the above problems, and an object of the present invention is to divide a laser beam of the same light source into a measuring beam and a reference beam and receive the measuring beam. Irradiate the measurement object, the measurement light reflected from the measurement object and having a phase change caused by the change of the optical path difference with the reference light is caused to interfere with the reference light, and the obtained interference light is used as a comparison value. It is an object of the present invention to provide a method for accurately measuring the displacement and movement direction of a minute portion by giving an accurate comparison value when measuring the fringe measurement and measuring the minute displacement and movement direction of the surface of the measured object.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の変位測定方法は、同一光源のレーザ光を測
定光と参照光とに分割して該測定光を被測定物に照射
し、該被測定物から反射され該参照光との光路差の変化
によって位相変化の生じた該測定光を該参照光と干渉さ
せ、得られた干渉光を比較値を用いてフリンジ計測し、
該被測定物の表面の微小変位若しくは移動方向を測定す
る方法において、該参照光と該測定光の何れか一方或い
は両方に、時間変数をtとして、0≦t≦nτの期間
に、
A displacement measuring method of the present invention for achieving the above object is to divide a laser beam of the same light source into a measuring beam and a reference beam and irradiate the object to be measured with the measuring beam. Then, the measurement light reflected from the object to be measured and having a phase change caused by a change in optical path difference with the reference light is caused to interfere with the reference light, and the obtained interference light is measured by fringe using a comparison value,
In the method of measuring a minute displacement or moving direction of the surface of the object to be measured, in one or both of the reference light and the measurement light, a time variable is t, and a period of 0 ≦ t ≦ nτ,

【0012】[0012]

【式1】 で表されるステップ状の位相変調を与え、該比較値とし
て上記期間における該干渉光強度の平均値を用いること
を特徴とする。
[Formula 1] The stepwise phase modulation represented by is given, and the average value of the interference light intensity in the above period is used as the comparison value.

【0013】但し、nは2以上の整数、τは上記ステッ
プ状の位相変調におけるステップ幅時間であり、 関数
S(x) は、 x<0 で S(x)=0、 x≧0 で S(x)=1 と定義される、2値のステップ関数である。
However, n is an integer of 2 or more, τ is a step width time in the above stepwise phase modulation, and the function S (x) is S (x) = 0 when x <0, and S when x ≧ 0. It is a binary step function defined as (x) = 1.

【0014】本発明の方法において変調時間に対する位
相変調量は、例えばn=4の場合、図7に示すようなパ
ターンとなる。これは、位相変調量が変調時間経過とと
もに、ステップ幅τを単位に増加していくステップ状の
パターンであるが、ステップ状の位相変調を与える 0
≦t≦nτ の期間内で、離散的な値の位相変調量が与
えられる各時間の総和が変わらなければ、図8、図9、
図10に示すような位相変調のパターンであっても同様
の効果が得られる。例えば、図7における、離散的な値
の位相変調量、0、π/2、π、3π/2が、0≦t≦
nτの期間内で与えられる時間の総和は、それぞれ τ
であり、図8、図9、図10においても同様で、これ
による効果も同様である。
In the method of the present invention, when the phase modulation amount with respect to the modulation time is, for example, n = 4, the pattern becomes as shown in FIG. This is a step-like pattern in which the amount of phase modulation increases with the step width τ as the modulation time elapses.
If the total sum of the respective times to which the phase modulation amount of the discrete value is given does not change within the period of ≤t≤nτ, then, as shown in Figs.
The same effect can be obtained even with a phase modulation pattern as shown in FIG. For example, in FIG. 7, the phase modulation amounts of discrete values 0, π / 2, π, 3π / 2 are 0 ≦ t ≦
The sum of the times given in the period of nτ is τ
The same applies to FIGS. 8, 9 and 10, and the same effect is obtained.

【0015】[0015]

【作用】図1に、本発明の変位測定方法を実現するため
の、一組のマイケルソン型干渉系による変位測定装置の
一例を示す。この装置例は、変調信号を時分割して一組
の干渉系に二組の干渉系の役割をもたせたもので、図3
の構成の装置と同様の機能を有するものである。
FIG. 1 shows an example of a displacement measuring device using a set of Michelson type interferometers for realizing the displacement measuring method of the present invention. In this example of the apparatus, a modulated signal is time-divided so that one set of interfering systems has a role of two sets of interfering systems.
It has the same function as the device having the above-mentioned configuration.

【0016】レーザダイオード1から発光されたレーザ
光は、偏波保持型光ファイバー2を介して光導波路基板
3に導かれ、3dBカップラ17で2分割される。分割
された一方の光は、光導波路基板3の端面に形成された
反射鏡7で反射され、参照光として3dBカップラ17
に戻ってくる。他方の光は、光導波路基板3から出射さ
れ、集光レンズ9により平行光にされ、被測定物10に
照射される。被測定物10に反射された光は逆の経路を
辿り、測定光として3dBカップラ17に戻ってくる。
The laser light emitted from the laser diode 1 is guided to the optical waveguide substrate 3 via the polarization-maintaining optical fiber 2 and is split into two by the 3 dB coupler 17. One of the split lights is reflected by the reflecting mirror 7 formed on the end face of the optical waveguide substrate 3, and the 3 dB coupler 17 is used as the reference light.
Come back to. The other light is emitted from the optical waveguide substrate 3, collimated by the condenser lens 9, and irradiated onto the DUT 10. The light reflected by the DUT 10 follows the reverse path and returns to the 3 dB coupler 17 as the measurement light.

【0017】二つの反射光は、3dBカップラ17に戻
るに際し、光導波路基板3に形成された位相変調器8に
より、位相変化が調整される。この調整は、所定の矩形
波電圧を、DAコンバータ18がアナログスイッチ19
を介して、発振器20に同期させて加えることによって
行われる。
When returning to the 3 dB coupler 17, the phase change of the two reflected lights is adjusted by the phase modulator 8 formed on the optical waveguide substrate 3. In this adjustment, the DA converter 18 converts the predetermined rectangular wave voltage into the analog switch 19
Through the oscillator 20 in synchronism with the oscillator 20.

【0018】3dBカップラ17で干渉された干渉光
は、光導波路基板3の端面から出射され、マルチモード
光ファイバー12を介して光検出用ダイオード13に受
光され、電気信号に変換される。この電気信号は、ロー
パスフィルター23を介してコンパレータ15で2値化
され、前記発振器20に同期しながらサンプル・ホール
ド回路24、25に入力される。サンプル・ホールド回
路24、25からは、それぞれ干渉信号L’、R’が出
力される。被測定物10の位置が光路長が変化する方向
に変位すると、干渉出力L、R、及び、これを2値化し
た干渉信号L’、R’は、図4のようになる。
The interference light interfered by the 3 dB coupler 17 is emitted from the end face of the optical waveguide substrate 3, received by the photodetection diode 13 via the multimode optical fiber 12, and converted into an electric signal. This electric signal is binarized by the comparator 15 through the low-pass filter 23, and is input to the sample and hold circuits 24 and 25 in synchronization with the oscillator 20. Interference signals L ′ and R ′ are output from the sample and hold circuits 24 and 25, respectively. When the position of the DUT 10 is displaced in the direction in which the optical path length changes, the interference outputs L and R and the binarized interference signals L ′ and R ′ are as shown in FIG.

【0019】被測定物10が静止していると、干渉出力
は位相差によって、図5のD、A、B、C、A’B’
C’などの値をとる。ここで、位相変調を式1でn=2
とした場合、干渉出力がAまたはBまたはCのとき、0
≦t<2τの期間では、それぞれ図6の左図、中央図、
右図で示される干渉出力が得られる。そして、期間2τ
での干渉出力を平均すると、図6の左図、中央図、右図
いずれにおいても同じ値となり、この値は干渉出力Aの
値である。このようにして得た比較値は、nやτによら
ず、フリンジ計数のための理想的な比較値である。
When the object to be measured 10 is stationary, the interference output is D, A, B, C, A'B 'in FIG. 5 due to the phase difference.
It takes a value such as C '. Here, the phase modulation is expressed by Equation 1 and n = 2
When the interference output is A, B, or C, 0
In the period of ≦ t <2τ, the left diagram, the center diagram, and
The interference output shown in the right figure is obtained. And the period 2τ
When the interference output in Fig. 6 is averaged, the same value is obtained in any of the left diagram, the center diagram, and the right diagram in Fig. 6, and this value is the value of the interference output A. The comparison value thus obtained is an ideal comparison value for fringe counting, regardless of n or τ.

【0020】τを無限小に、nを無限大にすると、位相
変調の変化はランプ波となる。2つのランプ波を組み合
わせると三角波となる。従って、位相変調の変化を三角
波とした場合も、本発明に含まれる。三角波状の位相変
調を行う場合、その振幅をx、理想的なフリンジ計数の
ための平均値をRとすると、それらの関係は式2で表せ
る。
When τ is set to infinity and n is set to infinity, the change in phase modulation becomes a ramp wave. Combining two ramp waves results in a triangular wave. Therefore, the present invention also includes the case where the change in phase modulation is a triangular wave. In the case of performing triangular wave phase modulation, assuming that the amplitude is x and the average value for ideal fringe counting is R, the relationship between them can be expressed by Equation 2.

【0021】[0021]

【式2】 振幅xを2πradの整数倍にすると、干渉出力点のど
こから変調をかけても理想的な値R=1を得ることがで
きる。
[Formula 2] When the amplitude x is set to an integral multiple of 2πrad, the ideal value R = 1 can be obtained regardless of where the interference output point is modulated.

【0022】また、フリンジ計測により移動方向を検出
する場合、2つの干渉信号L’、R’は、 π/2 r
adの位相差を保つことが望ましいが、位相差がπずれ
ると移動方向の検出が不可能になるので、値Rは、
When detecting the moving direction by fringe measurement, the two interference signals L'and R'are π / 2 r
It is desirable to keep the phase difference of ad, but if the phase difference deviates by π, it becomes impossible to detect the moving direction, so the value R is

【0023】[0023]

【式3】 1−(0.5)1/2 < R < 1+(0.5)1/2 の範囲になければならない。図11に、式2、及び、式
3を表す。図11より、フリンジ計測による移動方向の
検出が可能となるための位相変調振幅xは、0.886
π radより大きくする必要があることが分かる。
[Formula 3] 1- (0.5) 1/2 <R <1+ (0.5) 1/2 . FIG. 11 shows Equation 2 and Equation 3. From FIG. 11, the phase modulation amplitude x for enabling detection of the moving direction by fringe measurement is 0.886.
It can be seen that it needs to be larger than π rad.

【0024】[0024]

【実施例】本発明の実施例を図1を用いて説明する。x
−カットのLiNbO3基板上に、Y方向伝搬のプロト
ン交換光導波路による3dBカップラ17と、位相変調
器8とを設けた。位相変調器8を往復する光に2πra
dの位相差を生じさせるための電圧は2.0Vであった
ので、基準電源18には1.5Vを出力するようにし
た。プロトン交換光導波路を通過した光の消光比は50
dB以上であり、この光導波路は全体として偏光子とし
て働くことになる。
EXAMPLE An example of the present invention will be described with reference to FIG. x
On a −cut LiNbO 3 substrate, a 3 dB coupler 17 by a proton exchange optical waveguide propagating in the Y direction and a phase modulator 8 were provided. 2πra for the light traveling back and forth in the phase modulator 8
Since the voltage for producing the phase difference of d was 2.0V, 1.5V was output to the reference power supply 18. The extinction ratio of light passing through the proton exchange optical waveguide is 50.
It is at least dB, and this optical waveguide will act as a polarizer as a whole.

【0025】発光波長830nmのレーザダイオード1
の光を偏波保持型光ファイバー2へ導入し、光導波路基
板3へ接続した。レーザダイオード1からの光は、3d
Bカップラ17で2分割され、一方は反射鏡7へ、もう
一方は集光レンズ9へ向かうようにした。光ファイバー
2、12と、光導波路基板3との間には、無反射コーテ
ィングを施した。
Laser diode 1 having an emission wavelength of 830 nm
Was introduced into the polarization-maintaining optical fiber 2 and connected to the optical waveguide substrate 3. The light from the laser diode 1 is 3d
The B coupler 17 divides the beam into two parts, one toward the reflecting mirror 7 and the other toward the condenser lens 9. A non-reflection coating was applied between the optical fibers 2 and 12 and the optical waveguide substrate 3.

【0026】反射鏡7へ向かった光は、光導波路基板3
端面にアルミニウムの蒸着膜で作成した反射鏡7で反射
して再び3dBカップラ17に戻り、参照光となる。
The light traveling to the reflecting mirror 7 is transmitted to the optical waveguide substrate 3
The light is reflected by the reflecting mirror 7 made of an aluminum vapor-deposited film on the end face, returns to the 3 dB coupler 17 again, and becomes reference light.

【0027】集光レンズ9へ向かった光はここで平行光
となり被測定物10に照射され、反射した光は再び光導
波路に戻る。測定光側の光導波路基板3端面にも無反射
コーティングを施した。参照光、測定光は位相変調器8
を往復し、電気光学効果による位相変調を受け、3dB
カップラ17で干渉し、マルチモード光ファイバー12
を介して光検出用ダイオード13へ導かれるようにし
た。
The light traveling to the condenser lens 9 becomes parallel light here and is irradiated onto the object to be measured 10, and the reflected light returns to the optical waveguide again. An antireflection coating was also applied to the end surface of the optical waveguide substrate 3 on the measurement light side. Reference light and measurement light are phase modulator 8
3 dB by receiving phase modulation due to electro-optic effect
The multimode optical fiber 12 interferes with the coupler 17.
The light is detected to be guided to the photodetection diode 13 via.

【0028】発振器20には、周波数2MHzの矩形波
発振器を用いた。発振器20の出力はカウンタ21で4
分周され、デマルチプレクサ22へ接続される。デマル
チプレクサ22の4つの出力Y0〜Y3は、0.5μs
ecおきに次々とアクティブになる。Y0、Y1はサン
プル・ホールド回路24、25に接続され、 π/2r
adの位相差をもった光の干渉結果をそれぞれ保持す
る。また、Y0〜Y3はアナログスイッチ19にも接続
され、位相変調器8によって、図2に示すような 0
radから 3π/2 radまで、π/2 radお
きに変化する位相変調を連続的に行うようにした。式1
の変調は連続して行ったので、干渉出力をローパスフィ
ルタ23に通すと、比較値として比較用参照電圧VREF
を得た。また、位相変調器8が0radと π/2 r
adの位相変調を行っているときの干渉信号L’、R’
をサンプル・ホールド回路24、25で保持した。この
ようにして、式1における、n=4、τ=0.5μse
cの実施例の装置を構成したところ、従来の方法で得ら
れていたL’、R’と同等の信号が得られた。
A rectangular wave oscillator having a frequency of 2 MHz was used as the oscillator 20. The output of the oscillator 20 is 4 by the counter 21.
It is divided and connected to the demultiplexer 22. The four outputs Y0 to Y3 of the demultiplexer 22 are 0.5 μs
It becomes active one after another every ec. Y0 and Y1 are connected to the sample and hold circuits 24 and 25, and π / 2r
The interference results of light having a phase difference of ad are held respectively. Further, Y0 to Y3 are also connected to the analog switch 19, and the phase modulator 8 causes 0 to Y3 as shown in FIG.
From rad to 3π / 2 rad, the phase modulation that changes every π / 2 rad is continuously performed. Formula 1
Of the reference voltage V REF for comparison as a comparison value when the interference output is passed through the low-pass filter 23.
Got In addition, the phase modulator 8 has 0 rad and π / 2 r
Interference signals L'and R'when performing phase modulation of ad
Was held by the sample and hold circuits 24 and 25. In this way, n = 4 and τ = 0.5 μse in the equation 1
When the device of the example c) was constructed, signals equivalent to L ′ and R ′ obtained by the conventional method were obtained.

【0029】本実施例では、反射光量の大きく変化する
印刷物表面を被測定物にしても、0.02m/secで
移動させても、長時間静止させても、移動方向を検知し
ながら微小変位を測定することができた。
In the present embodiment, even if the surface of the printed material whose reflected light amount greatly changes is the object to be measured, is moved at 0.02 m / sec, or is stationary for a long time, a minute displacement is detected while detecting the moving direction. Could be measured.

【0030】[0030]

【発明の効果】同一光源のレーザ光を測定光と参照光と
に分割して該測定光を被測定物に照射し、該被測定物か
ら反射され該参照光との光路差の変化によって位相変化
の生じた該測定光を該参照光と干渉させ、得られた干渉
光を比較値を用いてフリンジ計測し、該被測定物の表面
の微小変位と移動方向を測定するに際し、正確な比較値
を与えて精度良く微小部分の変位、移動方向を測定する
ことができる。特に、反射光量の変化の大きい印刷物の
ような被測定物や、長時間静止している被測定物の変位
測定に適している。
EFFECT OF THE INVENTION Laser light of the same light source is split into measurement light and reference light, the measurement light is applied to the object to be measured, and the phase is changed by the change in optical path difference from the object to be measured and reflected from the object. The measured light that has changed is caused to interfere with the reference light, and the obtained interference light is measured by fringe using a comparison value, and an accurate comparison is made when measuring the minute displacement and the moving direction of the surface of the measured object. By giving a value, it is possible to accurately measure the displacement and moving direction of a minute portion. In particular, it is suitable for measuring the displacement of an object to be measured such as a printed material with a large change in the amount of reflected light or an object to be measured that has been stationary for a long time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】本発明の実施例における位相変調の様子を示す
図である。
FIG. 2 is a diagram showing a state of phase modulation in the embodiment of the present invention.

【図3】変位測定装置の構成を示す図である。FIG. 3 is a diagram showing a configuration of a displacement measuring device.

【図4】被測定物の変位量に対する干渉出力の様子を示
す図である。
FIG. 4 is a diagram showing a state of interference output with respect to a displacement amount of an object to be measured.

【図5】位相差に応じた干渉出力の値を示す図である。FIG. 5 is a diagram showing a value of an interference output according to a phase difference.

【図6】図5のA、B、Cでの、変調時間に対する干渉
出力の違いを示す図である。
6 is a diagram showing a difference in interference output with respect to modulation time in A, B, and C of FIG.

【図7】変調時間に対する位相変調量の変化を示す図で
ある。
FIG. 7 is a diagram showing changes in phase modulation amount with respect to modulation time.

【図8】変調時間に対する位相変調量の変化を示す図で
ある。
FIG. 8 is a diagram showing changes in the amount of phase modulation with respect to the modulation time.

【図9】変調時間に対する位相変調量の変化を示す図で
ある。
FIG. 9 is a diagram showing changes in the amount of phase modulation with respect to the modulation time.

【図10】変調時間に対する位相変調量の変化を示す図
である。
FIG. 10 is a diagram showing changes in the amount of phase modulation with respect to the modulation time.

【図11】位相変調振幅xに対する干渉出力平均値R
で、式2、式3を表し、斜線はフリンジ計測による移動
方向の検出が可能となる範囲を表す。
FIG. 11 is an interference output average value R with respect to the phase modulation amplitude x.
Expression 2 and Expression 3 are shown, and the diagonal line represents the range in which the movement direction can be detected by the fringe measurement.

【符号の説明】[Explanation of symbols]

1 レーザダイオード 2 偏波保持型光ファイバ 3 光導波路基板 4、11 Y分岐 5、6、17 3dBカップラ 7 反射鏡 8 位相変調器 9 集光レンズ 10 被測定物 12 マルチモード光ファイバ 13、14 光検出用ダイオード 15、16 コンパレータ 18 基準電源 19 アナログスイッチ 20 発振器 21 カウンタ 22 デマルチプレクサ 23 ローパスフィルタ 24、25 サンプル・ホールド回路 1 Laser Diode 2 Polarization-Maintaining Optical Fiber 3 Optical Waveguide Substrate 4, 11 Y Branch 5, 6, 17 3 dB Coupler 7 Reflector 8 Phase Modulator 9 Condenser Lens 10 Object to be Measured 12 Multimode Optical Fiber 13, 14 Light Detection diode 15 and 16 Comparator 18 Reference power supply 19 Analog switch 20 Oscillator 21 Counter 22 Demultiplexer 23 Low pass filter 24 and 25 Sample and hold circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 同一光源のレーザ光を測定光と参照光と
に分割して該測定光を被測定物に照射し、該被測定物か
ら反射され該参照光との光路差の変化によって位相変化
の生じた該測定光を該参照光と干渉させ、得られた干渉
光を比較値を用いてフリンジ計測し、該被測定物の表面
の微小変位若しくは移動方向を測定する方法において、
該参照光と該測定光の何れか一方或いは両方に、時間変
数をtとして、0≦t≦nτの期間に、 で表されるステップ状の位相変調を与え、該比較値とし
て上記期間における該干渉光強度の平均値を用いること
を特徴とする変位測定方法。但し、nは2以上の整数、
τは上記ステップ状の位相変調におけるステップ幅時間
であり、 関数 S(x) は、 x<0 で S(x)=0、 x≧0 で S(x)=1 と定義される、2値のステップ関数である。
1. A laser beam of the same light source is divided into a measuring beam and a reference beam, the measuring beam is irradiated to the object to be measured, and the phase is changed by a change in optical path difference from the object to be measured and reflected from the object to be measured. In the method of causing the measurement light that has changed to interfere with the reference light, measuring the fringe of the obtained interference light using a comparison value, and measuring the minute displacement or the moving direction of the surface of the object to be measured,
In either or both of the reference light and the measurement light, with a time variable being t, in a period of 0 ≦ t ≦ nτ, The displacement measuring method is characterized by applying a stepwise phase modulation represented by, and using the average value of the interference light intensity in the period as the comparison value. However, n is an integer of 2 or more,
τ is the step width time in the stepwise phase modulation, and the function S (x) is a binary value defined as S (x) = 0 when x <0 and S (x) = 1 when x ≧ 0. Is a step function of.
JP5241394A 1994-03-24 1994-03-24 Method for measuring displacement Pending JPH07260418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5241394A JPH07260418A (en) 1994-03-24 1994-03-24 Method for measuring displacement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5241394A JPH07260418A (en) 1994-03-24 1994-03-24 Method for measuring displacement

Publications (1)

Publication Number Publication Date
JPH07260418A true JPH07260418A (en) 1995-10-13

Family

ID=12914108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5241394A Pending JPH07260418A (en) 1994-03-24 1994-03-24 Method for measuring displacement

Country Status (1)

Country Link
JP (1) JPH07260418A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010097143A (en) * 2000-04-20 2001-11-08 권영섭 Apparatus and its method for displacement measurement by optical process
CN103728610A (en) * 2014-01-21 2014-04-16 中国船舶重工集团公司第七〇五研究所 Method for removing voltage or current mutation of a transmitter power supply during high power signal transmission

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010097143A (en) * 2000-04-20 2001-11-08 권영섭 Apparatus and its method for displacement measurement by optical process
CN103728610A (en) * 2014-01-21 2014-04-16 中国船舶重工集团公司第七〇五研究所 Method for removing voltage or current mutation of a transmitter power supply during high power signal transmission

Similar Documents

Publication Publication Date Title
EP0640846A2 (en) Optical measuring apparatus
JPH01503172A (en) Method and apparatus for two-wavelength interferometry with optical heterodyning and use for position or distance measurement
He et al. Distributed fiber-optic stress-location measurement by arbitrary shaping of optical coherence function
JP2000180265A (en) Brillouin gain spectrum measuring method and device
EP0512450A2 (en) Wavelength variation measuring apparatus
US6147755A (en) Dynamic optical phase state detector
JP2002333371A (en) Wavemeter
JPH07260418A (en) Method for measuring displacement
JP2726881B2 (en) Backscattered light measurement device
US4979825A (en) Device for measuring optical frequency modulation characteristics
JPH06186337A (en) Laser distance measuring equipment
JPH07229713A (en) Displacement measuring method and its device
JPH05203410A (en) Method and device for measuring reflecting point in optical frequency domain
JPH01210804A (en) Spacing measuring method
Hotate et al. Optical coherence domain reflectometry by synthesis of coherence function: scanning the coherence function by phase modulation
RU2175753C1 (en) Method of determination of deviation from linearity
RU2166182C2 (en) Interference method measuring angle of turn of object
JP3183472B2 (en) Optical wavelength switching characteristic measuring method and measuring apparatus
JPS5837496B2 (en) Optical fiber length measurement method
JPH02249902A (en) Control circuit of laser interference length measuring machine
JPH0331730A (en) Optical frequency variation measuring instrument
JP2787345B2 (en) Two-wavelength light source element
JPH087101B2 (en) Optical frequency counter
JPS6225232A (en) Method and instrument for measuring wavelength dispersion of optical fiber
JPH06109422A (en) Displacement measuring apparatus