JPH0711763B2 - Curved surface creation method - Google Patents

Curved surface creation method

Info

Publication number
JPH0711763B2
JPH0711763B2 JP61080028A JP8002886A JPH0711763B2 JP H0711763 B2 JPH0711763 B2 JP H0711763B2 JP 61080028 A JP61080028 A JP 61080028A JP 8002886 A JP8002886 A JP 8002886A JP H0711763 B2 JPH0711763 B2 JP H0711763B2
Authority
JP
Japan
Prior art keywords
curved surface
curves
curve
space
curved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61080028A
Other languages
Japanese (ja)
Other versions
JPS62237507A (en
Inventor
景一 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61080028A priority Critical patent/JPH0711763B2/en
Publication of JPS62237507A publication Critical patent/JPS62237507A/en
Publication of JPH0711763B2 publication Critical patent/JPH0711763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、アンテナ等設計によって要所要所の断面形
状が厳密に指定される曲面をNC加工する際に用いられる
曲面創成方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a curved surface creation method used for NC machining of a curved surface whose cross-sectional shape at a required point is strictly specified by the design of an antenna or the like. .

[従来の技術] 第7図は例えば特開昭57−5109号公報に示された従来の
曲面創成方法を示す図であり、図において、(1),
(2)は断面、(1a),(2a)は断面曲線(3),
(4),(5)は中間断面、(5a)は中間断面曲線であ
る。
[Prior Art] FIG. 7 is a view showing a conventional curved surface creating method disclosed in, for example, Japanese Patent Laid-Open No. 57-5109, in which (1),
(2) is a cross section, (1a) and (2a) are cross section curves (3),
(4) and (5) are intermediate sections, and (5a) is an intermediate section curve.

次に、上記の従来例の曲面創成方法について説明する。Next, the above-mentioned conventional curved surface generating method will be described.

曲面は次のステップに従って生成される。The curved surface is generated according to the following steps.

与えられた2つの断面(与断面という)(1),
(2)間に複数の中間断面を生成する。
Two given cross sections (referred to as given cross sections) (1),
A plurality of intermediate sections are generated during (2).

与断面(1),(2)上に存在する断面曲線(与断面
曲線という)(1a),(2a)から、で生成された各中
間断面内に存在する中間断面曲線(4a),(5a)…を生
成する。
Intermediate cross-section curves (4a), (5a) existing in each intermediate cross-section generated from the cross-section curves (referred to as given cross-section curves) (1a), (2a) existing on the given cross-sections (1), (2) ) ... is generated.

多数の中間断面に対する中間断面曲線(4a),(5a)
…が求められれば、、該中間断面曲線群の連続として曲
面が生成される。
Intermediate section curves (4a), (5a) for multiple intermediate sections
If .. is obtained, a curved surface is generated as a continuation of the intermediate section curve group.

以上から、従来技術は、中間断面生成と該中間断面上の
中間曲線の生成が核となっている。
From the above, the conventional technique is based on the generation of the intermediate section and the generation of the intermediate curve on the intermediate section.

[発明が解決しようとする問題点] 従来の曲面創成方法は以上にように、中間断面曲線の生
成を基本に構成されているので、曲線を構成する4つの
断面曲面に対する中間断面の意味が不明確で、また隣接
曲面との関係を考慮できない、複合曲面を扱えず加工に
際して他の曲面を削る危険がある等の問題があった。
[Problems to be Solved by the Invention] As described above, since the conventional curved surface creating method is basically configured to generate the intermediate section curve, the meaning of the intermediate section for four curved sections forming the curve is unclear. There are problems that it is clear and that the relationship with adjacent curved surfaces cannot be taken into consideration, that complex curved surfaces cannot be handled, and there is a risk of cutting other curved surfaces during processing.

また、与断面曲線は平面上に存在しなければならず、空
間曲線の取扱いはできなかった。
Moreover, the given cross-section curve must exist on a plane, and the space curve cannot be handled.

この発明は、上記のような問題点を解消するためになさ
れたもので、曲面を構成する4つの断面曲線を与えれば
指定寸法を満たす断面曲線を有する曲面を、隣接曲面と
の関係を考慮して創成し、しかも空間曲線の取扱いも可
能にした曲面創成方法を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and a curved surface having a cross-sectional curve satisfying a specified dimension by giving four cross-sectional curves constituting the curved surface is considered in consideration of a relationship with an adjacent curved surface. The objective is to obtain a curved surface creation method that enables the creation of a curved surface and the handling of spatial curves.

[問題点を解決するための手段] この発明に係る曲面創成法は、互いに向かいあう第1の
2つの空間曲線と、該第1の2つの空間曲線とそれぞれ
交差し互に向かいあう第2の2つの空間曲線とが与えら
れ、前記各空間曲線をそれぞれ複数の区分に分割された
区分曲線の接続で表現し、また該区分曲線の各々を通常
多項式で表現し、前記のように表現された第1の2つの
空間曲線から該曲線間の第1の曲面を、また前記のよう
に表現された第2の2つの空間曲線から該曲線間の第2
の曲面を、それぞれロフト(Loft)曲面創成手法により
創成し、次に前記創成された第1の曲面と第2の曲面に
それぞれの曲面の重み係数を乗算し、該乗算結果の和を
求める手法により2つの曲面を重ね合わせて前記4つの
空間曲線間の曲面を創成するものである。
[Means for Solving the Problems] A curved surface generating method according to the present invention includes a first two space curves facing each other and a second two space curves respectively intersecting the first two space curves and facing each other. A space curve is given, each space curve is represented by a connection of a plurality of section curves divided into a plurality of sections, and each of the section curves is usually expressed by a polynomial, and the first section expressed as described above. A first curved surface between the two spatial curves of, and a second curved surface between the second two spatial curves expressed as described above.
Each of the curved surfaces is generated by a Loft curved surface generating method, and then the generated first curved surface and second curved surface are multiplied by the weighting factors of the curved surfaces, and the sum of the multiplication results is obtained. The two curved surfaces are overlapped to create a curved surface between the four space curves.

[作 用] この発明においては、互いに向かいあう第1の2つの空
間曲線と、該第1の2つの空間曲線とそれぞれ交差し互
に向かいあう第2の2つの空間曲線とが与えられ、前記
各空間曲線をそれぞれ複数の区分に分割された区分曲線
の接続で表現することにより指定寸法を満たす空間曲線
とし、また該区分曲線の各々を通常多項式で表現し、前
記のように表現された第1の2つの空間曲線から該曲線
間の第1の曲面を、また前記のように表現された第2の
2つの空間曲線から該曲線間の第2の曲面を、それぞれ
ロフト(Loft)曲面創成手法により創成し、次に前記創
成された第1の曲面と第2の曲面にそれぞれの曲面の重
み係数を乗算し、該乗算結果の和を求める手法により2
つの曲面を重ね合わせるこにより隣接曲面との関係を考
慮した曲面創成を可能とし、これらの組み合せにより、
曲面を構成する4つの空間曲線を与えれば指定寸法を満
たす空間曲線を有する曲面を隣接曲面との関係を考慮し
て創成する。
[Operation] In the present invention, the first two space curves facing each other and the second two space curves respectively intersecting the first two space curves and facing each other are provided, and each space described above is provided. Each curve is represented by a connection of segmental curves divided into a plurality of segments to form a space curve satisfying a specified dimension, and each segmental curve is usually represented by a polynomial, and the first curve represented as described above is used. A first curved surface between the two spatial curves and a second curved surface between the curved lines from the second two spatial curves expressed as described above are respectively generated by a Loft curved surface generating method. 2 by the method of generating, then multiplying the created first curved surface and second curved surface by the weighting coefficient of each curved surface, and obtaining the sum of the multiplication results.
By superimposing two curved surfaces, it is possible to create curved surfaces that take into account the relationship with adjacent curved surfaces.
If four space curves that make up a curved surface are given, a curved surface having a space curve satisfying a specified dimension is created in consideration of the relationship with an adjacent curved surface.

[実施例] 以下この発明の一実施例を図について説明する。第1図
において、(6),(7),(8),(9)は各々通常
多項式で表現される区分曲線をつなぎ合せた空間曲線、
(10)は創成する曲面P(u,w),(11)は互に向かい
あう第1の2つの空間曲線(6),(7)で創成する第
1の曲線Plu(u,w)、(12)は前記第1の2つの空間曲
線(6),(7)とそれぞれ交差し互に向かいあう第2
の2つの空間曲線(8),(9)で創成する第2の曲面
Plw(u,w)である。(13),(14)はパラメータであ
り、0≦u,w≦1の変域を持ち、任意のuc,wc(ただし、
0≦uc,wc≦1)を与えることで曲面上の一点P(u,w)
が定まる。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, (6), (7), (8), and (9) are space curves obtained by connecting piecewise curves normally expressed by polynomials,
(10) is the curved surface P (u, w) that is created, (11) is the first two spatial curves (6) and (7) that face each other, and the first curve Plu (u, w), ( 12) is the second that intersects the first two space curves (6) and (7), respectively, and faces each other.
Second curved surface created by two space curves (8) and (9) of
Plw (u, w). (13), (14) are parameters, have a domain of 0≤u, w≤1, and have arbitrary uc, wc (however,
By giving 0 ≦ uc, wc ≦ 1), one point P (u, w) on the curved surface
Is determined.

また、第2図において、(13),(14)は各々、空間曲
線(6),(7)を横切る方向の境界条件である。
Further, in FIG. 2, (13) and (14) are boundary conditions in the directions crossing the space curves (6) and (7), respectively.

なお、記号P,C,Qはベクトルを表すものとする。The symbols P, C and Q represent vectors.

(a)次に、曲面創成方法について説明する。曲面(1
0)P(u,w)は、 P(u,w)=α(u,w)・Plw(u,w)+β(u,w)・Plu
(u,w) 0≦u,w≦1 を用いて創成する。この意味は、第1図に示したように
2つの曲面Plu(u,w)とPlw(u,w)の重ね合せによって
曲面を定めることにある。ここで、α(u,w),β(u,
w)には次に示す条件を与える。
(A) Next, a curved surface creation method will be described. Curved surface (1
0) P (u, w) is P (u, w) = α (u, w) · Plw (u, w) + β (u, w) · Plu
(U, w) 0 ≦ u, w ≦ 1 is used for creation. This means that the curved surface is defined by superposing two curved surfaces Plu (u, w) and Plw (u, w) as shown in FIG. Where α (u, w), β (u,
The following conditions are given to w).

α(u,w)+β(u,w)=1 上記のα(u,w)とβ(u,w)は、2つの曲面Plw(u,w)
とPlu(u,w)のどちらをどの程度重視するかを示すもの
で、一般には重み係数又は影響関数と呼ばれるものであ
り、これらの値を決める一例として後述するブラウンの
式がある。
α (u, w) + β (u, w) = 1 The above α (u, w) and β (u, w) are two curved surfaces Plw (u, w)
And Plu (u, w) are shown to what degree and which is generally called a weighting coefficient or an influence function. An example of determining these values is Brown's formula described later.

ここで、この発明の特徴は上の手法を創成することでは
なく、Plu(u,w)とPlw(u,w)を構成する空間曲線
(6),(7),(8),(9)を通常多項式で表現し
た区分曲線の接続で表現して、Plu(u,w)とPlw(u,w)
を創成し、P(u,w)を上記手法で創成するという2つ
の手法の組み合せによって曲面を創成することにある。
なお、α(u,w),β(u,w)の例として、ブラウン(Br
oun)*が用いた式を次に示す。
Here, the feature of the present invention is not to create the above method, but the space curves (6), (7), (8), and (9) that compose Plu (u, w) and Plw (u, w). ) Is expressed as a connection of piecewise curves that are usually expressed as polynomials, and Plu (u, w) and Plw (u, w)
, And P (u, w) is created by the above method to create a curved surface.
As an example of α (u, w) and β (u, w), Brown (Br
The formula used by oun) * is shown below.

*(R.E.Barnhill.Brown.I.M.Klucewicz:A New Twist i
n Computer Aided Geometric Design.Computer Graphic
s and Image Processing.8(1978)) (b)次に、Plu(u,w)とPlw(u,w)の2つの曲面創成
方法について示す。2つの曲面創成方法は同じであるの
で、第2図に従ってPlu(u,w)について示す。
* (REBarnhill.Brown.IMKlucewicz: A New Twist i
n Computer Aided Geometric Design.Computer Graphic
s and Image Processing.8 (1978)) (b) Next, two curved surface generation methods of Plu (u, w) and Plw (u, w) are shown. Since the two curved surface generation methods are the same, Plu (u, w) is shown according to FIG.

Plu(u,w)は次式で創成される。Plu (u, w) is created by the following equation.

Plu(u,w)=H0,o(u)・C(0,W)+H0,1(u)・C
(1,w) +H1,o(u)・Cu(0,w)+H1,1(u)・C(1,w) 0≦u,w≦1 H0,0(u)=2u3−3u2+1 H0,1(u)=−2u3−3u2 H1,0(u)=u3−2u2+u H1,1(u)=u3−u2 上式はロフト(Loft)曲面といわれているものである。
第2図から明らかなように、Cu(0,w)(13)、Cu(1,
w)(14)により隣接曲面との関係が反映される。
Plu (u, w) = H 0 , o (u) ・ C (0, W) + H 0 , 1 (u) ・ C
(1, w) + H 1 , o (u) ・ Cu (0, w) + H 1 , 1 (u) ・ C (1, w) 0 ≦ u, w ≦ 1 H 0 , 0 (u) = 2u 3 −3u 2 +1 H 0 , 1 (u) = − 2u 3 −3u 2 H 1 , 0 (u) = u 3 −2u 2 + u H 1 , 1 (u) = u 3 −u 2 Loft) is called a curved surface.
As is clear from FIG. 2, Cu (0, w) (13), Cu (1,
w) (14) reflects the relationship with the adjacent curved surface.

(c)次に、曲線の表現について示す。第3図におい
て、C I(0,w)(15),C II(0,w)(16),C III(0,
w)(17)は曲線C(0,w)(6)を構成する区分曲線で
ある。本発明では、各区分曲線を次に示す通常多項式で
表現する。なお、区分曲線の数は第3図における便宜上
3つとしたが数に制限がないことはいうまでもない。
(C) Next, the expression of the curve will be described. In FIG. 3, CI (0, w) (15), C II (0, w) (16), C III (0,
w) and (17) are segmented curves forming the curve C (0, w) (6). In the present invention, each piecewise curve is represented by the following normal polynomial. Although the number of segmented curves is three for convenience in FIG. 3, it goes without saying that the number is not limited.

A)区分曲線が線分の場合; i=I,II,III Q0=Ci(0,0) Q3=Ci(0,1) Q0,Q1は区分曲線の両端点である。A) When the segment curve is a line segment; i = I, II, III Q 0 = Ci (0,0) Q 3 = Ci (0,1) Q 0, Q 1 is a both end points of the segment curve.

B)区分曲線が円弧の場合; 便宜上、第4図に示す円弧で考える。B) When the segmented curve is an arc: For convenience, consider the arc shown in FIG.

Ci(0,w)={x,y}とし、 Q3=Ci(0,1) で表す。Ci (0, w) = {x, y}, It is represented by Q 3 = Ci (0,1).

なお、A),B)共にΦの通常多項式は次式を用いる。Φ
0,3(W)=(1−w) Φ0,3(W)=3(1−w)2w Φ2,3(W)=3(1−w)w2 Φ3,3(W)=w3 区分曲線は各々パラメータwの変域が0≦w≦1である
が,曲線全体で変域を0≦w≦1とする必要が手順
(a),(b)から要求されるため、区分曲線長と曲線
全体の長さとの関係からパラメータwの変域を求める。
例えば、曲線が第3図のように3つの区分曲線で構成さ
れ各区分曲線長をS I,S II,S IIIとすると次のようにな
る。
For both A) and B), the following equation is used as the ordinary polynomial of Φ. Φ
0, 3 (W) = ( 1-w) 3 Φ 0, 3 (W) = 3 (1-w) 2 w Φ 2, 3 (W) = 3 (1-w) w 2 Φ 3, 3 ( W) = w 3 segmented curves have a variable range of 0 ≦ w ≦ 1 for each parameter w, but it is required from steps (a) and (b) that the variable range of the entire curve be 0 ≦ w ≦ 1. Therefore, the domain of the parameter w is obtained from the relationship between the segmented curve length and the length of the entire curve.
For example, if the curve is composed of three section curves as shown in FIG. 3 and the section curve lengths are SI, S II, S III, the following is obtained.

C I(0,w):0≦w≦S I/S C II(0,w):S I/S≦W≦(S I+S II)/S C III(0,w):(S I+S II)/S≦w≦1 S=S I+S II+S III 上記変域となるように、各区分曲線のパラメータ変域を
変換すればよい。
CI (0, w): 0 ≤ w ≤ SI / SC II (0, w): SI / S ≤ W ≤ (S I + S II) / SC III (0, w): (S I + S II) / S ≤ w ≦ 1 S = S I + S II + S III It suffices to transform the parameter domain of each segmental curve so that the above domain is obtained.

本発明の実施例を具体的に述べたが、本発明の特徴は手
順(c)及び手順(a),(b),(c)の組み合せに
よる曲面創成方法にある。
Although the embodiments of the present invention have been specifically described, the feature of the present invention resides in the curved surface generating method by the combination of the procedure (c) and the procedures (a), (b) and (c).

第5図(A),(B),(C)は本発明により生成され
た曲面の例である。
5 (A), (B) and (C) are examples of curved surfaces generated by the present invention.

第6図は、本発明を実現する曲面創成装置のブロック図
である。図において(18)は空間曲線をデータとして入
力する装置、(19)はメモリーであり、入力データや各
手順において作成されるデータ等を記憶する。(20)は
区分曲線作成装置であり、前記手順で生成し得られたデ
ータをメモリ(19)に記憶せしめる。(21)はPlu,Plw
曲面作成装置、(22)はPlu,Plw曲面重ね合せ装置であ
り、前記手順の処理を行いメモリ(19)にデータを記憶
せしめる。第5図のように曲面がメモリ(19)上に生成
されたなら、例えば多軸フライスを用いて加工する場
合、NCデータ作成装置(23)にデータを送り、NCデータ
転送装置(24)により多軸フライスへNCデータを送り加
工することができる。第6図の曲面創成装置はコンピュ
ータシステムで構成することもできる。また上記実施例
ではα(u,u),β(u,u)をブラウン(Brown)の用い
た式を用いたが次式でもよい。
FIG. 6 is a block diagram of a curved surface creation device that realizes the present invention. In the figure, (18) is a device for inputting a space curve as data, and (19) is a memory for storing input data, data created in each procedure, and the like. (20) is a piecewise curve creating device, and stores the data generated and obtained in the above procedure in the memory (19). (21) is Plu, Plw
A curved surface forming device (22) is a Plu, Plw curved surface superimposing device, which stores the data in the memory (19) by performing the processing of the above procedure. When the curved surface is generated on the memory (19) as shown in Fig. 5, for example, when machining with a multi-axis milling machine, the data is sent to the NC data creating device (23) and the NC data transfer device (24) is used. NC data can be sent to a multi-axis milling machine for machining. The curved surface generating device shown in FIG. 6 can be configured by a computer system. Further, in the above-described embodiment, the equation using α (u, u) and β (u, u) by Brown is used, but the following equation may be used.

[発明の効果] 以上のようにこの発明によれば、4つの空間曲線を与え
れば、この4限を指定された隣接曲面を考慮して、しか
も、指定された断面曲線の寸法を満たして曲面の創成が
できるという優れた効果が得られる。
As described above, according to the present invention, if four space curves are given, curved surfaces satisfying the dimensions of the specified cross-sectional curve while considering the adjacent curved surfaces whose four limits are specified. The excellent effect of being able to create is obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による曲面創成の概略を説
明する図、第2図は向かい合う2つの曲線を創成する手
法を説明する図、第3図は曲線の表現を説明する図、第
4図は円弧を表現する手法を説明するための図、第5図
(A),(B),(C)はこの発明によって生成された
曲面の例、第6図はこの発明を実現する曲面創成装置の
一例を示すブロック図、第7図は特開昭57−5109号公報
に示された従来の曲面創成方式を示す図である。 図において、(1),(2)は断面図、(1a),(2a)
は断面曲線、(3),(4),(5)中間断面、(5a)
は中間断面曲線、(6),(7),(8),(9)は空
間曲線、(10),(11),(12)は曲面、(13),(1
4)パラメータ、(15),(16),(17)は区分曲線、
(18)はデータ入力装置、(19)はメモリー、(20)は
区分曲線作成装置、(21)はPlu,Plw曲面作成装置、(2
2)はPlu,Plw曲面重ね合せ装置、(23)はNCデータ作成
装置、(24)はNCデータ転送装置、(25)は制御回路で
ある。 なお、図中同一符号は同一又は相当部分を示すものであ
る。
FIG. 1 is a diagram for explaining an outline of curved surface generation according to an embodiment of the present invention, FIG. 2 is a diagram for explaining a method for generating two curves facing each other, and FIG. 3 is a diagram for explaining expression of curves. FIG. 4 is a diagram for explaining a method of expressing an arc, FIGS. 5 (A), (B), and (C) are examples of curved surfaces generated by the present invention, and FIG. 6 is a curved surface realizing the present invention. FIG. 7 is a block diagram showing an example of a generating device, and FIG. 7 is a diagram showing a conventional curved surface generating system disclosed in Japanese Patent Laid-Open No. 57-5109. In the figure, (1) and (2) are sectional views, (1a) and (2a)
Is a section curve, (3), (4), (5) intermediate section, (5a)
Is an intermediate section curve, (6), (7), (8) and (9) are spatial curves, (10), (11) and (12) are curved surfaces, and (13) and (1
4) Parameters, (15), (16), (17) are segmented curves,
(18) is a data input device, (19) is a memory, (20) is a piecewise curve creation device, (21) is a Plu, Plw curved surface creation device, (2
2) is a Plu / Plw curved surface superimposing device, (23) is an NC data creating device, (24) is an NC data transferring device, and (25) is a control circuit. The same reference numerals in the drawings indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】互に向かいあう第1の2つの空間曲線と、
該第1の2つの空間曲線とそれぞれ交差し互に向かいあ
う第2の2つの空間曲線とが与えられ、前記各空間曲線
をそれぞれ複数の区分に分割された区分曲線の接続で表
現し、また該区分曲線の各々を通常多項式で表現し、前
記のように表現された第1の2つの空間曲線から該曲線
間の第1の曲面を、また前記のように表現された第2の
2つの空間曲線から該曲線間の第2の曲面を、それぞれ
ロフト(Loft)曲面創成手法により創成し、次に前記創
成された第1の曲面と第2の曲面にそれぞれの曲面の重
み係数を乗算し、該乗算結果の和を求める手法により2
つの曲面を重ね合わせて前記4つの空間曲線間の曲面を
創成することを特徴とする曲面創成方法。
1. A first two space curves facing each other,
Given are the first two spatial curves and the second two spatial curves that intersect each other and face each other, and each spatial curve is represented by a connection of segmental curves divided into a plurality of segments, and Each of the piecewise curves is usually expressed by a polynomial, and the first two space curves expressed as described above to the first curved surface between the curves and the second two spaces expressed as described above. A second curved surface between the curves is created by a loft curved surface creating method, and then the created first curved surface and second curved surface are multiplied by a weighting factor of each curved surface, 2 by the method of obtaining the sum of the multiplication results
A method of creating a curved surface, characterized in that two curved surfaces are superposed to create a curved surface between the four space curves.
【請求項2】前記空間曲線が断面曲線の場合には、断面
曲線を構成する円弧、線分を各々区分曲線とし前記曲面
を創成することを特徴とする特許請求の範囲第(1)項
記載の曲面創成方法。
2. When the space curve is a section curve, the curved surface is created by using arcs and line segments constituting the section curve as segment curves, respectively. Curved surface creation method.
JP61080028A 1986-04-09 1986-04-09 Curved surface creation method Expired - Lifetime JPH0711763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080028A JPH0711763B2 (en) 1986-04-09 1986-04-09 Curved surface creation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080028A JPH0711763B2 (en) 1986-04-09 1986-04-09 Curved surface creation method

Publications (2)

Publication Number Publication Date
JPS62237507A JPS62237507A (en) 1987-10-17
JPH0711763B2 true JPH0711763B2 (en) 1995-02-08

Family

ID=13706820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080028A Expired - Lifetime JPH0711763B2 (en) 1986-04-09 1986-04-09 Curved surface creation method

Country Status (1)

Country Link
JP (1) JPH0711763B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57169814A (en) * 1981-04-10 1982-10-19 Fanuc Ltd Forming method of curved surface

Also Published As

Publication number Publication date
JPS62237507A (en) 1987-10-17

Similar Documents

Publication Publication Date Title
US5619625A (en) Method for interpolating smooth free-form surfaces into curve mesh including composite curves
EP0285660B1 (en) Curve producing method
JPH07311858A (en) Method and device for preparing free curved surface
JPH0711763B2 (en) Curved surface creation method
Bajaj et al. Energy formulations of A-splines
JP3153578B2 (en) Offset curved surface generating device and offset solid generating device
JP2638851B2 (en) Numerical control processing method
JP2737132B2 (en) Object surface shape data creation method
JP2737127B2 (en) Object surface shape data creation method
JPS60124786A (en) Vector generating system
JP2755293B2 (en) Polygon mesh connection device
JPH10261096A (en) Curve generating device
JP3019283B2 (en) Curved boundary condition generator
JPS63256988A (en) Spline interpolation
JP2638852B2 (en) Method of generating a fillet surface
JPH01120603A (en) Numerically controlled working method
JP3148792B2 (en) Method and apparatus for generating free-form surface
JP3727148B2 (en) Skinning curved surface generation method and apparatus, and recording medium recording a program for generating the curved surface
Tokuyama et al. Reparameterization of piecewise rational Bézier curves and its applications
JP2001022962A (en) Device and method for processing area division
JP4040821B2 (en) Three-dimensional shape processing method and storage medium storing program for executing the shape processing method
JPH05313638A (en) Character boldfacing system
JP3153580B2 (en) Curve and curved shape generator
JP3669814B2 (en) Recording medium on which a method for calculating a normal vector on a curved surface that is an irregular parameterization is recorded
JP3222261B2 (en) Skinning curved surface shape generator

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term