JPH07118270B2 - Carbon nanotube transistor - Google Patents

Carbon nanotube transistor

Info

Publication number
JPH07118270B2
JPH07118270B2 JP5266644A JP26664493A JPH07118270B2 JP H07118270 B2 JPH07118270 B2 JP H07118270B2 JP 5266644 A JP5266644 A JP 5266644A JP 26664493 A JP26664493 A JP 26664493A JP H07118270 B2 JPH07118270 B2 JP H07118270B2
Authority
JP
Japan
Prior art keywords
nanotube
electrode
transistor
electrons
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5266644A
Other languages
Japanese (ja)
Other versions
JPH07122198A (en
Inventor
睦夫 日高
純一 曽根
和夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5266644A priority Critical patent/JPH07118270B2/en
Publication of JPH07122198A publication Critical patent/JPH07122198A/en
Publication of JPH07118270B2 publication Critical patent/JPH07118270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/10Resistive cells; Technology aspects
    • G11C2213/17Memory cell being a nanowire transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子回路等に用いられる
トランジスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transistor used in electronic circuits and the like.

【0002】[0002]

【従来の技術】図2は一般的な3極真空管を模式的に示
した図である。3極真空管では陰極21と陽極22間に
電圧を印加し、陰極21から電子を放出させ、陽極22
で受け取る。このときグリッド23に正電圧をかける
と、電子はグリッドに補足され陽極22に到達する数が
減少する。このようにグリッド23の電圧をコントロー
ルすることによって陰極21−陽極22間の電流を制御
することができ、トランジスタが構成できる。またこの
トランジスタは電子の走行経路を真空に保ためガラス管
24の中に封入されている。
2. Description of the Related Art FIG. 2 is a diagram schematically showing a general triode vacuum tube. In a triode vacuum tube, a voltage is applied between the cathode 21 and the anode 22 to cause the cathode 21 to emit electrons and
Receive at. At this time, when a positive voltage is applied to the grid 23, the number of electrons that are captured by the grid and reach the anode 22 is reduced. By thus controlling the voltage of the grid 23, the current between the cathode 21 and the anode 22 can be controlled, and a transistor can be formed. Further, this transistor is enclosed in a glass tube 24 in order to keep the electron travel path vacuum.

【0003】[0003]

【発明が解決しようとする課題】従来の技術で述べた3
極真空管は、半導体トランジスタと比べると寸法が大き
いという欠点があった。このことにより、陰極21から
陽極22への電子の走行時間が長い、高い印加電圧が必
要等の不都合が生じ、結果として動作が遅く消費電力が
高くなっていた。また集積化にも不向きであった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The extreme vacuum tube has a drawback that it is large in size as compared with a semiconductor transistor. This causes inconveniences such as a long transit time of electrons from the cathode 21 to the anode 22 and a need for high applied voltage, resulting in slow operation and high power consumption. It was also unsuitable for integration.

【0004】本発明は、従来の3極真空管の欠点を克服
し、半導体トランジスタを上回る性能を持ったカーボン
ナノチューブを用いた超小型で超高性能のトランジスタ
を提供することを目的としている。
An object of the present invention is to overcome the drawbacks of the conventional triode vacuum tube and to provide an ultra-compact and ultra-high performance transistor using a carbon nanotube having a performance superior to that of a semiconductor transistor.

【0005】[0005]

【発明を解決するための手段】本発明は、ゲート電極と
なるカーボンナノチューブの両端に絶縁体を介してそれ
ぞれソース・ドレイン電極が設けられ、ソース電極とド
レイン電極の間に電圧が印加されてソース電極からドレ
イン電極に向かって電子が放出され、カーボンナノチュ
ーブに印加されるゲート電圧によってドレインに到達す
る電子の数を制御することを特徴とするカーボンナノチ
ューブトランジスタである。ソース電極の電子が放出さ
れる部分は絶縁体を設けず露出しておき、電子を放出し
やすくするとよい。
According to the present invention, a source / drain electrode is provided on both ends of a carbon nanotube serving as a gate electrode via an insulator, and a voltage is applied between the source electrode and the drain electrode to form a source. It is a carbon nanotube transistor characterized in that electrons are emitted from an electrode toward a drain electrode, and the number of electrons reaching the drain is controlled by a gate voltage applied to the carbon nanotube. It is preferable that the portion of the source electrode from which electrons are emitted is exposed without providing an insulator to facilitate the emission of electrons.

【0006】[0006]

【作用】カーボンナノチューブは「固体物理」第27
巻、第6号、第441頁(1992年)にあるようにナ
ノメートルサイズの黒鉛の円筒形の極微細管で、金属ま
たは半導体の性質を持つ導電体である。カーボンナノチ
ューブ(以下ナノチューブと略称する)の直径は2〜5
0nmと極めて小さい。また円筒壁は炭素の6員環でで
きており、酸素や窒素等のガスは透過できない。そのた
めナノチューブの内側は製造時に真空であれば、その後
は真空に保たれる。
[Function] Carbon nanotube is "solid state physics" No. 27
Vol. 6, No. 6, page 441 (1992), it is a cylindrical ultrafine tube of nanometer-sized graphite, which is a conductor having the properties of metal or semiconductor. The diameter of a carbon nanotube (hereinafter abbreviated as a nanotube) is 2 to 5
It is as small as 0 nm. Moreover, the cylindrical wall is made of a 6-membered ring of carbon and cannot pass gases such as oxygen and nitrogen. Therefore, if the inside of the nanotube is in vacuum at the time of manufacture, it is kept in vacuum thereafter.

【0007】このナノチューブの内側を電子の通り道と
して真空管式トランジスタを構成すれば、ナノチューブ
に正電圧を印加することで、ナノチューブ円筒壁に電子
を引きつけることができ、電流が変調できる。このナノ
チューブ真空管式トランジスタは、ナノチューブのサイ
ズを反映して極めて小型であるため、極めて低い電圧の
印加で電流が変調できる。また電子の走行距離も短くで
き、超高速で消費電力の極めて小さなトランジスタが実
現できる。
If a vacuum tube type transistor is constructed with the inside of the nanotube as a path for electrons, by applying a positive voltage to the nanotube, electrons can be attracted to the nanotube wall and the current can be modulated. Since this nanotube vacuum tube transistor is extremely small, reflecting the size of the nanotube, the current can be modulated by applying an extremely low voltage. In addition, the distance traveled by electrons can be shortened, and a transistor with ultra-high speed and extremely low power consumption can be realized.

【0008】[0008]

【実施例】図1は本発明の実施例を説明するための図で
ある。以下図1を用いて本発明の実施例の説明を行う。
FIG. 1 is a diagram for explaining an embodiment of the present invention. An embodiment of the present invention will be described below with reference to FIG.

【0009】銅からなるソース電極11、同じく銅から
なるドレイン電極12とがアルミニウム酸化物からなる
絶縁体13をそれぞれ介してナノチューブ14で接続さ
れている。ナノチューブはゲート電極14となる。ソー
ス電極11とドレイン電極12間およびナノチューブ1
4からなるゲート電極はそれぞれ独立に電圧が印加され
る。ナノチューブゲート電極14とソース電極11およ
びドレイン電極12の間は絶縁体13によって完全に絶
縁されている。ナノチューブゲート電極14は直径が3
0nm長さが100nmである。また絶縁体13の厚さ
はそれぞれ10nmである。
A source electrode 11 made of copper and a drain electrode 12 made of copper are connected by a nanotube 14 via an insulator 13 made of aluminum oxide. The nanotube becomes the gate electrode 14. Between source electrode 11 and drain electrode 12 and nanotube 1
A voltage is independently applied to each of the four gate electrodes. The nanotube gate electrode 14 and the source electrode 11 and the drain electrode 12 are completely insulated by the insulator 13. The nanotube gate electrode 14 has a diameter of 3
The 0 nm length is 100 nm. The thickness of each insulator 13 is 10 nm.

【0010】ナノチューブゲート電極14の円筒壁は炭
素の6員環でできており、酸素や窒素等のガスは通過で
きない。そのため製造時にナノチューブゲート電極14
内部が真空であるならば、その後も内部はほぼ真空に保
たれる。(ナノチューブは通常、炭素電極を用いた真空
中のアーク放電で製造する。)図1のトランジスタの動
作は以下のように行われる。まずソース電極11とドレ
イン電極12間に電圧が印加されると、ソース電極表面
から電子が放出され、電解に引かれてドレイン電極12
に達する。このときナノチューブゲート電極14に正電
圧が印加されると、前記ソース電極11から放出された
電子の軌道は曲げられ、一部の電子がナノチューブゲー
ト電極14の方に流れる。従って、ナノチューブゲート
電極14に印加する電圧によってソース電極11−ドレ
イン電極12間の電流を変調するトランジスタ動作が得
られる。
The cylindrical wall of the nanotube gate electrode 14 is made of a carbon 6-membered ring and cannot pass gases such as oxygen and nitrogen. Therefore, when manufacturing, the nanotube gate electrode 14
If the interior is a vacuum, then the interior is maintained at a near vacuum. (Nanotubes are typically manufactured by arc discharge in a vacuum using a carbon electrode.) The operation of the transistor of FIG. 1 operates as follows. First, when a voltage is applied between the source electrode 11 and the drain electrode 12, electrons are emitted from the surface of the source electrode and are attracted to electrolysis to cause drain electrode 12
Reach At this time, if a positive voltage is applied to the nanotube gate electrode 14, the orbits of the electrons emitted from the source electrode 11 are bent, and some electrons flow toward the nanotube gate electrode 14. Therefore, a transistor operation in which the current applied between the source electrode 11 and the drain electrode 12 is modulated by the voltage applied to the nanotube gate electrode 14 can be obtained.

【0011】一般に電解電子放射を得るには107 V/
cm程度の電解強度が必要であるが、ソース電極11と
ドレイン電極12間の距離が120nmと極めて短いこ
とと、ソース電極11とドレイン電極12の先端は30
nm程度であり著しく劣っており電解強度が高いことか
ら、mVオーダーの電圧で動作させることが可能であ
る。またゲート電圧とソースドレイン電圧の比は、ナノ
チューブゲート電極14の半径とソース電極11とドレ
イン電極12間の比(本実施例の場合1:8)に比例す
るため、ゲート電圧はソースドレイン電圧よりさらに低
くすることができ、高いゲインが得られる。
Generally, to obtain electrolytic electron emission, 10 7 V /
Although an electrolytic strength of about cm is required, the distance between the source electrode 11 and the drain electrode 12 is extremely short at 120 nm, and the tips of the source electrode 11 and the drain electrode 12 are 30
It is possible to operate at a voltage on the order of mV, because it is about nm, which is extremely inferior, and the electrolytic strength is high. Since the ratio of the gate voltage to the source / drain voltage is proportional to the radius of the nanotube gate electrode 14 and the ratio between the source electrode 11 and the drain electrode 12 (1: 8 in this embodiment), the gate voltage is more than the source / drain voltage. It can be further lowered, and high gain can be obtained.

【0012】以上説明したように本実施例を用いれば、
低電圧で動作しかも高いゲインを有するトランジスタが
得られる。低電圧動作のドランジスタはスイッチ時間が
短く、消費電力が小さくなる。また、ナノチューブの寸
法を反映して、超小型のトランジスタを構成できる。
As described above, according to this embodiment,
A transistor that operates at a low voltage and has a high gain can be obtained. The transistor operating at low voltage has a short switching time and consumes less power. In addition, an ultra-small transistor can be constructed by reflecting the dimensions of the nanotube.

【0013】ここで、このトランジスタの製造方法を説
明する。まずアーク放電等で絶縁基板上にナノチューブ
を堆積させ、真空を破らずに別のチャンバーに移す。次
に真空蒸着法でアルミニウム薄膜を厚さ数nm堆積す
る。次にまた別のチャンバに移して酸素プラズマ中で酸
化してアルミニウム酸化物を形成する。さらに別のチャ
ンバに移送してから、基板を大きく傾けてアルゴンを用
いた異方性エッチングを行うと、ナノチューブの両端の
アルミニウム酸化物が除去されナノチューブの両端を開
口することがきる。その後銅の薄膜を形成する。これは
銅を構成元素として含むガス(有機金属化合物など)を
基板上に流し、きわめて細く絞った電子ビームをナノチ
ューブの両端のソース・ドレイン電極となる部分にだけ
照射してガスを分解するとそこに銅薄膜パターンを堆積
できる。なお電極パターンを形成するには、電子ビーム
の照射以外に、STM(Scanning Tunne
ling Microscope)用の微細な針を、電
極を形成すべき部分に位置合わせし、前記のガスを流
し、基板との間に電流を流してガスを分解する方法もあ
る。
Now, a method of manufacturing this transistor will be described. First, nanotubes are deposited on an insulating substrate by arc discharge or the like and transferred to another chamber without breaking the vacuum. Next, an aluminum thin film is deposited to a thickness of several nm by the vacuum evaporation method. Then, it is transferred to another chamber and oxidized in oxygen plasma to form aluminum oxide. When the substrate is further moved to another chamber and anisotropically etched with argon while tilting the substrate largely, aluminum oxide on both ends of the nanotube is removed and both ends of the nanotube can be opened. After that, a copper thin film is formed. This is because a gas (organic metal compound, etc.) containing copper as a constituent element is made to flow over the substrate, and an extremely narrowed electron beam is applied only to the source / drain electrodes at both ends of the nanotube to decompose the gas. Copper thin film patterns can be deposited. In addition to the electron beam irradiation, an STM (scanning tunnel) is used to form the electrode pattern.
There is also a method in which a fine needle for a ring microscope is aligned with a portion where an electrode is to be formed, the above gas is caused to flow, and an electric current is passed between the gas and the substrate to decompose the gas.

【0014】[0014]

【発明の効果】以上説明したように本発明は、ナノチュ
ーブを用いることで、極めて小型で、低電圧動作が可能
なトランジスタを提供できる。このようなトランジスタ
はスイッチング速度が大きく、消費電力が小さい等非常
に優れたトランジスタである。
As described above, according to the present invention, by using the nanotube, it is possible to provide an extremely small-sized transistor capable of operating at a low voltage. Such a transistor is a very excellent transistor because of its high switching speed and low power consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を説明するためのカーボンナノ
チューブを用いたトランジスタの概略図。
FIG. 1 is a schematic view of a transistor using a carbon nanotube for explaining an example of the present invention.

【図2】従来の技術を説明するための3極真空管の概略
図。
FIG. 2 is a schematic view of a triode vacuum tube for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

11 ソース電極 12 ドレイン電極 13 絶縁体 14 カーボンナノチューブゲート電極 21 陰極 22 陽極 23 グリッド 24 ガラス管 11 Source Electrode 12 Drain Electrode 13 Insulator 14 Carbon Nanotube Gate Electrode 21 Cathode 22 Anode 23 Grid 24 Glass Tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ゲート電極となるカーボンナノチューブ
の両端に絶縁体を介してそれぞれソース・ドレイン電極
が設けられ、ソース電極とドレイン電極の間に電圧が印
加されてソース電極からドレイン電極に向かって電子が
放出され、カーボンナノチューブに印加されるゲート電
圧によってドレインに到達する電子の数を制御すること
を特徴とするカーボンナノチューブトランジスタ。
1. A source / drain electrode is provided on both ends of a carbon nanotube serving as a gate electrode via an insulator, and a voltage is applied between the source electrode and the drain electrode to direct electrons from the source electrode toward the drain electrode. A carbon nanotube transistor characterized in that the number of electrons that are emitted and are controlled by the gate voltage applied to the carbon nanotubes reach the drain.
【請求項2】 ソース電極の電子が放出される部分は絶
縁体が設けられていない請求項1に記載のカーボンナノ
チューブトランジスタ。
2. The carbon nanotube transistor according to claim 1, wherein an insulator is not provided in a portion of the source electrode where electrons are emitted.
JP5266644A 1993-10-25 1993-10-25 Carbon nanotube transistor Expired - Lifetime JPH07118270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5266644A JPH07118270B2 (en) 1993-10-25 1993-10-25 Carbon nanotube transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5266644A JPH07118270B2 (en) 1993-10-25 1993-10-25 Carbon nanotube transistor

Publications (2)

Publication Number Publication Date
JPH07122198A JPH07122198A (en) 1995-05-12
JPH07118270B2 true JPH07118270B2 (en) 1995-12-18

Family

ID=17433697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5266644A Expired - Lifetime JPH07118270B2 (en) 1993-10-25 1993-10-25 Carbon nanotube transistor

Country Status (1)

Country Link
JP (1) JPH07118270B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69728410T2 (en) 1996-08-08 2005-05-04 William Marsh Rice University, Houston MACROSCOPICALLY MANIPULATED DEVICES MANUFACTURED FROM NANOROE ASSEMBLIES
EP1135665B1 (en) * 1998-09-07 2010-07-14 Quantrum Precision Instruments Asia Pte Ltd Measurements using tunnelling current between elongate conductors
JP4039600B2 (en) * 1999-02-22 2008-01-30 クラウソン、ジョセフ、イー、ジュニア Nanostructured device and apparatus
JP2001135251A (en) * 1999-03-15 2001-05-18 Toshiba Corp Multielectrode electron tube
AU2001236763A1 (en) * 2000-02-07 2001-08-14 Xidex Corporation System and method for fabricating logic devices comprising carbon nanotube transistors
JP4512176B2 (en) * 2001-02-08 2010-07-28 株式会社日立製作所 Carbon nanotube electronic device and electron source
US7084507B2 (en) 2001-05-02 2006-08-01 Fujitsu Limited Integrated circuit device and method of producing the same
KR100426495B1 (en) * 2001-12-28 2004-04-14 한국전자통신연구원 Semiconductor device using a single carbon nanotube and a method for manufacturing of the same
US7276285B2 (en) * 2003-12-31 2007-10-02 Honeywell International Inc. Nanotube fabrication basis
US7329931B2 (en) 2004-06-18 2008-02-12 Nantero, Inc. Receiver circuit using nanotube-based switches and transistors
WO2013011399A1 (en) * 2011-07-20 2013-01-24 Koninklijke Philips Electronics N.V. Vaccum nano electronic switching and circuit elements.

Also Published As

Publication number Publication date
JPH07122198A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
US6283812B1 (en) Process for fabricating article comprising aligned truncated carbon nanotubes
US5543684A (en) Flat panel display based on diamond thin films
EP0260075B1 (en) Vacuum devices
US7646149B2 (en) Electronic switching device
US20040127012A1 (en) Method for fabricating spaced-apart nanostructures
KR19990036606A (en) Field emission electron source, manufacturing method thereof and use thereof
Brodie et al. The application of thin-film field-emission cathodes to electronic tubes
JPH07118270B2 (en) Carbon nanotube transistor
US6899584B2 (en) Insulated gate field emitter array
US7176478B2 (en) Nanotube-based vacuum devices
JP3580930B2 (en) Electron emission device
JP2003162956A (en) Mis/mim electron emitter
JP2008078081A (en) Field emission electron source and its manufacturing method
KR100441751B1 (en) Method for Fabricating field emission devices
JPH06162919A (en) Field emission cold cathode element
JP3554238B2 (en) Cold cathode
KR100485128B1 (en) Field emission device and method of manufacturing a field emission device
JP3603682B2 (en) Field emission electron source
JP2000251616A (en) Field emission type cold cathode device and manufacture thereof
JPH0927263A (en) Cold cathode element
KR100543959B1 (en) Method for conducting field emission using shell-shaped carbon nano particle
JP3079086B2 (en) Method for manufacturing field emission electron source
KR100372168B1 (en) A method for manufacturing gated carbon-nanotube field emission displays
CN114521282A (en) Electron source for generating electron beam
JP2004213911A (en) Field electron emission constant current diode

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071218

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091218

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101218

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111218

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111218

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 18

EXPY Cancellation because of completion of term