JPH07118469B2 - Plasma CVD equipment - Google Patents

Plasma CVD equipment

Info

Publication number
JPH07118469B2
JPH07118469B2 JP11480889A JP11480889A JPH07118469B2 JP H07118469 B2 JPH07118469 B2 JP H07118469B2 JP 11480889 A JP11480889 A JP 11480889A JP 11480889 A JP11480889 A JP 11480889A JP H07118469 B2 JPH07118469 B2 JP H07118469B2
Authority
JP
Japan
Prior art keywords
gas
nozzle
opening
reaction chamber
gas discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11480889A
Other languages
Japanese (ja)
Other versions
JPH02294019A (en
Inventor
久道 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11480889A priority Critical patent/JPH07118469B2/en
Publication of JPH02294019A publication Critical patent/JPH02294019A/en
Publication of JPH07118469B2 publication Critical patent/JPH07118469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、プラズマ生成室と開口を介して連通し内部
に被成膜基板が配される反応室内に、プラズマ生成室か
ら前記開口を通って反応室内へ押し出されるプラズマに
より活性化される反応ガスを外部から導入して被成膜基
板の面に薄膜を形成するプラズマCVD装置において、前
記反応ガスを被成膜基板の前面側へ導入するための導入
路の構成に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a plasma generation chamber, which is communicated through an opening and into which a film formation substrate is placed, and which is connected to the plasma generation chamber through the opening. In the plasma CVD apparatus that forms a thin film on the surface of the deposition target substrate by introducing the reaction gas activated by the plasma extruded into the reaction chamber from the outside, the reaction gas is introduced to the front side of the deposition target substrate. For the configuration of the introduction path for.

〔従来の技術〕[Conventional technology]

この種プラズマCVD装置における反応ガス導入路の構成
例を第3図に示す。開口14を介してプラズマ生成室15と
連通する反応室1内には、該反応室底面近くのウェーハ
ステージ3に被成膜基板2が載置され、この被成膜基板
2を包囲して反応室1の内側に該反応室内壁への膜の付
着を防止する防着筒11が配され、この防着筒11の内側に
反応室1内へ反応ガスを導入するためのガス導入管路6
が、反応室底面を気密に貫通する管継手10にねじ込まれ
て反応室内に固定されるとともに、その上端面に、円環
状に形成された,断面方形の中空部材からなるノズル9
が被成膜基板2を取り囲むように取り付けられている。
ノズル9には円環の内側に周方向に間隔をおいて複数の
ガス放出口7が形成され、ガス導入管路6を介してノズ
ル9に送入された反応ガスが放出口7から円環内方へ放
出される。反応ガス8(例えばモノシランガスSiH4
ど)が放出され所定のガス圧に保たれた反応室1内にプ
ラズマ生成室15からプラズマ5が導入されると反応ガス
が分解され、プラズマを構成する,例えば窒素イオンと
相互作用し、基板表面にSiN膜が形成される。基板が半
導体ウェーハである場合、膜の厚さはウエーハ面上で均
一でなければならない。成膜のメカニズムは詳細には明
らかにされていないが、均一な膜厚形成のためには基板
2に向けて反応ガス8が均一に放出されることが必要と
考えられている。このため、基板2を取り囲むように円
環状に形成されたノズルの内側に複数のガス放出口が設
けられている。
FIG. 3 shows an example of the structure of the reaction gas introduction path in this type of plasma CVD apparatus. In the reaction chamber 1 that communicates with the plasma generation chamber 15 through the opening 14, the film formation substrate 2 is placed on the wafer stage 3 near the bottom of the reaction chamber, and the film formation substrate 2 is surrounded to react. An inside of the chamber 1 is provided with a deposition-inhibiting cylinder 11 for preventing a film from adhering to the inner wall of the reaction chamber, and a gas introduction pipe line 6 for introducing a reaction gas into the reaction chamber 1 inside the deposition-inhibiting barrel 11.
Is fixed in the reaction chamber by being screwed into a pipe joint 10 that penetrates the bottom of the reaction chamber in an airtight manner, and has a nozzle 9 made of a hollow member having a square cross section formed in an annular shape on the upper end face thereof.
Are attached so as to surround the film formation substrate 2.
A plurality of gas discharge ports 7 are formed in the nozzle 9 inside the ring at intervals in the circumferential direction, and the reaction gas introduced into the nozzle 9 through the gas introduction conduit 6 is discharged from the ring 7 through the ring. It is released inward. When the reaction gas 8 (for example, monosilane gas SiH 4 etc.) is released and the plasma 5 is introduced from the plasma generation chamber 15 into the reaction chamber 1 kept at a predetermined gas pressure, the reaction gas is decomposed to form plasma, for example, By interacting with nitrogen ions, a SiN film is formed on the substrate surface. If the substrate is a semiconductor wafer, the film thickness should be uniform on the wafer surface. Although the mechanism of film formation has not been clarified in detail, it is considered that the reaction gas 8 should be uniformly discharged toward the substrate 2 in order to form a uniform film thickness. For this reason, a plurality of gas discharge ports are provided inside the nozzle formed in an annular shape so as to surround the substrate 2.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

かかる構成の従来装置においては、円環状ノズル9の複
数のガス放出口7の口径を変え、それぞれのガス放出口
から放出されるガス量が等しくなるようにしている。し
かし、反応室の保守作業などの際にノズル9を取り外し
たり、同一設計図により製作した別のノズルと交換した
後の成膜結果がその直前と成膜条件を同一にしたにもか
かわらず異なる場合が生じる。その原因は次のようなも
のと推定される。
In the conventional device having such a configuration, the diameters of the plurality of gas discharge ports 7 of the annular nozzle 9 are changed so that the amount of gas discharged from each gas discharge port becomes equal. However, the film-forming results after removing the nozzle 9 for maintenance work of the reaction chamber or replacing it with another nozzle manufactured according to the same design drawing are different from those immediately before, even though the film-forming conditions are the same. There are cases. The cause is presumed to be as follows.

(1)組み換え時にノズルの取付け位置がずれる。(1) The nozzle mounting position is misaligned when recombining.

(2)組み換え時にガス導入管路の傾きがわずかに異な
り、これによりガスの放出方向が変わり、基板に向けた
均一なガス放出が損なわれる。
(2) The inclination of the gas introduction pipe is slightly different at the time of recombination, which changes the gas emission direction, impairing uniform gas emission toward the substrate.

(3)ノズルを製作する際に、口径の異なるガス放出口
相互間に所定の口径差を超えた口径差が生じる。例えば
大口径のガス放出口の所定の口径2.2mmと小口径のガス
放出口の所定の口径1.8mmとの差0.4mmを超え、大口径の
ガス放出口の口径が工作時のドリルの心振れなどにより
例えば2.5mmとなり、口径差が0.7mmと大きくなるため、
放出ガス量が不均一となる。
(3) When manufacturing the nozzle, a difference in diameter exceeding a predetermined difference occurs between the gas discharge ports having different diameters. For example, the difference between the prescribed diameter of a large-diameter gas outlet of 2.2 mm and the prescribed diameter of a small-diameter gas outlet of 1.8 mm exceeds 0.4 mm, and the diameter of the large-diameter gas outlet is the runout of the drill during machining. For example, it will be 2.5 mm, and the difference in diameter will be 0.7 mm, so
The amount of released gas becomes non-uniform.

この発明の目的は、組み換え時のノズルの位置ずれの問
題を解消するとともに放出方向が組み換え前と変わるこ
とがなく、またガス放出口の口径差の誤差の問題が解消
されたガス導入路の構成を提供することである。
It is an object of the present invention to solve the problem of nozzle position shift during rearrangement, to keep the discharge direction unchanged from before the rearrangement, and to solve the problem of error in the difference in the diameter of the gas discharge port. Is to provide.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記の課題を解決するために、この発明においては、プ
ラズマ生成室と開口を介して連通し内部に該開口の軸線
と同軸にかつ該開口から適宜に離隔して被成膜基板が配
される反応室内の該開口と被成膜基板との中間位置に、
連続円環状もしくは分割円環状に形成され周方向に複数
のガス放出口を備えた中空部材からなり前期被成膜基板
を取り囲むように配されて前記反応室の壁面を貫通する
ガス導入通路を介して反応ガスを送入されるノズルを備
えたプラズマCVD装置を、前記円環状ノズルが複数のガ
ス放出口を全て同一口径に形成されるとともに周方向流
路の断面積を該流路のコンダクタンスに対し前記ガス放
出口のコンダクタンスが実質的に無視されうる大きさに
形成され、円環の軸線が前記開口の軸線と一致するよう
に支持する,周方向に支持部位が形成された支持部材に
着脱可能に固定されて前記反応室壁面を貫通するガス導
入管路と可撓性の接続管を介して接続される構成とする
ものとする。
In order to solve the above-mentioned problems, in the present invention, a film formation substrate is placed in communication with a plasma generation chamber through an opening, inside the same as the axis of the opening and at a suitable distance from the opening. At an intermediate position between the opening in the reaction chamber and the film formation substrate,
It is composed of a hollow member formed in a continuous annular shape or a divided annular shape and provided with a plurality of gas discharge ports in the circumferential direction, and is arranged so as to surround the deposition target substrate through a gas introduction passage penetrating the wall surface of the reaction chamber. In the plasma CVD apparatus equipped with a nozzle for feeding a reaction gas, the annular nozzle has a plurality of gas outlets all formed to have the same diameter, and the cross-sectional area of the circumferential passage is set to the conductance of the passage. On the other hand, the conductance of the gas discharge port is formed to a size that can be substantially ignored, and the support member is supported so that the axis of the ring matches the axis of the opening. The structure is configured to be connected via a flexible connection pipe to a gas introduction pipe line that is fixed as possible and penetrates the wall surface of the reaction chamber.

〔作用〕[Action]

ガスの導入路をこのように構成することにより、ノズル
への反応ガスの送入は、可撓性接続管との接続口から常
に一定の流入断面積を通って行われ、従来のような,ガ
ス導入管路(6)とノズルとの位置ずれの問題が解消す
る。また、円環状ノズルは円環の軸線がプラズマ生成室
開口の軸線と一致するように支持する,例えば開口の軸
線と軸線が一致する円形の周壁を有し周方向に支持面が
形成された支持部材に固定されるから、ガス放出口から
の放出方向がノズルの組み換えごとに変わりうることが
なくなる。さらに、ガス放出口の口径は全て同一径に形
成されるから、ガス放出口相互の口径差の問題が解消さ
れるとともに、これらガス放出口のコンダクタンスがノ
ズルの周方向流路のコンダクタンスと比べて実質的に無
視されうる程に周方向流路の断面積が大きく形成される
から、ガス放出口から放出される反応ガスの量が全ての
ガス放出口で等しくなる。ここで、コンダクタンスにつ
き説明する。
By configuring the gas introduction path in this way, the reaction gas is introduced into the nozzle through the connection port with the flexible connection tube through a constant inflow cross-sectional area. The problem of the positional deviation between the gas introduction pipe line (6) and the nozzle is solved. Further, the annular nozzle supports so that the axis of the annulus coincides with the axis of the plasma generation chamber opening. For example, the annular nozzle has a circular peripheral wall whose axis coincides with the axis of the opening and has a supporting surface formed in the circumferential direction. Since it is fixed to the member, the discharge direction from the gas discharge port does not change with each replacement of the nozzle. Further, since the diameters of the gas outlets are all formed to be the same, the problem of the diameter difference between the gas outlets is solved, and the conductance of these gas outlets is compared with that of the circumferential flow passage of the nozzle. Since the cross-sectional area of the circumferential flow passage is formed to be substantially negligible, the amount of the reaction gas discharged from the gas discharge port becomes equal at all gas discharge ports. Here, the conductance will be described.

コンダクタンスは流体の移動しやすさを定量的に表すも
のであり、ガスの流路の断面積,長さ,形状などにより
異なる。コンダクタンスは大きいほど、ガスは移動しや
すい。
The conductance quantitatively represents the ease with which a fluid moves, and varies depending on the cross-sectional area, length, shape, etc. of the gas flow passage. The larger the conductance, the easier the gas moves.

いま、ノズルの断面および全体の形状を第2図のように
仮定する。第2図において、ガスの流入口9aからガス放
出口7までの周方向流路の長さをl,ガス放出口の口径を
φとする。このときの周方向流路のコンダクタンスC
lは、次式: により与えられる。ここで、a,bはそれぞれ方形断面流
路の幅と高さ〔m〕、p1,p2はそれぞれノズルの流入口
位置とガス放出口位置でのノズル内圧力〔Pa(パスカ
ル)〕、Kは寸法a,bで決まる係数である。
Now, assume that the cross section and the overall shape of the nozzle are as shown in FIG. In FIG. 2, the length of the circumferential passage from the gas inlet 9a to the gas outlet 7 is l, and the diameter of the gas outlet is φ. Conductance C of the circumferential flow path at this time
l is the following formula: Given by. Where a and b are the width and height [m] of the rectangular cross-section flow path, p 1 and p 2 are the nozzle internal pressure [Pa (Pascal)] at the nozzle inlet and gas outlet positions, respectively. K is a coefficient determined by the dimensions a and b.

いま、a=10×10-3〔m〕,b=40×10-3〔m〕とし、ま
たノズルの周方向流路の圧力勾配は小さいとしてp1p2
=13.3Pa(=100mTorr)とすれば、 となり、lの値として、l1=61×10-3〔m〕、l2=123
×10-3〔m〕とすると、 となる。また、ガス放出口のコンダクタンスCφは、次
式: W×Cφ=1.7×10-6 (5) により与えられ、ノズルのガス流入口9aに近い方のガス
放出口の口径φ=2.5×10-3〔m〕,ガス放出口部の
肉厚(孔の長さ)W=2×10-3〔m〕とすれば、(5)
式から、 となる。従って、2個のガス放出口から放出される反応
ガスの量を等しくするには合成コンダクタンスが等しく
なるように第2の放出口の口径をきめなければならな
い。すなわち、 (8)式から、 すなわち となり、孔の長さWは等しいから、φφとなる。
このように、ClとCφとが大きく異なると、(7)式に
より、複数のガス放出口の口径を全て等しくすることに
より放出されるガス量がすべてのガス放出口で等しくな
ることが分かる。
Now, assuming that a = 10 × 10 −3 [m] and b = 40 × 10 −3 [m], and that the pressure gradient in the circumferential flow passage of the nozzle is small, p 1 p 2
If = 13.3Pa (= 100mTorr), Therefore, as the value of l, l 1 = 61 × 10 −3 [m], l 2 = 123
× 10 -3 [m], Becomes The conductance C φ of the gas outlet is given by the following formula: W × C φ = 1.7 × 10 −6 (5), and the diameter φ 1 of the gas outlet closer to the gas inlet 9a of the nozzle is φ 1 = 2.5. If x10 -3 [m] and the wall thickness of the gas discharge port (hole length) W = 2 x 10 -3 [m], then (5)
From the formula, Becomes Therefore, in order to equalize the amounts of the reaction gases released from the two gas outlets, it is necessary to determine the diameter of the second outlet so that the combined conductances become equal. That is, From equation (8), Ie Since the lengths W of the holes are equal, φ 2 φ 1 is obtained.
As described above, when C l and C φ are significantly different, the amount of gas released by equalizing the diameters of the plurality of gas outlets becomes equal in all the gas outlets, according to the equation (7). I understand.

〔実施例〕〔Example〕

第1図に本発明によるガス導入路構成の一実施例を示
す。図において、第3図と同一の部材には同一符号を付
し、説明を省略する。周方向に同一口径の複数のガス放
出口17が形成されるノズル19は、流路断面が方形の,流
路断面積の大きい,第2図に示すように2つに分割され
た円環として形成されている。この円環は、内径が円環
の外径と一致する防着筒21の内側に形成され周方向の支
持面を形成する棚21aへの取付け面を正確に平面に仕上
げるために金属ブロックを機械加工して製作されてい
る。この実施例では、分厚い板材に旋盤により深さがb/
2(第2図参照)の円形の溝を形成した後、壁厚がWと
なるように円環を切り出し、これを2個製作して溝側を
向かい合わせて重ね、重ね面を周方向に溶接して直径方
向に2分割することにより1個の分割円環状ノズルを形
成している。反応ガスを外部から反応室1内へ導入する
ためのガス導入管路16は従来より短く形成され、その上
端部とノズル19の流入口とに可撓性接続管12の両端部が
それぞれ接続される。
FIG. 1 shows an embodiment of the gas introducing passage structure according to the present invention. In the figure, the same members as those in FIG. 3 are designated by the same reference numerals, and the description thereof will be omitted. The nozzle 19 in which a plurality of gas discharge ports 17 of the same diameter are formed in the circumferential direction is a circular ring having a square flow passage cross section and a large flow passage cross sectional area, as shown in FIG. Has been formed. This ring is a metal block machined to accurately finish the mounting surface on the shelf 21a, which is formed inside the deposition-inhibiting cylinder 21 whose inner diameter matches the outer diameter of the ring and which forms a circumferential support surface. It is processed and produced. In this example, the depth of b /
After forming 2 circular grooves (see Fig. 2), cut out an annulus so that the wall thickness is W, make two of them, and stack them with the groove sides facing each other. One divided annular nozzle is formed by welding and dividing into two in the diameter direction. The gas introduction pipe line 16 for introducing the reaction gas into the reaction chamber 1 from the outside is formed shorter than before, and both ends of the flexible connection pipe 12 are connected to the upper end portion and the inlet of the nozzle 19, respectively. It

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明によれば、プラズマ生成室
と開口を介して連通し内部には該開口の軸線と同軸にか
つ該開口から適宜に離隔して被成膜基板が配される反応
室内の該開口と被成膜基板との中間位置に、連続円環状
もしくは分割円環状に形成され周方向に複数のガス放出
口を備えた中空部材からなり前記被成膜基板を取り囲む
ように配されて前記反応室の壁面を貫通するガス導入管
路を介して反応ガスを送入されるノズルを備えたプラズ
マCVD装置を、前記円環状ノズルが複数のガス放出口を
全て同一口径に形成されるとともに周方向流路の断面積
を該流路のコンダクタンスに対し前記ガス放出口のコン
ダクタンスが実質的に無視されうる大きさに形成され、
円環の軸線が前記開口の軸線と一致するように支持す
る,周方向に支持部位が形成された支持部材に着脱可能
に固定されて前記反応室壁面を貫通するガス導入管路と
可撓性の接続管を介して接続される構成としたので、 (1)ノズル内への反応ガスの送入は、ノズルに形成さ
れた流入口から常に一定の流路断面を通って行われ、従
来のようにノズル分解後の再組立てもしくは同一設計図
面による別ノズルへの組み換え時のガス導入管路との位
置ずれに基づく流入断面積の変化が起こらない。
As described above, according to the present invention, the deposition target substrate is arranged in communication with the plasma generation chamber through the opening, inside the same coaxial with the axis of the opening, and appropriately separated from the opening. A hollow member, which is formed in a continuous annular shape or a divided annular shape and has a plurality of gas discharge ports in the circumferential direction, is provided at an intermediate position between the opening in the reaction chamber and the deposition target substrate so as to surround the deposition target substrate. A plasma CVD apparatus equipped with a nozzle which is arranged and into which a reaction gas is fed through a gas introduction pipe line which penetrates the wall surface of the reaction chamber, wherein the annular nozzle forms a plurality of gas emission ports all having the same diameter. And the cross-sectional area of the circumferential flow passage is formed in a size such that the conductance of the gas discharge port can be substantially ignored with respect to the conductance of the flow passage,
A gas introducing pipe line that is detachably fixed to a supporting member that has a supporting portion formed in the circumferential direction and that penetrates through the reaction chamber wall surface and that is supported so that the axis of the ring matches the axis of the opening. Since it is configured to be connected via the connection pipe of (1), the reaction gas is always introduced into the nozzle from the inlet formed in the nozzle through a constant flow passage cross section. As described above, there is no change in the inflow cross-sectional area due to the positional deviation from the gas introduction pipe line when reassembling after the nozzle is disassembled or when the nozzle is reconfigured to another nozzle by the same design drawing.

(2)円環状ノズルは円環の軸線がプラズマ生成室開口
の軸線と一致するように特に限定された支持部材に固定
されるから、分解後の再組立てもしくは組み換え時に円
環の平面が傾くことがなくなり、ガスの放出方向が常に
一定に維持される。
(2) Since the annular nozzle is fixed to a support member that is particularly limited so that the axis of the annular ring coincides with the axis of the plasma generation chamber opening, the plane of the annular ring may tilt during reassembly or reassembly after disassembly. Is eliminated, and the gas discharge direction is always kept constant.

(3)ノズルの周方向流路の断面積を該流路のコンダク
タンスに対しガス放出口のコンダクタンスが実質的に無
視されうるほどの大きさとしたので、ガス放出口から放
出されるガス量を等しくするのにガス放出口の口径を全
て同一にすることができ、従来のようなガス放出口相互
の口径差の問題が解消される。
(3) Since the cross-sectional area of the circumferential flow passage of the nozzle is set so that the conductance of the gas discharge port can be substantially ignored with respect to the conductance of the flow passage, the amount of gas discharged from the gas discharge port is made equal. However, the diameters of the gas outlets can all be made the same, and the problem of the diameter difference between the gas outlets as in the conventional case can be solved.

すなわち、本発明によるガス導入路の構成により常に安
定して被成膜基板の前面側に反応ガスの均一な流れを形
成することができる。なお、ノズルと、反応ガスを反応
室内へ導入するガス導入管路とは可撓性の接続管を介し
て接続されるから、再組立て時のガス導入管路の傾きは
ガスの放出方向に影響を与えなくなり、再組立てを気を
遣わないで行うことができるなど、作業上のメリットも
合わせて得られる。
That is, with the configuration of the gas introduction passage according to the present invention, a uniform flow of the reaction gas can always be stably formed on the front surface side of the film formation substrate. Since the nozzle and the gas introduction pipe for introducing the reaction gas into the reaction chamber are connected via a flexible connecting pipe, the inclination of the gas introduction pipe during reassembly has an influence on the gas discharge direction. It is also possible to obtain the merit in the work such that the reassembling can be performed without worrying about reassembling.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明によるガス導入路構成の一実施例を示す
図であって、(a)は反応室内の縦断面図、(b)は前
図(a)のA−A位置において矢印方向に見た平面図で
ある。第2図はガス流路のコンダクタンスを説明するた
めの図であって、(a)は円環状ノズルの構成例とガス
放出口の位置例とを示す平面図,(b)は前図(a)の
B−B位置において矢印の方向に見たノズルの断面拡大
図である。第3図は従来のガス導入路の構成例を示す図
であって、(a)は反応室内の縦断面図、(b)は前図
(a)のC−C位置において矢印の方向に見た平面図で
ある。 1:反応室、2:基板(被成膜基板)、5:プラズマ、6,16:
ガス導入管路、7,17:ガス放出口、8:反応ガス、9,19:ノ
ズル、12:接続管、14:開口、15:プラズマ生成室。
FIG. 1 is a diagram showing an embodiment of the gas introduction path configuration according to the present invention, in which (a) is a vertical cross-sectional view of the reaction chamber, and (b) is the arrow direction at the position AA in the previous figure (a). FIG. FIG. 2 is a diagram for explaining the conductance of the gas flow path, in which (a) is a plan view showing a configuration example of an annular nozzle and a position example of a gas discharge port, and (b) is a front view (a). FIG. 7B is an enlarged cross-sectional view of the nozzle as seen in the direction of the arrow at the position BB in FIG. FIG. 3 is a diagram showing a configuration example of a conventional gas introduction path, in which (a) is a vertical cross-sectional view of the reaction chamber, and (b) is seen in the direction of the arrow at the CC position in the previous figure (a). FIG. 1: Reaction chamber, 2: Substrate (deposition substrate), 5: Plasma, 6, 16:
Gas introduction pipe line, 7, 17: Gas discharge port, 8: Reaction gas, 9, 19: Nozzle, 12: Connection pipe, 14: Opening, 15: Plasma generation chamber.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プラズマ生成室と開口を介して連通し内部
に該開口の軸線と同軸にかつ該開口から適宜に離隔して
被成膜基板が配される反応室内の該開口と被成膜基板と
の中間位置に、連続円環状もしくは分割円環状に形成さ
れ周方向に複数のガス放出口を備えた中空部材からなり
前記被成膜基板を取り囲むように配されて前記反応室の
壁面を貫通するガス導入管路を介して反応ガスを送入さ
れるノズルを備えたプラズマCVD装置において、前記円
環状ノズルが複数のガス放出口を全て同一口径に形成さ
れるとともに周方向流路の断面積を該流路のコンダクタ
ンスに対し前記ガス放出口のコンダクタンスが実質的に
無視されうる大きさに形成され、円環の軸線が前記開口
の軸線と一致するように支持する,周方向に支持部位が
形成された支持部材に着脱可能に固定されて前記反応室
壁面を貫通するガス導入管路と可撓性の接続管を介して
接続されることを特徴とするプラズマCVD装置。
1. An opening in a reaction chamber in which a film formation substrate communicates with a plasma generation chamber through an opening, is coaxial with the axis of the opening, and is appropriately spaced from the opening, and the film is formed in the reaction chamber. At the intermediate position of the substrate, a hollow member formed in a continuous annular shape or a divided annular shape and provided with a plurality of gas discharge ports in the circumferential direction is arranged so as to surround the film formation target substrate, and the wall surface of the reaction chamber is formed. In a plasma CVD apparatus equipped with a nozzle into which a reaction gas is fed through a gas introduction pipe line that penetrates, the annular nozzle has a plurality of gas discharge ports all formed with the same diameter and the circumferential flow path is cut off. A supporting portion in the circumferential direction, the area of which is formed so that the conductance of the gas discharge port can be substantially ignored with respect to the conductance of the flow path, and the axis of the annular ring is aligned with the axis of the opening. Support member formed with Plasma CVD apparatus characterized by being connected detachably fixed through the gas inlet pipe and a flexible connection tube which penetrates the reaction chamber wall.
JP11480889A 1989-05-08 1989-05-08 Plasma CVD equipment Expired - Fee Related JPH07118469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11480889A JPH07118469B2 (en) 1989-05-08 1989-05-08 Plasma CVD equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11480889A JPH07118469B2 (en) 1989-05-08 1989-05-08 Plasma CVD equipment

Publications (2)

Publication Number Publication Date
JPH02294019A JPH02294019A (en) 1990-12-05
JPH07118469B2 true JPH07118469B2 (en) 1995-12-18

Family

ID=14647204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11480889A Expired - Fee Related JPH07118469B2 (en) 1989-05-08 1989-05-08 Plasma CVD equipment

Country Status (1)

Country Link
JP (1) JPH07118469B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5425810A (en) * 1994-05-11 1995-06-20 Internation Business Machines Corporation Removable gas injectors for use in chemical vapor deposition of aluminium oxide
KR100436091B1 (en) * 1999-11-04 2004-06-14 주성엔지니어링(주) Apparatus for fabricating a semiconductor device having a gas focus ring
KR100488426B1 (en) * 2002-09-09 2005-05-11 주식회사 다산 씨.앤드.아이 Remote plasma atomic layer chemical vapor deposition apparatus and method
CN114203506B (en) * 2020-09-18 2024-03-12 中微半导体设备(上海)股份有限公司 Plasma processing device and method thereof

Also Published As

Publication number Publication date
JPH02294019A (en) 1990-12-05

Similar Documents

Publication Publication Date Title
US10577690B2 (en) Gas distribution showerhead for semiconductor processing
CN110998816B (en) Monolithic ceramic gas distribution plate
US10745806B2 (en) Showerhead with air-gapped plenums and overhead isolation gas distributor
KR102535931B1 (en) Collar, conical showerheads and/or top plates for reducing recirculation in a substrate processing system
KR200372524Y1 (en) Gas distributor having directed gas flow and cleaning method
US20110253046A1 (en) Apparatus for providing uniform gas delivery to a reactor
JP2020061549A (en) Substrate processing apparatus
JPH07118469B2 (en) Plasma CVD equipment
CN110249073A (en) Diffuser design for flowable CVD
CN117716064A (en) Pumping liner and methods of making and using the same
TW202129715A (en) High temperature dual channel showerhead
KR20210027268A (en) Gas box for CVD chamber
US11862475B2 (en) Gas mixer to enable RPS purging
US20230140263A1 (en) Showerheads with high solidity plenums
TWI835740B (en) Monolithic ceramic gas distribution plate
US20220162749A1 (en) Pedestals for modulating film properties in atomic layer deposition (ald) substrate processing chambers
JP3123536B2 (en) Semiconductor manufacturing equipment
WO2024010692A1 (en) Multi-plenum gas manifolds for substrate processing systems
JP2024007511A (en) Semiconductor processing apparatus for processing multiple substrates with cross flow
TW202310136A (en) Clamped dual-channel showerhead
CN116695097A (en) Gas homogenizing device and semiconductor process equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees