JPH07116792A - Method for preventing clogging of nozzle at the time of transfer-pouring molten alloy steel - Google Patents
Method for preventing clogging of nozzle at the time of transfer-pouring molten alloy steelInfo
- Publication number
- JPH07116792A JPH07116792A JP26246693A JP26246693A JPH07116792A JP H07116792 A JPH07116792 A JP H07116792A JP 26246693 A JP26246693 A JP 26246693A JP 26246693 A JP26246693 A JP 26246693A JP H07116792 A JPH07116792 A JP H07116792A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- nozzle
- steel
- molten
- transfer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、主として合金鋼の製
鋼−鋳造分野に属し、合金溶鋼をノズルを介して他の容
器に移注するときのノズル閉塞防止方法を提案するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly belongs to the field of steelmaking and casting of alloy steel, and proposes a method for preventing nozzle clogging when transferring molten alloy steel to another container through a nozzle.
【0002】合金鋼は鋼に、焼入性、切削性、耐熱性、
耐酸化性、耐衝撃性、耐食性、耐摩耗性及び不変形性な
ど種々の特殊な性質を付与する目的で、その目的に応じ
種々の合金成分を添加するものであり、昨今の鋼の高品
質化、鋼の多用途化への対応によってその需要が増加し
てきている。Alloy steel is a steel that has hardenability, machinability, heat resistance,
For the purpose of imparting various special properties such as oxidation resistance, impact resistance, corrosion resistance, wear resistance, and invariability, various alloy components are added according to the purpose, and the high quality of steel these days Demand is increasing due to the increasing demand for steel and multi-purpose steel.
【0003】たとえば、一例を挙げると、大気汚染の軽
減ないしは防止の観点から、自動車排ガス中のNOx, SOx
およびCO等を減少させるための排ガス浄化用メタルハニ
カム触媒コンバーター用の素材として耐熱、耐酸化性に
優れる高Cr高Al合金鋼が注目され、20%Cr−5%Al鋼が
主に用いられるようになってきている。さらに上記合金
鋼においては、鋼の耐酸化性をより向上させるために、
希土類成分 (Ce, Laなど) も適量添加される。For example, from the viewpoint of reducing or preventing air pollution, for example, NOx and SOx in automobile exhaust gas are taken into consideration.
As a material for exhaust gas purifying metal honeycomb catalytic converters to reduce CO and CO, high Cr and high Al alloy steel with excellent heat resistance and oxidation resistance is drawing attention, and 20% Cr-5% Al steel seems to be mainly used. Is becoming. Further, in the above alloy steel, in order to further improve the oxidation resistance of the steel,
An appropriate amount of rare earth components (Ce, La, etc.) is also added.
【0004】このような種々の合金成分を高濃度に含有
する合金鋼を製造する方法として、造塊法が特開平3−
124345号公報(下注造塊法における鋳型内へのRE
M 添加方法) に、また連鋳法がCAMP−ISIJ, Vo.15 (199
2), P1294 にそれぞれ開示されている。そして、上記の
造塊法、連鋳法いずれにせよ、大量生産する場合には、
移注容器等の容器内に溶鋼に必要とする成分を添加して
所望の成分組成の合金溶鋼を溶製し、必要な場合にはAl
等の脱酸剤で脱酸する。As a method for producing an alloy steel containing such various alloy components in high concentration, an ingot making method is disclosed in Japanese Patent Laid-Open No.
No. 124345 (RE into mold in bottom casting method)
M addition method) and the continuous casting method is CAMP-ISIJ, Vo.15 (199
2) and P1294 respectively. And, in any of the above ingot making method and continuous casting method, in the case of mass production,
Add the necessary components to the molten steel in a container such as a transfer container to produce molten alloy steel with the desired component composition, and if necessary, use Al
Deoxidize with a deoxidizer such as.
【0005】さらにその後、造塊法では、取鍋からノズ
ルを介して直接鋳型に、又は取鍋からノズルを介して一
たん中間容器に注入したのち、中間容器からノズルを介
して鋳型に注入され造塊される。一方、連鋳法では、取
鍋からノズルを介して一たんタンディッシュに注入さ
れ、タンディッシュから浸漬ノズルを介して連鋳モール
ドに供給され、連続鋳造される。Further, in the ingot making method, after pouring from a ladle directly into a mold through a nozzle, or from a ladle into a middle container through a nozzle, it is poured into the mold through a nozzle. Be ingot. On the other hand, in the continuous casting method, it is poured into a tundish from a ladle through a nozzle, is supplied from a tundish to a continuous casting mold through a dipping nozzle, and is continuously cast.
【0006】しかし、上記のいずれの場合においても、
合金溶鋼をノズルを介して他の容器に移注する工程があ
り、その工程でノズル閉塞が発生する場合があった。そ
してその発生率は、Mo, V, Ti, Zr, Al及びREM のうち
の1種以上の含有量の合計が2wt%以上含有する合金溶
鋼の場合には、普通鋼の場合に比べて格段に高く、その
ようなトラブルによる損害は、添加合金成分が高価であ
ることと相まって多大なものであった。However, in any of the above cases,
There is a step of transferring molten alloy steel to another container through a nozzle, and the nozzle may be clogged at that step. The rate of occurrence is much higher in the case of molten alloy steel containing 2 wt% or more of the total content of one or more of Mo, V, Ti, Zr, Al and REM, compared with the case of ordinary steel. The damage due to such troubles was great, together with the expensive additive alloy components.
【0007】その具体的な一例として、溶鋼中にAlを2
wt%以上含有している場合、さらには溶鋼中の全酸素量
が20wt ppm以下と一般にはノズル閉塞が生じ難い清浄な
溶鋼であってもAlを2wt%以上含有している場合には、
ノズル閉塞がしばしば発生し問題になった。しかも上記
合金溶鋼が希土類成分(REM) を含有していると、さらに
ノズル閉塞が発生しやすくなるという問題もあった。[0007] As a specific example, 2 Al is contained in molten steel.
If the content of Al is 2 wt% or more, even if the content of total oxygen in the molten steel is 20 wt ppm or less, and even if the molten steel is clean, which generally does not easily cause nozzle clogging,
Nozzle blockage often occurred and became a problem. Moreover, when the molten alloy steel contains a rare earth element (REM), there is a problem that the nozzle clogging is more likely to occur.
【0008】以上、一般に合金溶鋼を移注容器からノズ
ルを介して他の容器に移注する場合には、上記に例示し
たようにノズル閉塞の発生する危険性が高く、この問題
を解決することが急務であった。As described above, generally, when molten alloy steel is transferred from a transfer container to another container via a nozzle, there is a high risk of nozzle clogging as exemplified above, and this problem should be solved. Was urgent.
【0009】[0009]
【従来の技術】ノズル閉塞を防止する手段として、例え
ば特開昭64−75621号公報(取鍋内溶鋼中へのカ
ルシウム添加方法)に、溶鋼中にアルミニウムを添加し
てスラグ中の(FeO+MnO)を5%以下とし、カルシウムを
ワイヤ法で添加する方法が提案開示されている。2. Description of the Related Art As means for preventing nozzle clogging, for example, in JP-A-64-75621 (method of adding calcium to molten steel in ladle), aluminum is added to molten steel to obtain (FeO + MnO) in slag. Is disclosed to be 5% or less and calcium is added by a wire method.
【0010】この開示例は、アルミニウムとスラグ〔特
にスラグ中の(FeO+MnO)が5%超えのもの〕とが反応し
て融点の高いAl2O3 を形成し、これがノズル詰まりの原
因となるが、カルシウムをその後に添加すると、融点の
低い CaO−Al2O3 が形成され、ノズル詰まりを防止でき
るとし、そのカルシウムの効果的な添加方法を提案して
いるものである。In this disclosed example, aluminum reacts with slag [particularly, (FeO + MnO) in the slag exceeds 5%] to form Al 2 O 3 having a high melting point, which causes nozzle clogging. When calcium is added thereafter, CaO—Al 2 O 3 having a low melting point is formed, and nozzle clogging can be prevented, and an effective addition method of calcium is proposed.
【0011】しかしながら、前記したMo, V, Ti, Zr,
Al及びREM のうちの1種以上の成分の含有量の合計が2
wt%以上の合金溶鋼の場合には、合金溶鋼中の全酸素量
が20wt ppm以下と清浄な溶鋼であり、かつ移注容器スラ
グ中の(FeO+MnO)が 0.5wt%以下と開示例に比し非常に
少ない場合であっても、ノズル閉塞が発生するという問
題があった。However, the aforementioned Mo, V, Ti, Zr,
The total content of one or more of Al and REM is 2
In the case of molten alloy steel of wt% or more, the total oxygen content in the molten alloy steel is 20 wt ppm or less, which is clean molten steel, and (FeO + MnO) in the transfer container slag is 0.5 wt% or less, which is lower than the disclosed example. There is a problem that nozzle clogging occurs even when the number is very small.
【0012】[0012]
【発明が解決しようとする課題】この発明は前記した問
題点、すなわち、Mo, V, Ti, Zr, Al及びREM のうちの
1種以上の成分の含有量の合計が2wt%以上含有する合
金溶鋼をノズルを介して移注する際、スラグ中の(FeO+
MnO)が 0.5wt%以下と少なく、かつ、合金溶鋼中の全酸
素量が20wt ppm以下と少ない場合においても、ノズルが
閉塞するというトラブルを防止する方法を提案すること
を目的とするものである。SUMMARY OF THE INVENTION The present invention has the above-mentioned problems, that is, an alloy containing 2 wt% or more of the total content of one or more of Mo, V, Ti, Zr, Al and REM. When transferring molten steel through a nozzle, (FeO +
(MnO) is as low as 0.5 wt% or less and the total oxygen content in molten alloy steel is as low as 20 wt ppm or less. .
【0013】[0013]
【課題を解決するための手段】この発明の要旨は以下の
通りである。合金溶鋼を移注容器からノズルを介して他
の容器に移注するに際し、 CaないしはCa合金の添加量を、該移注容器内溶鋼中
に溶存する〔S〕濃度及び〔O〕濃度ならびに溶鋼中に
溶存させる〔Ca〕の蒸発量にもとづいて調整し、かつ、
上記調整が、移注終了直前での移注容器内溶鋼中に溶存
〔Ca〕を残存させるものとする合金溶鋼移注時のノズル
閉塞防止方法である。The summary of the present invention is as follows. When the molten alloy steel is transferred from the transfer container to another container through the nozzle, the amount of Ca or Ca alloy added is determined by the [S] concentration and [O] concentration dissolved in the molten steel in the transfer container and the molten steel. Adjust based on the amount of evaporation of [Ca] dissolved in it, and
The above-mentioned adjustment is a method for preventing nozzle clogging during molten alloy alloy steel transfer, in which dissolved Ca is left in the molten steel in the transfer container immediately before the completion of the transfer.
【0014】 項において、Mo, V, Ti, Zr, Al及
びREM のうちから選んだ1種以上の成分の含有量の合計
が2wt%以上を含有する合金溶鋼に、下記式(1) を満足
する〔Ca〕Total 量を含有させることを特徴とする合金
溶鋼移注時のノズル閉塞防止方法である。 記 〔Ca〕Total ≧40/32・〔S〕+40/16・〔O〕 +aCa・tc+3(wt ppm) --------(1) ここで、 〔Ca〕Total :Ca添加終了時移注容器内溶鋼中のトータ
ルCa量(wt ppm) 〔S〕:Ca添加前の移注容器内溶鋼中の溶存〔S〕濃度
(wt ppm) 〔O〕:Ca添加前の移注容器内溶鋼中の溶存〔O〕濃度
(wt ppm) aCa:Ca添加後の移注容器内溶鋼中の溶存〔Ca〕の減少
速度(wt ppm/min) tc :Ca添加後から移注容器内溶鋼の移注が終了するま
での時間 (min)In the paragraph, the following formula (1) is satisfied for the molten alloy steel containing a total content of one or more components selected from Mo, V, Ti, Zr, Al and REM of 2 wt% or more. A method for preventing nozzle clogging at the time of molten alloy alloy transfer, which is characterized by containing a [Ca] Total amount. Note [Ca] Total ≧ 40/32 ・ [S] +40/16 ・ [O] + a Ca・ tc + 3 (wt ppm) -------- (1) Here, [Ca] Total: Ca addition end Temporary total amount of Ca in molten steel in the transfer container (wt ppm) [S]: Dissolved [S] concentration in molten steel in the transfer container before addition of Ca (wt ppm) [O]: Transfer container before addition of Ca Dissolved [O] concentration in molten steel (wt ppm) a Ca : In the transfusion container after addition of Ca Reduction rate of dissolved [Ca] in molten steel (wt ppm / min) tc: In the transfusion container after addition of Ca Time until completion of molten steel transfer (min)
【0015】[0015]
【作用】この発明に至った経緯とその作用について、実
験結果に基づいて以下に述べる。発明者らは、合金溶鋼
をノズルを介して移注する際に発生するノズル閉塞の本
質的原因を解明するため、合金の成分組成を種々変化さ
せ、さらに溶鋼をノズルを介して移注する際の溶鋼移注
流と接触する雰囲気を変えた広範囲にわたる溶鋼移注実
験を行い、かつ、上記実験において、ノズル閉塞が発生
する際の現象を注意深く観察するとともに、ノズル閉塞
部を分析調査し、以下に列記する知見を得た。The background of the invention and its operation will be described below based on the experimental results. In order to elucidate the essential cause of nozzle clogging that occurs when the molten alloy steel is transferred through a nozzle, the inventors have made various changes in the composition of the alloy, and when transferring the molten steel through the nozzle. Conducting a wide range of molten steel transfer experiments in which the atmosphere in contact with the molten steel transfer flow of No. 1 was conducted, and in the above experiment, the phenomenon when nozzle blockage occurred was carefully observed, and the nozzle blockage was analyzed and investigated. We obtained the findings listed in.
【0016】 合金溶鋼を移注容器からノズルを介し
て他容器に移注する際、溶鋼中の合金成分のうち特にFe
より酸素との親和力の強い金属は、ノズルを取り巻く雰
囲気中の酸素によって酸化され、移注流溶鋼表面に該金
属の酸化物を生成し、その被膜を形成する。When the molten alloy steel is transferred from the transfer container to another container through the nozzle, particularly Fe alloy among the alloy components in the molten steel is used.
A metal having a stronger affinity with oxygen is oxidized by oxygen in the atmosphere surrounding the nozzle, and an oxide of the metal is generated on the surface of the molten steel to be poured, and a film is formed.
【0017】 上記金属酸化物被膜は、移注流溶鋼の
見掛け粘度を大きくして、ノズル先端部に移注流のよど
みを生起させ、そのよどみ部を起点として酸化物が塊状
に成長し、最終的にはノズルを閉塞する。The metal oxide coating increases the apparent viscosity of the molten steel for transfer pouring to cause stagnation of the pouring flow at the nozzle tip, and the oxide grows in a lump form from the stagnation part, Specifically, the nozzle is closed.
【0018】 項の現象は、金属酸化物の液相線温
度が高い方が発生しやすい。 金属酸化物は通常合金成分に応じた複合酸化物とな
るが、それらの複合酸化物が低融点化合物をつくる場合
にはノズル閉塞は発生しにくい。 Feより酸素との親和力の強い合金成分の蒸気圧が低
いほど、ノズル閉塞は発生しやすい。The phenomenon of the item (3) is more likely to occur when the liquidus temperature of the metal oxide is higher. The metal oxide is usually a composite oxide depending on the alloy component, but when the composite oxide forms a low melting point compound, nozzle clogging is less likely to occur. The lower the vapor pressure of the alloy component having a stronger affinity for oxygen than Fe, the more likely nozzle clogging will occur.
【0019】これらの知見に関し、より具体的な例とし
て、Al及びREM の1種以上の合計で2wt%以上含有する
溶鋼のノズルを介しての移注の際、AlやREM がノズル先
端部移注流近傍の雰囲気中の酸素によって酸化され、移
注流表面にAl2O3 や REMの酸化物を生成してそれらの被
膜を形成し、これらの酸化物の被膜が移注流溶鋼の見掛
け粘度を大きくして移注流の流動性を悪くし、その結果
ノズル先端にAl2O3 やREM の酸化物が地金とともに蓄積
してノズル閉塞に至ることが明確に観察された。Regarding these findings, as a more specific example, when the molten steel containing 2 wt% or more of one or more of Al and REM in total is transferred through a nozzle, Al and REM are transferred to the tip of the nozzle. Oxidized by oxygen in the atmosphere near the pouring flow, the oxides of Al 2 O 3 and REM are formed on the surface of the pouring flow to form a film of these oxides. It was clearly observed that the viscosity was increased and the fluidity of the transfer stream was deteriorated, and as a result, the oxides of Al 2 O 3 and REM accumulated at the tip of the nozzle together with the base metal, leading to nozzle clogging.
【0020】さらに、これらの酸化物被膜の厚さは2〜
30μmと薄いが、溶鋼中合金成分の含有量が多くなるほ
どその厚さは厚くなり、移注流溶鋼の見掛け粘度をより
大きくすることも推察された。ここに実験結果の1例と
して、表1に示す成分組成範囲の合金溶鋼(移注容器内
溶鋼の過熱度ΔT:70〜90℃)を移注容器からノズルを
介して他容器へ移注した際のノズル閉塞の有無の調査結
果を図1に示す。Furthermore, the thickness of these oxide coatings ranges from 2 to
It was as thin as 30 μm, but it was also inferred that the greater the content of alloying components in the molten steel, the thicker the thickness, and the larger the apparent viscosity of the molten metal in the pouring flow. As one example of the experimental results, molten alloy steel in the composition range shown in Table 1 (superheat degree ΔT of molten steel in the transfer container: 70 to 90 ° C) was transferred from the transfer container to another container through a nozzle. FIG. 1 shows the results of the investigation on the presence or absence of nozzle blockage.
【0021】[0021]
【表1】 [Table 1]
【0022】図1はMo, V, Ti, Zr, Al及びREM の含有
量の合計とノズル閉塞の有無の関係を示すグラフで、こ
の図から明らかなように上記合金成分の含有量の合計が
2wt%以上では全てノズル閉塞が発生していることがわ
かる。FIG. 1 is a graph showing the relationship between the total content of Mo, V, Ti, Zr, Al and REM and the presence or absence of nozzle clogging. As is clear from this figure, the total content of the above alloy components is It can be seen that at 2 wt% or more, nozzle clogging has occurred.
【0023】なお、移注すべき溶鋼の過熱度(ΔT)は
ノズル閉塞に大きく影響し、ΔTが大きいほどノズル閉
塞は発生しにくくなるが、ΔTが大きくなると連鋳時の
ブレークアウトの危険性が増大するばかりでなく、溶鋼
精錬容器の耐火物の寿命が短くなるので、ΔTは 100℃
以下とすることが望ましい。The degree of superheat (ΔT) of the molten steel to be transferred has a great influence on the nozzle clogging. The larger ΔT, the less likely the nozzle clogging will occur. However, if ΔT becomes large, there is a risk of breakout during continuous casting. Not only increases the life of the refractory in the molten steel refining vessel, but ΔT is 100 ° C.
The following is desirable.
【0024】以上よりこの発明は、合金溶鋼移注時のノ
ズルの閉塞を防止するためには、上記した新規知見に基
づいて、溶鋼中に、蒸気圧が高く(沸点が低く)かつ酸
素との親和力の大きい金属として〔Ca〕を溶存させて、
溶鋼の移注時にノズルより流出する移注流からCaを大量
に蒸発させ、雰囲気中の酸素の殆どを蒸発させたCaと反
応させて溶鋼中のFeより酸素との親和力の大きい合金成
分の酸化を防止し、それらの合金成分の酸化物をノズル
先端近傍で生成させないようにすること、が最適である
との結論に達したことによるものである。As described above, according to the present invention, in order to prevent the clogging of the nozzle at the time of the molten alloy transfer, the molten steel has a high vapor pressure (low boiling point) and oxygen Dissolving [Ca] as a metal with a high affinity,
A large amount of Ca is evaporated from the transfer flow flowing out of the nozzle during the transfer of molten steel, and most of the oxygen in the atmosphere reacts with the evaporated Ca to oxidize the alloy components with a greater affinity for oxygen than Fe in molten steel. To prevent the formation of oxides of these alloy components near the tip of the nozzle.
【0025】なお、上記において、溶鋼中に〔Ca〕を溶
存させることは、Ca蒸気がノズル先端近傍で雰囲気中の
酸素と接触・反応してCaO を形成してもCa蒸気の流れが
移注流の外側に向けての流れとなるため、移注流に巻き
込まれにくく、たとえCaO が移注流に巻き込まれたとし
ても、溶鋼中のAl2O3 等と反応して低融点化合物を生成
することから、ノズル閉塞の防止に有利に作用する。In the above, dissolving [Ca] in the molten steel means that the flow of Ca vapor is transferred even if Ca vapor contacts and reacts with oxygen in the atmosphere near the nozzle tip to form CaO. Since it flows toward the outside of the flow, it is difficult to get caught in the transfer flow, and even if CaO is caught in the transfer flow, it reacts with Al 2 O 3 etc. in the molten steel to form a low melting point compound. Therefore, it has an advantageous effect on prevention of nozzle clogging.
【0026】また、合金成分のうち、REMの溶鋼への
添加は、Ca又はCa合金を添加したのちに行うことがよ
く、かくすることにより、Caが〔S〕と〔O〕とを固定
するために、ノズル閉塞の原因になる上記合金の硫化物
や酸化物あるいはオキシサルファイドなどの生成が抑制
され、ノズル閉塞の防止に有利に作用する。なお、浸漬
ノズルを介してタンディッシュあるいは鋳型に移注する
場合、浸漬ノズル内の溶鋼は通常非充満流であることか
ら、当然浸漬ノズルのノズル閉塞防止にも有効である。Of the alloy components, the addition of REM to the molten steel is preferably carried out after adding Ca or a Ca alloy, whereby Ca fixes [S] and [O]. Therefore, generation of sulfides, oxides, oxysulfides, and the like of the above alloys that cause nozzle clogging is suppressed, which is advantageous in preventing nozzle clogging. In the case of pouring into a tundish or a mold through the immersion nozzle, the molten steel in the immersion nozzle is usually an unfilled flow, which is naturally effective for preventing nozzle clogging of the immersion nozzle.
【0027】つぎに、ノズル閉塞を防止するために溶鋼
中に添加する〔Ca〕Total の適量は、種々実験の結果、
溶鋼中に溶存する〔S〕及び〔O〕濃度と溶存させる
〔Ca〕の減少速度等によって定まり、次の(1) 式を満足
させればよいとの知見を得た。 〔Ca〕Total ≧40/32・〔S〕+40/16・〔O〕 +aCa・tc+3(wt ppm) --------(1) ここで、 〔Ca〕Total :Ca添加終了時移注容器内溶鋼中のトータ
ルCa量(wt ppm) 〔S〕:Ca添加前の移注容器内溶鋼中の溶存〔S〕濃度
(wt ppm) 〔O〕:Ca添加前の移注容器内溶鋼中の溶存〔O〕濃度
(wt ppm) aCa:Ca添加後の移注容器内溶鋼中の溶存〔Ca〕の減少
速度(wt ppm/min) tc :Ca添加後から移注容器内溶鋼の移注が終了するま
での時間 (min) おな、鋳型に移注されたのちの溶鋼中には溶存〔Ca〕を
残存させなくともよい。Next, the appropriate amount of [Ca] Total added to the molten steel in order to prevent nozzle clogging was determined by the results of various experiments.
It has been found that it is sufficient to satisfy the following expression (1), which is determined by the [S] and [O] concentrations dissolved in molten steel and the decreasing rate of [Ca] dissolved. [Ca] Total ≧ 40/32 ・ [S] +40/16 ・ [O] + a Ca・ tc + 3 (wt ppm) -------- (1) where [Ca] Total: At the end of Ca addition Total Ca content in molten steel in the transfer container (wt ppm) [S]: In the transfer container before addition of Ca Dissolved [S] concentration in the molten steel (wt ppm) [O]: In transfer container before addition of Ca Dissolved [O] concentration in molten steel (wt ppm) a Ca : Decrease rate of dissolved [Ca] in molten steel (wt ppm / min) in Ca after addition of Ca tc: Molten steel in transfused container after addition of Ca It is not necessary to leave dissolved [Ca] in the molten steel after being transferred to the mold, which is the time (min) until the transfer is completed.
【0028】[0028]
実施例1 転炉−VOD法で〔O〕:5wt ppm以下(酸素プローブ
で測定)に溶製した取鍋内の表2に示す成分組成になる
20%Cr−5%Al合金溶鋼(Laは後で添加)100Tに、CaSi
(Ca:55wt%) 入りの鉄被覆ワイヤをその添加量を種々
変えて添加後、La(REM) を添加した。Example 1 The composition of the components shown in Table 2 in a ladle prepared by the converter-VOD method [O]: 5 wt ppm or less (measured with an oxygen probe).
20% Cr-5% Al alloy molten steel (La is added later) 100T, CaSi
The iron-coated wire containing (Ca: 55 wt%) was added at various addition amounts, and then La (REM) was added.
【0029】[0029]
【表2】 [Table 2]
【0030】CaSi入りワイヤの添加量は、aCa=0.30〜
0.43wt ppm/min (溶鋼温度が高いと大きい) 、Tc=70
min として、前記(1) 式を満たす〔Ca〕Total 量(適合
例)及び不足する〔Ca〕Total 量(比較例)となるよう
に変化させた。ここで、適合例の場合移注終了直前の取
鍋内溶鋼中の〔Ca〕は3wt ppm以上となり、比較例の場
合はそれは3wt ppm未満となる。なお、上記においてLa
添加後のスラグ中の(FeO+MnO)は、いずれの場合も 0.5
wt%以下と少なかった。The amount of CaSi-containing wire added is a Ca = 0.30-
0.43wt ppm / min (large when molten steel temperature is high), Tc = 70
The min was changed so that the [Ca] Total amount satisfying the above formula (1) (compliance example) and the insufficient [Ca] Total amount (comparative example). Here, in the case of the conforming example, [Ca] in the molten steel in the ladle immediately before the end of the transposition is 3 wt ppm or more, and in the case of the comparative example, it is less than 3 wt ppm. In the above, La
(FeO + MnO) in the slag after addition is 0.5 in each case.
It was less than wt%.
【0031】かくして最終の溶製を終えたそれぞれの合
金溶鋼を、口径:70mmφのアルミナ質取鍋ノズルを介し
て取鍋からタンディッシュに移注し、タンディッシュか
ら連鋳モールドに供給して鋳片に鋳造した。その際、取
鍋内溶鋼温度の調整によりタンディッシュ内溶鋼の過熱
度ΔTT/Dを20℃〜 120℃の範囲で変化させ、取鍋ノズ
ル閉塞の有無を調査した。それらの調査結果を図2及び
図3にまとめて示す。The final molten steels thus melted are transferred from the ladle to the tundish through an alumina ladle nozzle having a diameter of 70 mmφ and supplied from the tundish to a continuous casting mold for casting. Cast into pieces. At that time, the degree of superheat ΔTT / D of the molten steel in the tundish was changed in the range of 20 ° C to 120 ° C by adjusting the temperature of the molten steel in the ladle, and the presence or absence of clogging of the ladle nozzle was investigated. The survey results are summarized in FIGS.
【0032】図2は移注終了直前での取鍋内溶鋼中の溶
存〔Ca〕濃度と取鍋ノズル閉塞の有無の関係を示すグラ
フである。なお、図2はタンディッシュ内溶鋼の過熱度
ΔT T/D を 100℃未満、 100℃以上の2つにわけてプロ
ットした。図2から明らかなように、ΔTT/D が 100℃
未満においても、移注終了直前の取鍋内溶鋼中の溶存
〔Ca〕が3wt ppm以上の場合は、ノズル閉塞の発生が防
止できている。FIG. 2 shows the melt in the molten steel in the ladle immediately before the end of the transfer.
A graph showing the relationship between the existing [Ca] concentration and the presence or absence of clogging of the ladle nozzle.
It is. Figure 2 shows the degree of superheat of molten steel in the tundish.
ΔT T / DDivided into two, below 100 ℃ and above 100 ℃
I put it. As is clear from FIG.T / DIs 100 ° C
Dissolved in the molten steel in the ladle just before the end of the transfer
When [Ca] is 3 wtppm or more, nozzle clogging is prevented.
It has stopped.
【0033】また図3は、移注終了直前の溶鋼中溶存
〔Ca〕濃度(3wt ppm以上と3wt ppm未満)をパラメー
ターとするタンディッシュ内溶鋼の過熱度ΔTT/D と完
注率(移注重量/溶鋼重量×100 )との関係を示すグラ
フである。図3から明らかなように溶存〔Ca〕濃度3wt
ppm以上ではΔTT/D を40℃まで低下させてもノズル閉
塞を生じることなく鋳造できることを示している。この
ことは、取鍋溶鋼温度が低くてもよいことを示してい
て、その温度が高いことにより生じる連鋳でのブレーク
アウトなどの諸問題の解消に極めて有効である。FIG. 3 shows the superheat degree ΔT T / D of the molten steel in the tundish and the complete pouring rate (transferred) with the dissolved [Ca] concentration in the molten steel (3 wt ppm or more and less than 3 wt ppm) as a parameter immediately before the end of the transposition. It is a graph showing the relationship between the injection weight / molten steel weight × 100). As is clear from FIG. 3, the concentration of dissolved [Ca] is 3 wt.
It has been shown that when the content is more than ppm, casting can be performed without causing nozzle clogging even if ΔT T / D is lowered to 40 ° C. This indicates that the ladle molten steel temperature may be low, and is extremely effective in solving various problems such as breakout in continuous casting caused by the high temperature.
【0034】実施例2 転炉−VOD法で溶存〔O〕:5wt ppm以下に溶製した
取鍋内の表3に示す成分組成になる30%Cr−2%Mo合金
溶鋼90Tに、CaSi入りワイヤを〔Ca〕Total として前記
(1)式を満たして添加したもの(適合例)と、無添加の
もの(比較例)とについて、それぞれ、実施例1と同様
の取鍋ノズルを用い、タンディッシュ内溶鋼の過熱度Δ
TT/D が 100℃になるように取鍋からタンディッシュに
移注し、タンディッシュから連鋳モールドに供給して鋳
片に鋳造し、その間の取鍋ノズル閉塞率を調査した。な
お、上記において取鍋スラグ中の(FeO+MnO)は全て 0.5
wt%以下であった。Example 2 Dissolved by the converter-VOD method [O]: 30% Cr-2% Mo alloy molten steel 90T having the composition shown in Table 3 in a ladle melted to 5 wt ppm or less, CaSi Wire as [Ca] Total
The superheat degree Δ of molten steel in the tundish was evaluated using the same ladle nozzle as in Example 1 for the additive (compliance example) satisfying the formula (1) and the additive-free one (comparative example).
The ladle was transferred from the ladle to the tundish so that T T / D was 100 ° C., the tundish was supplied to the continuous casting mold to cast into a slab, and the ladle nozzle clogging rate during that time was investigated. In addition, (FeO + MnO) in the ladle slag is 0.5
It was less than wt%.
【0035】[0035]
【表3】 [Table 3]
【0036】ここで取鍋ノズル閉塞率は、ノズル閉塞に
よって(完注できなかったヒート数)÷(鋳造回数)×
100 として計算した。この結果、取鍋ノズル閉塞率は、 適合例: 0 % 比較例: 75 % であり、この発明に従う〔Ca〕Total の適量添加の効果
が顕著であることを示している。Here, the ladle nozzle clogging rate is (number of heats that could not be completely poured) ÷ (number of castings) × due to nozzle clogging.
Calculated as 100. As a result, the ladle nozzle clogging rate was 0% for the conforming example and 75% for the comparative example, indicating that the effect of adding an appropriate amount of [Ca] Total according to the present invention is remarkable.
【0037】[0037]
【発明の効果】この発明は、合金溶鋼を移注容器からノ
ズルを介して他容器に移注するに際し、移注容器内合金
溶鋼に添加するCaないしはCa合金の添加量を、該合金溶
鋼中の〔S〕濃度及び〔O〕濃度ならびに溶存させる
〔Ca〕の蒸発量にもとづいて調整し、かつその調整が移
注終了直前の移注容器内溶鋼中に〔Ca〕を残存させるこ
とによりノズルの閉塞を防止するものであり、この発明
によれば、ノズルの閉塞を完全に防止できるため、合金
鋼の安定した工程生産ならびに大量生産ができるように
なり、また、溶鋼温度を高くしなくともよいため連鋳時
のブレークアウトの発生もなくなる。The present invention, when the molten alloy steel is transferred from the transfer container to another container through the nozzle, the addition amount of Ca or Ca alloy added to the molten alloy steel in the transfer container is [Ca] is left in the molten steel in the transfer container immediately before the end of the transfer, and the nozzle is adjusted by adjusting the [S] and [O] concentrations of According to the present invention, since it is possible to completely prevent the nozzle from being clogged, it becomes possible to perform stable process production and mass production of alloy steel, and without increasing the molten steel temperature. Since it is good, breakout does not occur during continuous casting.
【図1】Mo, V, Ti, Zr, Al及びREM の含有量の合計と
ノズル閉塞の有無の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the total content of Mo, V, Ti, Zr, Al and REM and the presence or absence of nozzle clogging.
【図2】移注終了直前での移注容器内溶鋼中の溶存〔C
a〕濃度と移注容器ノズル閉塞の有無の関係を示すグラ
フである。[Fig. 2] Dissolution in molten steel [C
a] A graph showing the relationship between the concentration and the presence or absence of clogging of a transfer container nozzle.
【図3】移注終了直前での移注容器内溶鋼中の溶存〔C
a〕濃度をパラメーターとするタンディッシュ内溶鋼の
過熱度ΔTT/D と完注率との関係を示すグラフである。[Fig. 3] Dissolved in molten steel [C
a] A graph showing the relationship between the degree of superheat ΔT T / D of molten steel in a tundish and the complete pouring rate with concentration as a parameter.
フロントページの続き (72)発明者 森脇 三郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 北岡 英就 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内Front page continuation (72) Inventor Saburo Moriwaki, 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Inside the Chiba Steel Works, Kawasaki Steel Co., Ltd. Technology Research Division, Inc.
Claims (2)
他の容器に移注するに際し、 CaないしはCa合金の添加量を、該移注容器内溶鋼中に溶
存する〔S〕濃度及び〔O〕濃度ならびに溶鋼中に溶存
させる〔Ca〕の蒸発量にもとづいて調整し、 かつ、上記調整が、移注終了直前での移注容器内溶鋼中
に溶存〔Ca〕を残存させるものとする合金溶鋼移注時の
ノズル閉塞防止方法。1. When transferring molten alloy steel from a transfer container to another container through a nozzle, the additive amount of Ca or Ca alloy is [S] concentration and [S] dissolved in the molten steel in the transfer container and [ O] concentration and the evaporation amount of [Ca] dissolved in molten steel, and the above adjustment causes dissolved [Ca] to remain in the molten steel in the transfer container immediately before the end of transfer. Nozzle blockage prevention method when pouring molten alloy steel.
びREM のうちから選んだ1種以上の成分の含有量の合計
が2wt%以上を含有する合金溶鋼に、下記式(1) を満足
する〔Ca〕Total 量を含有させることを特徴とする合金
溶鋼移注時のノズル閉塞防止方法。 記 〔Ca〕Total ≧40/32・〔S〕+40/16・〔O〕 +aCa・tc+3(wt ppm) --------(1) ここで、 〔Ca〕Total :Ca添加終了時移注容器内溶鋼中のトータ
ルCa量(wt ppm) 〔S〕:Ca添加前の移注容器内溶鋼中の溶存〔S〕濃度
(wt ppm) 〔O〕:Ca添加前の移注容器内溶鋼中の溶存〔O〕濃度
(wt ppm) aCa:Ca添加後の移注容器内溶鋼中の溶存〔Ca〕の減少
速度(wt ppm/min) tc :Ca添加後から移注容器内溶鋼の移注が終了するま
での時間 (min)2. The molten alloy steel according to claim 1, wherein the total content of one or more components selected from Mo, V, Ti, Zr, Al and REM is 2 wt% or more, and the following formula (1 ) A method of preventing nozzle clogging at the time of molten alloy transfer, characterized by containing a [Ca] Total amount satisfying the above condition. Note [Ca] Total ≧ 40/32 ・ [S] +40/16 ・ [O] + a Ca・ tc + 3 (wt ppm) -------- (1) Here, [Ca] Total: Ca addition end Temporary total amount of Ca in molten steel in the transfer container (wt ppm) [S]: Dissolved [S] concentration in molten steel in the transfer container before addition of Ca (wt ppm) [O]: Transfer container before addition of Ca Dissolved [O] concentration in molten steel (wt ppm) a Ca : In the transfusion container after addition of Ca Reduction rate of dissolved [Ca] in molten steel (wt ppm / min) tc: In the transfusion container after addition of Ca Time until completion of molten steel transfer (min)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26246693A JP2786588B2 (en) | 1993-10-20 | 1993-10-20 | Preventing nozzle blockage when transferring molten alloy steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26246693A JP2786588B2 (en) | 1993-10-20 | 1993-10-20 | Preventing nozzle blockage when transferring molten alloy steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07116792A true JPH07116792A (en) | 1995-05-09 |
JP2786588B2 JP2786588B2 (en) | 1998-08-13 |
Family
ID=17376179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26246693A Expired - Fee Related JP2786588B2 (en) | 1993-10-20 | 1993-10-20 | Preventing nozzle blockage when transferring molten alloy steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2786588B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014189799A (en) * | 2013-03-26 | 2014-10-06 | Jfe Steel Corp | METHOD FOR CONTROLLING DEBRIS COMPOSITION OF Ca-CONTAINING ALUMINUM-KILLED STEEL |
JP2021003728A (en) * | 2019-06-27 | 2021-01-14 | 株式会社神戸製鋼所 | Method for operating molten metal exhaust |
-
1993
- 1993-10-20 JP JP26246693A patent/JP2786588B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014189799A (en) * | 2013-03-26 | 2014-10-06 | Jfe Steel Corp | METHOD FOR CONTROLLING DEBRIS COMPOSITION OF Ca-CONTAINING ALUMINUM-KILLED STEEL |
JP2021003728A (en) * | 2019-06-27 | 2021-01-14 | 株式会社神戸製鋼所 | Method for operating molten metal exhaust |
Also Published As
Publication number | Publication date |
---|---|
JP2786588B2 (en) | 1998-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02205617A (en) | Production of clean steel | |
JP2964452B2 (en) | Flux for continuous casting of molten steel containing A1 and continuous casting method | |
JP7260731B2 (en) | High purity steel and its refining method | |
JP6874521B2 (en) | Inclusion morphology control steel and its manufacturing method | |
JP4656007B2 (en) | Method of processing molten iron by adding Nd and Ca | |
JP4193784B2 (en) | Method for producing Ti-containing stainless steel | |
JPH07116792A (en) | Method for preventing clogging of nozzle at the time of transfer-pouring molten alloy steel | |
JP5637081B2 (en) | Mold flux for continuous casting of high Mn steel and continuous casting method | |
JP2008264802A (en) | Method of continuous casting | |
JPH11100611A (en) | Production of titanium-containing extra low carbon steel | |
JPH0985404A (en) | Flux for continuously casting a1-containing molten steel and continuous casting method | |
JP2009248113A (en) | Continuous casting method for molten steel comprising rare earth element | |
JP3395699B2 (en) | Method for producing ferritic stainless steel | |
KR20010113797A (en) | Treatment for improving the castability of aluminium killed continuously cast steel | |
JP5047477B2 (en) | Secondary refining method for high Al steel | |
JP2003342630A (en) | Method for continuous casting molten steel containing added rare earth element | |
JP5056826B2 (en) | Steel for continuous casting and method for producing the same | |
JP3505389B2 (en) | Steel for strip, Si-killed steel, and production method by continuous casting | |
JP5073951B2 (en) | Manufacturing method of steel for machine structural use with excellent machinability and strength characteristics | |
JP3631629B2 (en) | Mild steel for strips and its manufacturing method | |
JP3971698B2 (en) | Method for preventing nozzle clogging in continuous casting | |
JP2000042698A (en) | Method for continuously casting silicon killed steel billet | |
JP3306287B2 (en) | Method for preventing clogging of immersion nozzle in continuous casting | |
KR100579396B1 (en) | Tundish flux fof titanium nitride inclusion | |
JP3502758B2 (en) | Steel for strips and its production method by continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090529 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090529 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100529 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20110529 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120529 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 14 Free format text: PAYMENT UNTIL: 20120529 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130529 Year of fee payment: 15 |
|
LAPS | Cancellation because of no payment of annual fees |