JPH07117553B2 - Method of manufacturing semiconductor acceleration sensor - Google Patents

Method of manufacturing semiconductor acceleration sensor

Info

Publication number
JPH07117553B2
JPH07117553B2 JP4142602A JP14260292A JPH07117553B2 JP H07117553 B2 JPH07117553 B2 JP H07117553B2 JP 4142602 A JP4142602 A JP 4142602A JP 14260292 A JP14260292 A JP 14260292A JP H07117553 B2 JPH07117553 B2 JP H07117553B2
Authority
JP
Japan
Prior art keywords
weight
semiconductor
acceleration sensor
cantilever
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4142602A
Other languages
Japanese (ja)
Other versions
JPH05273230A (en
Inventor
浩一 村上
行雄 平本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP4142602A priority Critical patent/JPH07117553B2/en
Publication of JPH05273230A publication Critical patent/JPH05273230A/en
Publication of JPH07117553B2 publication Critical patent/JPH07117553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体基板上に形成
した片持ばりを用いた超小型の半導体加速度センサの製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a microminiaturized semiconductor acceleration sensor using a cantilever beam formed on a semiconductor substrate.

【0002】[0002]

【従来の技術】最近半導体基板上に形成された超小型の
半導体加速度センサが開発されている。この半導体加速
度センサは、エッチング等の薄膜技術を用いて半導体基
板上に形成されるものであり、半導体のピエゾ抵抗効果
による抵抗変化や偏位による微小な容量変化を検出する
ことによって加速度を検出するようになっている。これ
らの半導体加速度センサは上記のように薄膜技術を用い
て形成されるため、例えば振動部分の長さが100μm
程度、厚さが1μm程度、チップ全体の大きさが1mm角
程度と極めて小型に形成することが出来、又、集積回路
で他の素子と同一基板上に形成することも出来るという
優れた特徴がある。上記のごとき半導体加速度センサと
しては、例えば「IEEE Electron Devices,Vol.ED-26, N
o.12, p.1911, Dec. 1979. “ A Batch-Fabricated Si
liconAccelerometer"に記載されているものがある。
2. Description of the Related Art Recently, an ultra-compact semiconductor acceleration sensor formed on a semiconductor substrate has been developed. This semiconductor acceleration sensor is formed on a semiconductor substrate using a thin film technique such as etching, and detects acceleration by detecting a resistance change due to the piezoresistive effect of the semiconductor and a minute capacitance change due to deviation. It is like this. Since these semiconductor acceleration sensors are formed by using the thin film technology as described above, for example, the length of the vibrating portion is 100 μm.
It has an excellent feature that it can be formed in a very small size, about 1 μm in thickness, about 1 μm in size, and about 1 mm square in size of the entire chip, and can be formed on the same substrate as other elements in an integrated circuit. is there. As the semiconductor acceleration sensor as described above, for example, "IEEE Electron Devices, Vol.ED-26, N
o.12, p.1911, Dec. 1979. “A Batch-Fabricated Si
"Licon Accelerometer".

【0003】図2は上記の半導体加速度センサの斜視図
及び断面図である。図2において、21はn型のSi基
板、22はSi片持ばり、23はSi重り、24は重り
23の重心、25は拡散抵抗である。図2に示す半導体
加速度センサにおいては、加速度が加わったときにSi
重り23が偏位し、そのためSi片持ばり22に歪を生
じる。このSi片持ばり22の支持部付近には拡散抵抗
25が形成されており、片持ばりに歪を生ずるとピエゾ
抵抗効果によって上記の拡散抵抗25の抵抗値が変化す
る。この抵抗値の変化を検出することによって加速度を
検出することが出来る。
FIG. 2 is a perspective view and a sectional view of the above semiconductor acceleration sensor. In FIG. 2, 21 is an n-type Si substrate, 22 is a Si cantilever, 23 is a Si weight, 24 is the center of gravity of the weight 23, and 25 is a diffusion resistance. In the semiconductor acceleration sensor shown in FIG. 2, when acceleration is applied, Si
The weight 23 is displaced, which causes the Si cantilever beam 22 to be distorted. A diffusion resistance 25 is formed in the vicinity of the support portion of the Si cantilever 22, and when strain occurs in the cantilever, the resistance value of the diffusion resistance 25 changes due to the piezoresistance effect. Acceleration can be detected by detecting the change in the resistance value.

【0004】[0004]

【発明が解決しようとする課題】しかし上記のごとき半
導体加速度センサにおいては、一枚のSi基板21をエ
ッチングすることによって重り23を形成しているの
で、その構造上、重り23の重心が片持ばり22の重心
からずれるため、横方向加速度感度が増大するという問
題がある。
However, in the semiconductor acceleration sensor as described above, since the weight 23 is formed by etching one Si substrate 21, the center of gravity of the weight 23 is cantilevered due to its structure. Since the flash 22 deviates from the center of gravity, there is a problem that lateral acceleration sensitivity increases.

【0005】一般に、このような片持ばり構造では、必
要とするx方向の加速度にのみ感じ、y、z方向の加速
度には感度を有しないことが望ましい。しかし、従来の
半導体加速度センサにおいては、図3に示すごとく、片
持ばり22の重心26と重り23の重心24とがhだけ
ずれているため、y方向の加速度にも感度を有してしま
う。このy方向の感度Syは通常のx方向の感度をS
x、片持ばり22の支持端から重心26までの長さをl
とすれば、下記(数1)式で与えられる。 Sy≒Sx・h/l …(数1) なお、片持ばりの重心26と重り23の重心24とのず
れhは、重り23の厚さのほぼ1/2に等しい。したが
って、例えばSi基板の厚さを1μm、l=3μmとすれ
ば、Sy≒0.1Sxとなる。そのため、例えばy方向
に1Gの加速度が加わった場合には、x方向の0.1G
の加速度と見なしてしまうことになる。上記のごとく、
半導体基板をエッチングすることによって片持ばりと半
導体重りを形成する半導体加速度センサにおいては、超
小型に形成することが出来、しかも集積回路で他の素子
と同一基板上に形成することも出来るという優れた特徴
を有するが、1枚の半導体基板をエッチングすることに
よって片持ばりと半導体重りを形成しているため、片持
ばりの重心と重りの重心とがずれるため、不必要な横方
向感度が大きくなってしまうという問題があった。
Generally, in such a cantilever structure, it is desirable to sense only the required acceleration in the x direction and not have sensitivity to the accelerations in the y and z directions. However, in the conventional semiconductor acceleration sensor, as shown in FIG. 3, the center of gravity 26 of the cantilever beam 22 and the center of gravity 24 of the weight 23 are deviated from each other by h, so that the conventional semiconductor acceleration sensor also has sensitivity to acceleration in the y direction. . This y-direction sensitivity Sy is the normal x-direction sensitivity Sy.
x, the length from the support end of the cantilever 22 to the center of gravity 26 is l
Then, it is given by the following (Formula 1). Sy.apprxeq.Sx.multidot.h / l (Equation 1) It should be noted that the displacement h between the center of gravity 26 of the cantilever beam and the center of gravity 24 of the weight 23 is approximately equal to half the thickness of the weight 23. Therefore, for example, if the thickness of the Si substrate is 1 μm and l = 3 μm, then Sy≈0.1Sx. Therefore, for example, when acceleration of 1G is applied in the y direction, 0.1G in the x direction is applied.
Will be regarded as the acceleration of. As mentioned above,
A semiconductor acceleration sensor that forms a cantilever beam and a semiconductor weight by etching the semiconductor substrate can be formed in a very small size, and can be formed on the same substrate as other elements in an integrated circuit. However, since the cantilever beam and the semiconductor weight are formed by etching one semiconductor substrate, the center of gravity of the cantilever beam and the center of gravity of the weight are displaced from each other, so that unnecessary lateral sensitivity is eliminated. There was a problem of getting bigger.

【0006】本発明は、上記のごとき薄膜技術によって
製造される超小型の半導体加速度センサに特有の問題を
解決するためになされたものであり、必要な方向のみに
感度を有し、不必要な横方向には感度を有しない半導体
加速度センサを製造する方法を提供することを目的とす
るものである。
The present invention has been made in order to solve the problem peculiar to the ultra-compact semiconductor acceleration sensor manufactured by the thin film technology as described above, and has sensitivity only in a necessary direction and is unnecessary. It is an object of the present invention to provide a method of manufacturing a semiconductor acceleration sensor which has no lateral sensitivity.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明においては、特許請求の範囲に記載するよう
に構成している。すなわち、本発明の請求項1に記載の
発明においては、第1の半導体基板をエッチングするこ
とによって、片持ばりと、上記片持ばりの先端部の一方
の面に第1の半導体重りを形成し、上記片持ばりの他方
の面にエッチングストッパとなる薄膜を介して第2の半
導体基板を接着し、上記エッチングストッパとなる薄膜
によって上記第1の半導体基板を保護しながら上記第2
の半導体基板をエッチングすることによって、上記第1
の重りと概略同じ重さの第2の半導体重りを上記片持ば
りの他方の面の上記第1の重りと対称位置に形成するこ
とにより、上記二つの重りの全体の重心を上記片持ばり
の厚さ方向の中心に一致させた半導体加速度センサを製
造するように構成したものである。
In order to achieve the above object, the present invention is constructed as described in the claims. That is, according to the first aspect of the present invention, by etching the first semiconductor substrate, the cantilever beam and the first semiconductor weight are formed on one surface of the tip portion of the cantilever beam. Then, the second semiconductor substrate is adhered to the other surface of the cantilever through a thin film serving as an etching stopper to form a thin film serving as the etching stopper.
While protecting the first semiconductor substrate by the second
By etching the semiconductor substrate of
A second semiconductor weight having a weight approximately the same as that of the first weight is formed at a position symmetrical to the first weight on the other surface of the cantilever beam, so that the entire center of gravity of the two weights is the cantilever beam. It is configured to manufacture a semiconductor acceleration sensor whose center coincides with the center in the thickness direction.

【0008】[0008]

【0009】[0009]

【発明の実施例】図1は本発明の方法によって製造した
半導体加速度センサの一実施例の主要部断面図である。
図1において、27はSi重りであり、Si重り23と
同一材質で形成され、かつ同一の重量を有するものであ
る。したがって、Si重り23と27との全体の重心2
8は、片持ばり22の重心にほぼ一致することになる。
上記のように構成することにより、本来必要とされるx
方向にのみ感度を有する半導体加速度センサを実現する
ことができる。なお、図1において、前記図2と同符号
は同一物を示す。
1 is a cross-sectional view of a main part of an embodiment of a semiconductor acceleration sensor manufactured by the method of the present invention.
In FIG. 1, 27 is a Si weight, which is made of the same material as the Si weight 23 and has the same weight. Therefore, the total center of gravity 2 of the Si weights 23 and 27 is
8 substantially coincides with the center of gravity of the cantilever beam 22.
By configuring as described above, x originally required
It is possible to realize a semiconductor acceleration sensor having sensitivity only in the direction. In FIG. 1, the same symbols as those in FIG. 2 indicate the same items.

【0010】次に、図4は本発明の製造方法の第1の実
施例図であり、前記図1の半導体加速度センサの製造工
程を示す。図4において、(a)は、前記図2に示すご
とき従来の構造と同一のSi基板21を示し、エッチン
グによってSi片持ばり22とSi重り23とが既に形
成されている状態を示す。次に(b)において、前記の
Si基板21と同じ厚さを持つSi基板31をSi基板
21に接着する。なお、上記のSi基板31の両面に
は、予め酸化膜32及び33を形成しておく。又、接着
剤としては、低融点ガラスやエポキシ等を用いることが
出来る。次に(c)においては、酸化膜33の一部をホ
トエッチングによって除去し、上面に設けるSi重り2
7の部分に相当する酸化膜33'のみを残す。次に
(d)において、上記の残した酸化膜33'をマスクと
して、Si基板31をエッチングし、上面に設ける重り
となる部分31'のみを残す。なお、この際、下部のS
i基板21はエッチングされないように樹脂などでコー
ティングしておく。次に(e)において、酸化膜33'
及び酸化膜32をエッチングによって除去することによ
り、上面のSi重り27が形成される。
Next, FIG. 4 is a diagram of a first embodiment of the manufacturing method of the present invention, showing a manufacturing process of the semiconductor acceleration sensor of FIG. In FIG. 4, (a) shows the same Si substrate 21 as the conventional structure as shown in FIG. 2, and shows a state in which the Si cantilever beam 22 and the Si weight 23 have already been formed by etching. Next, in (b), a Si substrate 31 having the same thickness as the Si substrate 21 is bonded to the Si substrate 21. In addition, oxide films 32 and 33 are formed in advance on both surfaces of the Si substrate 31. Further, as the adhesive, low melting point glass, epoxy or the like can be used. Next, in (c), a part of the oxide film 33 is removed by photoetching, and the Si weight 2 provided on the upper surface is removed.
Only the oxide film 33 'corresponding to the portion 7 is left. Next, in (d), the Si substrate 31 is etched using the remaining oxide film 33 'as a mask to leave only the portion 31' to be a weight provided on the upper surface. At this time, the lower S
The i-substrate 21 is coated with a resin or the like so as not to be etched. Next, in (e), the oxide film 33 '
By removing the oxide film 32 and the oxide film 32 by etching, the Si weight 27 on the upper surface is formed.

【0011】[0011]

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【発明の効果】以上説明したごとく本発明によれば、
導体基板をエッチングすることによって、片持ばりと、
該片持ばりの一方の面に重りを形成した半導体加速度セ
ンサにおいて、必要な方向の加速度のみに感度を有し、
不必要な横方向に対しては感度を有しない良好な特性の
半導体加速度センサを製造することが出来る、という効
果が得られる。また、本発明においては、半導体のエッ
チング技術のみで第1の半導体重りの対称位置に第2の
半導体重りを形成するので、μmオーダーの微小な片持
ばりの上に微小な重りを正確な位置に精密に形成するこ
とが容易にできる、という効果が得られる。
According As has been described above in the present invention, the semi
By etching the conductive substrate,
A semiconductor acceleration sensor having a weight formed on one surface of the cantilever.
Sensor has sensitivity only to the acceleration in the required direction,
It has good characteristics with no sensitivity to unwanted lateral
The effect of being able to manufacture semiconductor acceleration sensors
The fruit is obtained. Further, in the present invention, a semiconductor etchant is used.
The second technique is applied to the symmetrical position of the first semiconductor weight only with the ching technique.
Since a semiconductor weight is formed, a micro cantilever of the order of μm
Precisely forming a minute weight on the burr at a precise position.
The effect is that it can be easily done .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の方法で製造した半導体加速度セ
ンサの主要部断面図。
FIG. 1 is a sectional view of a main part of a semiconductor acceleration sensor manufactured by a first method of the present invention.

【図2】従来装置の斜視図及び断面図。FIG. 2 is a perspective view and a cross-sectional view of a conventional device.

【図3】従来装置の作用を説明するための断面図。FIG. 3 is a cross-sectional view for explaining the operation of the conventional device.

【図4】本発明の第1の方法の製造工程図。FIG. 4 is a manufacturing process diagram of the first method of the present invention.

【符号の説明】[Explanation of symbols]

21…Si基板 22…Si片持ばり 23…Si重り 24…重りの重心 25…拡散抵抗 26…片持ばりの重心 27…Si重り 28…重り全体の重心 21 ... Si substrate 22 ... Si cantilever 23 ... Si weight 24 ... Weight center of gravity 25 ... Diffusion resistance 26 ... Cantilever center of gravity 27 ... Si weight 28 ... Weight entire center of gravity

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体基板上に形成され、一端を支持され
た片持ばりの偏位を検出することによって加速度を検出
する半導体加速度センサを製造する方法において、 第1の半導体基板をエッチングすることによって、片持
ばりと、上記片持ばりの先端部の一方の面に第1の半導
体重りを形成する工程と、上記片持ばりの他方の面または第2の半導体基板の一面
に、エッチングストッパとなる薄膜を形成する工程と上記エッチングストッパとなる薄膜を介して、 上記片持
ばりの他方の面と上記第2の半導体基板とを接着する工
程と、上記エッチングストッパとなる薄膜によって上記第1の
半導体基板を保護しながら 上記第2の半導体基板をエッ
チングすることによって、上記第1の重りと概略同じ重
さの第2の半導体重りを上記片持ばりの他方の面の上記
第1の重りと対称位置に形成する工程と、を備え、 上記二つの重りの全体の重心を上記片持ばりの厚さ方向
の中心に一致させた半導体加速度センサを製造すること
を特徴とする半導体加速度センサの製造方法。
1. A method of manufacturing a semiconductor acceleration sensor, which detects acceleration by detecting a displacement of a cantilever beam having one end supported on a semiconductor substrate, wherein a first semiconductor substrate is etched. A cantilever beam, a step of forming a first semiconductor weight on one surface of a tip portion of the cantilever beam, and the other surface of the cantilever beam or one surface of a second semiconductor substrate.
A step of forming a thin film to serve as an etching stopper, a step of bonding the other surface of the cantilever to the second semiconductor substrate via the thin film to serve as an etching stopper, and the etching stopper. The first by the thin film
By etching the second semiconductor substrate while protecting the semiconductor substrate, a second semiconductor weight having substantially the same weight as the first weight is replaced with the first weight on the other surface of the cantilever. And a step of forming them at symmetrical positions, and manufacturing a semiconductor acceleration sensor, characterized in that the center of gravity of the two weights is aligned with the center of the cantilever in the thickness direction. Method.
JP4142602A 1992-06-03 1992-06-03 Method of manufacturing semiconductor acceleration sensor Expired - Lifetime JPH07117553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4142602A JPH07117553B2 (en) 1992-06-03 1992-06-03 Method of manufacturing semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4142602A JPH07117553B2 (en) 1992-06-03 1992-06-03 Method of manufacturing semiconductor acceleration sensor

Publications (2)

Publication Number Publication Date
JPH05273230A JPH05273230A (en) 1993-10-22
JPH07117553B2 true JPH07117553B2 (en) 1995-12-18

Family

ID=15319136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4142602A Expired - Lifetime JPH07117553B2 (en) 1992-06-03 1992-06-03 Method of manufacturing semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH07117553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010954A (en) * 2013-06-28 2015-01-19 オムロン株式会社 Acceleration sensor and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005193B2 (en) * 2003-04-29 2006-02-28 Motorola, Inc. Method of adding mass to MEMS structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236395A (en) * 1975-09-17 1977-03-19 Sintokogio Ltd Moving type grinding and cleaning apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236395A (en) * 1975-09-17 1977-03-19 Sintokogio Ltd Moving type grinding and cleaning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010954A (en) * 2013-06-28 2015-01-19 オムロン株式会社 Acceleration sensor and manufacturing method therefor

Also Published As

Publication number Publication date
JPH05273230A (en) 1993-10-22

Similar Documents

Publication Publication Date Title
US6201284B1 (en) Multi-axis acceleration sensor and manufacturing method thereof
JP3307328B2 (en) Semiconductor dynamic quantity sensor
JP3305516B2 (en) Capacitive acceleration sensor and method of manufacturing the same
US7851876B2 (en) Micro electro mechanical system
US7505245B2 (en) Semiconductor physical quantity sensor and method for manufacturing the same
JP2575939B2 (en) Semiconductor acceleration sensor
US7263885B2 (en) Physical quantity sensor having sensor chip and circuit chip
US6931928B2 (en) Microstructure with movable mass
JP2003232803A (en) Semiconductor type acceleration sensor
JPH04504759A (en) Devices for measuring mechanical forces and force effects
JP6258977B2 (en) Sensor and manufacturing method thereof
JP2004333133A (en) Inertial force sensor
US6763719B2 (en) Acceleration sensor
JP2003172745A (en) Semiconductor acceleration sensor
JPH10115635A (en) Semiconductor acceleration sensor
JP3346379B2 (en) Angular velocity sensor and manufacturing method thereof
US20080142913A1 (en) Z offset mems devices and methods
JP3938198B1 (en) Wafer level package structure and sensor element
JPH07117553B2 (en) Method of manufacturing semiconductor acceleration sensor
JP3938205B1 (en) Sensor element
JP3938199B1 (en) Wafer level package structure and sensor device
JP2003101033A (en) Semiconductor acceleration sensor
JP2008224525A (en) Triaxial acceleration sensor
US6308575B1 (en) Manufacturing method for the miniaturization of silicon bulk-machined pressure sensors
KR101787878B1 (en) Piezoresistive accelerometer