JPH07116601B2 - Thin film production equipment - Google Patents

Thin film production equipment

Info

Publication number
JPH07116601B2
JPH07116601B2 JP60160139A JP16013985A JPH07116601B2 JP H07116601 B2 JPH07116601 B2 JP H07116601B2 JP 60160139 A JP60160139 A JP 60160139A JP 16013985 A JP16013985 A JP 16013985A JP H07116601 B2 JPH07116601 B2 JP H07116601B2
Authority
JP
Japan
Prior art keywords
substrate
thin film
heating
temperature
substrate holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60160139A
Other languages
Japanese (ja)
Other versions
JPS6220868A (en
Inventor
久貴 竹中
芳一 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP60160139A priority Critical patent/JPH07116601B2/en
Publication of JPS6220868A publication Critical patent/JPS6220868A/en
Publication of JPH07116601B2 publication Critical patent/JPH07116601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基板上に金属,半導体などの材料の薄膜を形成
するのに用いる薄膜作製装置に関する。
The present invention relates to a thin film forming apparatus used for forming a thin film of a material such as metal or semiconductor on a substrate.

[従来の技術] 蒸着法、スパッタ法等、粒子の堆積法としていずれの方
法を用いたとしても均一膜厚の薄膜を作製するには基板
を回転させることが有効である。このため均一膜厚の薄
膜作製には基板回転機構を備えた薄膜作製装置が使用さ
れる。しかしながら、基板を約150℃以上に加熱した状
態では基板の連続回転が不可能になる。
[Prior Art] Regardless of which method is used for depositing particles, such as vapor deposition and sputtering, rotating the substrate is effective for producing a thin film having a uniform film thickness. For this reason, a thin film forming apparatus having a substrate rotating mechanism is used for forming a thin film having a uniform film thickness. However, when the substrate is heated to about 150 ° C or higher, continuous rotation of the substrate becomes impossible.

すなわち、基板加熱には大別して(1)基板の裏側に加
熱用コイルを取りつける方法、(2)基板表面を赤外線
ランプヒーターで暖める方法がある。(1)の方法では
基板温度は直径2インチのSiあるいはサファイアのウエ
ハなどで700〜800℃程度にも到達するがこの場合、コイ
ルに電流を流すための配線が必要である。この配線が存
在するため、基板加熱と同時に基板回転を行うとこの線
が回転軸に巻きつき、ついには断線等の障害を生じる。
このため(1)の方法では加熱時に基板を回転させるこ
とができない。
That is, the substrate heating is roughly classified into (1) a method of attaching a heating coil to the back side of the substrate, and (2) a method of warming the substrate surface with an infrared lamp heater. In the method (1), the substrate temperature reaches about 700 to 800 ° C. for a 2-inch diameter Si or sapphire wafer or the like, but in this case, wiring is required for passing a current through the coil. Due to the presence of this wiring, when the substrate is rotated at the same time as the substrate is heated, this wire is wrapped around the rotating shaft, and eventually a failure such as disconnection occurs.
Therefore, the method (1) cannot rotate the substrate during heating.

また、(2)の方法では基板加熱と基板回転を同時に行
うことは可能であるが、真空容器も加熱される。真空容
器には熱に弱いOリングが使ってあるため真空容器の許
容加熱温度は通常約150℃までである。このためこれ以
上の基板温度のもとでは(2)のランプヒーター方式が
使えなくなる。更に、真空容器が暖められると容器に吸
着していた不純物が離脱し、容器内雰囲気中に不純物が
混入し、蒸着、スパッタ中にこの不純物がとりこまれ膜
中に不純物が多く含有されることになる。しかも、ラン
プの存在により放電密度に変化が生じ膜厚均一性に悪影
響を与えることとなる。更に、基板ホルダーの裏面をラ
ンプヒーターで加熱、あるいはコイルで加熱する方法が
考えられるが、これらの場合基板は基板ホルダーの裏面
からの熱伝導により暖められるため加熱効率が悪く、加
熱温度変化に対し追随が非常に遅くなる。また、ランプ
ヒーター加熱では先に記述したのと同様150℃以上に真
空容器を加熱できないという欠点がある。
Further, in the method (2), it is possible to simultaneously heat the substrate and rotate the substrate, but the vacuum container is also heated. Since an O-ring that is weak against heat is used in the vacuum container, the allowable heating temperature of the vacuum container is usually up to about 150 ° C. Therefore, under the substrate temperature higher than this, the lamp heater method of (2) cannot be used. Further, when the vacuum container is warmed, impurities adsorbed in the container are released, and the impurities are mixed into the atmosphere in the container, and the impurities are taken in during vapor deposition and sputtering, so that many impurities are contained in the film. Become. Moreover, the presence of the lamp causes a change in the discharge density, which adversely affects the film thickness uniformity. Further, a method of heating the back surface of the substrate holder with a lamp heater or a coil can be considered, but in these cases, since the substrate is warmed by heat conduction from the back surface of the substrate holder, the heating efficiency is poor and the heating temperature changes. Following is very slow. Further, the lamp heater heating has a disadvantage that the vacuum container cannot be heated to 150 ° C. or higher as described above.

このため従来装置では基板回転を行う場合、約150℃以
上で加熱することが困難であった。
For this reason, it was difficult for the conventional apparatus to heat the substrate at about 150 ° C. or higher when rotating the substrate.

また、液体窒素等の冷媒を用い熱接触により基板を冷却
しつつ基板回転を行う場合、数100℃の範囲の任意の温
度での基板加熱ができないため、任意の設定温度にコン
トロールすることが不可能となり、このため冷媒により
冷却される温度以外では均一な膜厚の薄膜を作製するこ
とができなかった。
Also, when rotating the substrate while cooling the substrate by thermal contact using a coolant such as liquid nitrogen, it is not possible to heat the substrate at any temperature in the range of several hundreds of degrees Celsius, so it is not possible to control to any set temperature. Therefore, it is impossible to form a thin film having a uniform film thickness except at the temperature where it is cooled by the refrigerant.

[発明が解決しようとする問題点] 本発明は上述した従来の欠点を解決し、基板の連続回転
時に基板を加熱することを可能にし、かつ任意の基板温
度に設定することを可能とした薄膜作製装置を提供する
ことを目的とする。
[Problems to be Solved by the Invention] The present invention solves the above-mentioned drawbacks of the related art, makes it possible to heat the substrate during continuous rotation of the substrate, and makes it possible to set an arbitrary substrate temperature. An object is to provide a manufacturing apparatus.

[問題点を解決するための手段] 本発明による薄膜作製装置は、基板に薄膜を形成させる
薄膜作製装置において、前記基板を保持し回転可能な導
体製の基板ホルダーと、該基板ホルダーの前記基板を保
持する側と反対の側において該基板ホルダーと空間的に
分離して設けられ交番磁界を発生させて前記基板を加熱
する基板加熱部とを有することを特徴とするものであ
る。
[Means for Solving the Problems] A thin film manufacturing apparatus according to the present invention is a thin film manufacturing apparatus for forming a thin film on a substrate, wherein the substrate holder is rotatable and holds the substrate, and the substrate of the substrate holder is rotatable. And a substrate heating section which is provided spatially separated from the substrate holding side and which is spatially separated from the substrate holder and generates an alternating magnetic field to heat the substrate.

[作 用] 第2図に示すように導体1に変化する磁力線2を通すと
電流3が発生すること(電磁誘導現象)は物理学の示す
ところである。この現象は発電機やトランスの原理とも
なり工業界特に電気産業の分野では重要な原理の一つで
ある。導体の中を磁力線が通過する時は磁力線の周囲に
渦電流が発生し、同時にこの電流は導体の抵抗によって
消費され熱に変換される。特に鉄などの磁性導体には磁
力線をとらえ、自身の中へ磁力線を集中させる性質があ
るため、第3図(a)に示すようにスパイラルコイル4
から発生した磁力線の大半が磁性導体中を通過し、この
ため効率良く電流が発生し、かつ、これに比例して熱が
発生する。第3図(b)は第3図(a)の見取図であ
る。使用電源は15〜40kHzの高周波電源でも、商用電源
でもよい。3kW程度の入力で700〜800℃程度の加熱が可
能である。
[Operation] As shown in Fig. 2, the physics shows that the electric current 3 is generated when the changing magnetic field line 2 is passed through the conductor 1. This phenomenon also serves as the principle of generators and transformers, and is one of the important principles in the industrial field, particularly in the field of the electric industry. When the magnetic field lines pass through the conductor, eddy currents are generated around the magnetic field lines, and at the same time, the current is consumed by the resistance of the conductor and converted into heat. In particular, a magnetic conductor such as iron has a property of capturing magnetic field lines and concentrating the magnetic field lines into itself, so that as shown in FIG.
Most of the magnetic lines of force generated from the magnetic field pass through the magnetic conductor, so that current is efficiently generated, and heat is generated in proportion to this. FIG. 3 (b) is a sketch of FIG. 3 (a). The power supply used may be a high frequency power supply of 15 to 40 kHz or a commercial power supply. With an input of about 3kW, heating at about 700-800 ℃ is possible.

[実施例] この現象を薄膜作製装置内の基板加熱に応用した場合に
多くの効果が生ずることが、以下の実施例に示すように
本発明によって明らかとなった。
[Examples] It was revealed by the present invention that many effects are produced when this phenomenon is applied to substrate heating in a thin-film forming apparatus, as shown in the following examples.

実施例1 第1図に、本発明の基板加熱法を適用した薄膜作製装置
の真空容器部を示す。ここで5はステンレススチール製
真空容器であり、ポンプ6により排気される。基板7は
13%Cr−Feなど磁性ステンレススチール製の基板ホルダ
ー8に装着される。基板ホルダーの大きさは直径25cm,
厚さ5mmである。この基板ホルダー8はモーター9によ
り回転運動を与えられる。基板ホルダー8の上部に基板
加熱部10を配置する。この基板加熱部10は非磁性で耐熱
にすぐれたものが望ましく、オーステナイト系のステン
レススチール、セラミクスなどが用いられる。その中に
は絶縁された加熱用コイル11が内蔵されている。コイル
11は銅線などを、この例ではスパイラルに巻いたもので
ある。このように基板ホルダー8と基板加熱部10とを分
離しているが、基板ホルダー8は磁場を集束させる性質
を有するため加熱効率は実用上充分である。基板ホルダ
ー8の中心部に温度モニター12(本実施例ではPt−Rh熱
電対)を接触させている。基板ホルダー8に対向させて
本実施例では異なる材料からなる2種のターゲット13,1
4を配置させた。ターゲットの上にはプレスパッタ時に
スパッタ原子が飛散するのを防ぐシャッター15,16を配
置した。ターゲットにはマッチングボックス17,18およ
びターゲット電源19,20が連結され放電できるようにな
っている。このような構成になっているため、本薄膜作
製装置では従来装置と異なり、基板ホルダー8が基板加
熱用配線の影響を受けず自由に回転でき、かつ、従来の
ランプヒーター加熱方式の装置のように真空容器の局所
部高温加熱防御の心配からの低温加熱(〜150℃)やラ
ンプヒーターによる放電異常からの膜厚不均一性も改善
される。ここではまず、モーター9により基板ホルダー
8を1rpmで回転させ、同時にコイル11に電流を流し、基
板ホルダー8を500℃に保った。基板には8cm角のガラス
および直径3インチのSiウエハを用いた。次いでターゲ
ット13(本実施例ではタングステン(W)),ターゲッ
ト14(本実施例では(C))をそれぞれ240W,800Wでプ
レスパッタした後、シャッター15,16を開き多層薄膜を
作製した。積層数はW−Cの対で50層である。膜厚計
(タリステップ)を用い、このW−C多層膜の膜厚のウ
エハ面内分布を測定したところ膜厚2300ű20Åであり
ばらつきが±1%以内と均一性に優れた多層薄膜が作製
されていることが明らかになった。
Example 1 FIG. 1 shows a vacuum container part of a thin film forming apparatus to which the substrate heating method of the present invention is applied. Here, 5 is a stainless steel vacuum container, which is evacuated by a pump 6. Substrate 7
It is mounted on a substrate holder 8 made of magnetic stainless steel such as 13% Cr-Fe. The size of the board holder is 25 cm in diameter,
It has a thickness of 5 mm. The substrate holder 8 is given a rotational movement by a motor 9. The substrate heating unit 10 is arranged on the substrate holder 8. The substrate heating unit 10 is preferably non-magnetic and excellent in heat resistance, and austenitic stainless steel, ceramics or the like is used. An insulated heating coil 11 is incorporated therein. coil
11 is a copper wire wound in a spiral in this example. Although the substrate holder 8 and the substrate heating unit 10 are separated in this way, the substrate holder 8 has a property of converging the magnetic field, and therefore the heating efficiency is practically sufficient. A temperature monitor 12 (Pt-Rh thermocouple in this embodiment) is in contact with the center of the substrate holder 8. In this embodiment, two kinds of targets 13, 1 made of different materials are made to face the substrate holder 8.
Placed 4 Shutters 15 and 16 were placed on the target to prevent spattered atoms from scattering during pre-sputtering. Matching boxes 17 and 18 and target power sources 19 and 20 are connected to the target so that they can be discharged. Due to such a configuration, unlike the conventional apparatus, the thin film manufacturing apparatus can rotate the substrate holder 8 freely without being affected by the wiring for heating the substrate, and is similar to the conventional lamp heater heating type apparatus. In addition, the unevenness of the film thickness due to low-temperature heating (up to 150 ° C) due to the concern of protection against high temperature heating of the local part of the vacuum container and discharge abnormality due to the lamp heater is also improved. Here, first, the substrate holder 8 was rotated at 1 rpm by the motor 9, and at the same time, an electric current was passed through the coil 11 to keep the substrate holder 8 at 500 ° C. As the substrate, 8 cm square glass and 3 inch diameter Si wafer were used. Next, after the target 13 (tungsten (W) in this embodiment) and the target 14 ((C) in this embodiment) were pre-sputtered at 240 W and 800 W, respectively, the shutters 15 and 16 were opened to form a multilayer thin film. The number of laminated layers is 50 in the W-C pair. When the in-wafer distribution of the film thickness of this W-C multilayer film was measured using a film thickness meter (Taristep), the film thickness was 2300Å ± 20Å, and the variation was within ± 1%. It was revealed that it was made.

なお、基板回転中の基板温度と基板回転のない場合の基
板温度は同一であったため、あらかじめ、加熱用コイル
11に流す電流と温度との関係を測定しておけば、操業時
に温度モニター12がなくても加熱用コイル11に流す電流
値で温度をモニターすることも可能である。
Since the substrate temperature during substrate rotation and the substrate temperature without substrate rotation were the same, the heating coil
If the relationship between the current flowing through 11 and the temperature is measured, it is possible to monitor the temperature by the value of the current flowing through the heating coil 11 without the temperature monitor 12 during operation.

実施例2 鉄製の基板ホルダーを用い、基板温度を700℃に変え他
は実施例1と同一条件でW−C多層膜を作製した。この
場合、膜厚および膜厚のばらつきは実施例と同一であ
り、やはりばらつきが±1%以内の均一性の良い多層膜
が作製できてきた。
Example 2 A W-C multilayer film was produced under the same conditions as in Example 1 except that the substrate temperature was changed to 700 ° C using an iron substrate holder. In this case, the film thickness and the variation in the film thickness are the same as those in the example, and the variation is within ± 1%.

実施例3 第4図に、第1図の基板ホルダが基板冷却機構をもつ実
施例の基板冷却機構および加熱部の構成例を示す。冷媒
保持部21は本実施例では熱伝導率の良好な銅を用いた。
液体窒素導入口22より液体窒素を冷媒保持部21に入れ基
板を冷却後(このとき〜−190℃に基板は冷却され
た)、加熱コイル11に電流を流し−100℃に基板温度を
コントロールした。この後、実施例1と同様にして基板
ホルダーを2rpmで回転させ、他は実施例1と同一条件で
WとCの対で100層の多層膜を形成した。W一層の膜厚
は13Å、C一層の膜厚は10Åであり、かつ全膜厚の面内
分布は2300ű22Åでやはり実施例1と同様ばらつきが
±1以下という良好な均一性を有する多層薄膜が作製で
きた。なお、室温以下−190℃までの任意の設定温度に
±1℃の精度で制御可能であった。この結果から明らか
なように従来の技術に比べ、室温からほぼ窒素温度の領
域で基板回転中に任意の設定温度に制御でき均一膜厚が
作製できるという改善がもたらされた。
Embodiment 3 FIG. 4 shows a configuration example of a substrate cooling mechanism and a heating unit of an embodiment in which the substrate holder of FIG. 1 has a substrate cooling mechanism. In this embodiment, the coolant holding portion 21 is made of copper having a good thermal conductivity.
After the liquid nitrogen was introduced into the coolant holding portion 21 from the liquid nitrogen inlet 22 and the substrate was cooled (at this time, the substrate was cooled to −190 ° C.), an electric current was passed through the heating coil 11 to control the substrate temperature to −100 ° C. . After that, the substrate holder was rotated at 2 rpm in the same manner as in Example 1, and under the same conditions as in Example 1 except that a 100-layer multilayer film was formed with a pair of W and C. The film thickness of the W layer is 13Å, the film thickness of the C layer is 10Å, and the in-plane distribution of the total film thickness is 2300Å ± 22Å. A thin film could be produced. It was possible to control to an arbitrary set temperature from room temperature to −190 ° C. with an accuracy of ± 1 ° C. As is clear from this result, compared to the conventional technique, an improvement that the uniform film thickness can be produced by controlling the temperature to an arbitrary set temperature during the rotation of the substrate in the range of room temperature to almost nitrogen temperature is brought.

[発明の効果] 以上説明したように本発明では基板加熱部が、回転可能
な基板ホルダーの基板保持面と反対の側において基板ホ
ルダーと空間的に分離しているため、基板回転と基板加
熱を同時に行うことが可能となる。従って、液体窒素な
どの冷媒によって冷却される低温度領域から約700℃の
高温度領域の任意の設定基板温度のもとで、例えば4イ
ンチSiウエハなどの大面積基板上に均一膜厚の薄膜が作
製できるという利点がある。
As described above, in the present invention, the substrate heating unit is spatially separated from the substrate holder on the side opposite to the substrate holding surface of the rotatable substrate holder. It is possible to do it at the same time. Therefore, under an arbitrary set substrate temperature from a low temperature region cooled by a coolant such as liquid nitrogen to a high temperature region of about 700 ° C., a thin film having a uniform film thickness can be formed on a large area substrate such as a 4-inch Si wafer. Has the advantage that it can be manufactured.

薄膜作製法の一つであるMOCVD法では、基板加熱のため
基板の固定が必要であり、このためガスの基板上での流
量分布により膜厚が約±5%(3インチウエハ面内)の
分布が生じていたが、本発明を適用すれば膜厚の均一変
が一層進むこととなる。この他、基板加熱の必要性から
基板回転が不可能であったMBE,CVD,EB法と本発明を組み
合わせた薄膜作製装置を作製すると膜厚均一性に優れた
種々の薄膜を作製することができることとなる。
The MOCVD method, which is one of the thin film manufacturing methods, requires the substrate to be fixed for heating the substrate. Therefore, the film thickness is about ± 5% (in the 3-inch wafer surface) due to the flow rate distribution of the gas on the substrate. Although the distribution was generated, if the present invention is applied, the uniform variation of the film thickness will be further promoted. In addition, the MBE, CVD, and EB methods, which could not rotate the substrate due to the necessity of heating the substrate, can be used to fabricate various thin films with excellent film thickness uniformity by producing a thin film production apparatus that combines the present invention. It will be possible.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の薄膜作製装置の実施例の概略図、 第2図は電磁誘導効果の原理図、 第3図はコイルにより生じる磁場と導体中に生じる電流
との関係を示した図、 第4図は本発明の他の実施例を示す図である。 5……真空容器、 6……排気ポンプ、 7……基板、 8……基板ホルダー、 9……モーター、 10……基板加熱部、 11……加熱用コイル、 12……温度モニター用熱電対、 13,14……ターゲット、 15,16……シャッター、 17,18……マッチングボックス、 19,20……ターゲット電源。
FIG. 1 is a schematic diagram of an embodiment of a thin film forming apparatus of the present invention, FIG. 2 is a principle diagram of an electromagnetic induction effect, and FIG. 3 is a diagram showing a relation between a magnetic field generated by a coil and a current generated in a conductor, FIG. 4 is a diagram showing another embodiment of the present invention. 5 ... Vacuum container, 6 ... Exhaust pump, 7 ... Substrate, 8 ... Substrate holder, 9 ... Motor, 10 ... Substrate heating unit, 11 ... Heating coil, 12 ... Thermocouple for temperature monitor , 13,14 …… Target, 15,16 …… Shutter, 17,18 …… Matching box, 19,20 …… Target power supply.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板に薄膜を形成させる薄膜作製装置にお
いて、前記基板を保持し回転可能な導体製の基板ホルダ
ーと、該基板ホルダーの前記基板を保持する側と反対の
側において該基板ホルダーと空間的に分離して設けられ
交番磁界を発生させて前記基板を加熱する基板加熱部と
を有することを特徴とする薄膜作製装置。
1. A thin film manufacturing apparatus for forming a thin film on a substrate, comprising: a rotatable substrate holder for holding the substrate; and a substrate holder on the side of the substrate holder opposite to the side for holding the substrate. And a substrate heating unit that is spatially separated and that generates an alternating magnetic field to heat the substrate.
【請求項2】前記基板ホルダーが冷媒保持部を有するこ
とを特徴とする特許請求の範囲第1項記載の薄膜作製装
置。
2. The thin film forming apparatus according to claim 1, wherein the substrate holder has a coolant holding portion.
【請求項3】前記基板ホルダーが磁性導体からなること
を特徴とする特許請求の範囲第1項または第2項記載の
薄膜作製装置。
3. The thin film forming apparatus according to claim 1, wherein the substrate holder is made of a magnetic conductor.
JP60160139A 1985-07-22 1985-07-22 Thin film production equipment Expired - Lifetime JPH07116601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60160139A JPH07116601B2 (en) 1985-07-22 1985-07-22 Thin film production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60160139A JPH07116601B2 (en) 1985-07-22 1985-07-22 Thin film production equipment

Publications (2)

Publication Number Publication Date
JPS6220868A JPS6220868A (en) 1987-01-29
JPH07116601B2 true JPH07116601B2 (en) 1995-12-13

Family

ID=15708712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60160139A Expired - Lifetime JPH07116601B2 (en) 1985-07-22 1985-07-22 Thin film production equipment

Country Status (1)

Country Link
JP (1) JPH07116601B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339064A (en) * 2001-05-16 2002-11-27 Anelva Corp Vacuum treatment apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5401200B2 (en) * 2009-08-03 2014-01-29 株式会社トクヤマ In-chamber substrate rotating apparatus and method for rotating in-chamber substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211171B2 (en) * 1976-10-01 1987-03-11 Caterpillar Tractor Co

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211171U (en) * 1985-07-02 1987-01-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211171B2 (en) * 1976-10-01 1987-03-11 Caterpillar Tractor Co

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339064A (en) * 2001-05-16 2002-11-27 Anelva Corp Vacuum treatment apparatus

Also Published As

Publication number Publication date
JPS6220868A (en) 1987-01-29

Similar Documents

Publication Publication Date Title
US20100000855A1 (en) Film Forming Apparatus and Method of Forming Film
JP4085307B2 (en) Insulating gas sealed and vacuum sealed chamber for induction heating apparatus
JPH0772349B2 (en) Method and apparatus for producing large area compound thin film
US3055775A (en) Superconductive switching component
JP2010129790A (en) Deposition method
US20080289953A1 (en) High rate sputtering apparatus and method
JPH07116601B2 (en) Thin film production equipment
Im et al. Planar heating chuck to improve temperature uniformity of plasma processing equipment
Qiu et al. Carrier concentration and orientation optimization for high performance (Sb, Bi) 2Te3 thermoelectric films via magnetron co-sputtering
US3669812A (en) Substrate support module
JP2004059992A (en) Organic thin film deposition apparatus
Kaneta-Takada et al. Scattering-dependent transport of SrRuO 3 films: From Weyl fermion transport to hump-like Hall effect anomaly
JPH08222360A (en) Equalized heater both for vacuum heating and for cooling
JPH05259514A (en) Thermoelectric device, and its manufacturing method and device
Thornburg et al. Temperature Changes in Thin Films during Growth by Physical Vapor Deposition. II. Experimental
JPH09234358A (en) Method and mechanism for heating vacuum container
JP2923332B2 (en) Heat treatment method and heat treatment apparatus, and method of controlling heating body
Basak et al. Thin film senses magnetic flux and loss in rotary electric motors
JPH0978237A (en) Production of thin film and device therefor
JP3228993B2 (en) Film forming apparatus having substrate heating function
JPH06290864A (en) Vacuum heating processing device
JPS6298610A (en) Substrate heating mechanism for crystal growth
JPH03276629A (en) Heating equipment
JP2005025983A (en) Induction heating apparatus
JP2005025982A (en) Induction heating apparatus

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term