JPH0711609B2 - External diffusion thin film optical waveguide and method of manufacturing the same - Google Patents

External diffusion thin film optical waveguide and method of manufacturing the same

Info

Publication number
JPH0711609B2
JPH0711609B2 JP57202470A JP20247082A JPH0711609B2 JP H0711609 B2 JPH0711609 B2 JP H0711609B2 JP 57202470 A JP57202470 A JP 57202470A JP 20247082 A JP20247082 A JP 20247082A JP H0711609 B2 JPH0711609 B2 JP H0711609B2
Authority
JP
Japan
Prior art keywords
optical waveguide
lithium
thin film
optical
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57202470A
Other languages
Japanese (ja)
Other versions
JPS5991403A (en
Inventor
陽一 藤井
秀人 日高
繁太郎 小倉
守 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57202470A priority Critical patent/JPH0711609B2/en
Publication of JPS5991403A publication Critical patent/JPS5991403A/en
Publication of JPH0711609B2 publication Critical patent/JPH0711609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、集積光学構造体等の外部拡散薄膜光導波路お
よびその作製方法に関するものである。
The present invention relates to an external diffusion thin film optical waveguide such as an integrated optical structure and a method for manufacturing the same.

現在、光偏向器,光変調器を集積光学構造体で実現する
場合、光導波路基板として、圧電性,光音響効果,電気
光学効果に優れ、且つ、光伝播損失が少ないニオブ酸リ
チウム(以下LiNbO3と記す)結晶及びタンタル酸リチウ
ム(以下LiTaO3と記す)結晶が広く用いられている。
Currently, in the case of realizing an optical deflector and an optical modulator by an integrated optical structure, lithium niobate (hereinafter referred to as LiNbO), which is excellent in piezoelectricity, photoacoustic effect, and electro-optical effect as an optical waveguide substrate and has a small optical propagation loss. 3 ) and lithium tantalate (hereinafter referred to as LiTaO 3 ) crystals are widely used.

前記結晶基板を用いて、薄膜光導波路を作製する代表的
な方法として、チタン(以下Tiと記す)金属を前記結晶
基板の表面に、高温での熱拡散することにより、該結晶
基板の表面に基板の屈折率よりわずかに大きな屈折率を
有する光導波層を形成する方法がある。しかし、この方
法により作製された薄膜光導波路は、光学損傷を受け易
く、非常に小さいパワーの光しか該導波路に導入できな
いという欠点がある。ここで光学損傷とは、「光導波路
に入力する光強度を増大していつたときに、該光導波路
内を伝播し外部に取り出される光の強度が、散乱によつ
て前記入力強度に比例して増大しなくなる現象」を言
う。
As a typical method for producing a thin film optical waveguide using the crystal substrate, a titanium (hereinafter referred to as Ti) metal is thermally diffused on the surface of the crystal substrate at a high temperature to form a film on the surface of the crystal substrate. There is a method of forming an optical waveguide layer having a refractive index slightly higher than that of the substrate. However, the thin-film optical waveguide manufactured by this method is susceptible to optical damage, and has a drawback that only light of very low power can be introduced into the waveguide. The term "optical damage" as used herein means that "when the intensity of light input to an optical waveguide is increased, the intensity of light propagating in the optical waveguide and extracted to the outside is proportional to the input intensity due to scattering. Phenomenon that does not increase. "

前記光学損傷を改善する光導波路の作製方法としては、
LiNbO3やLiTaO3の結晶基板を高温で熱処理し、該結晶基
板中から酸化リチウム(以下Li2Oと記す)を外部拡散
し、基板の表面近傍に基板よりわずかに屈折率の大きな
リチウム(以下Liと記す)空格子層を形成させる方法が
ある。上記Li2O外部拡散法により、光学損傷のしきい値
がTi金属の内部拡散法に比べて高くなることが文献〔R.
L.Holman&P.J.Cressman,IOC,90,28April(1981)〕に
示されている。
As a method for producing an optical waveguide for improving the optical damage,
A LiNbO 3 or LiTaO 3 crystal substrate is heat-treated at a high temperature, lithium oxide (hereinafter referred to as Li 2 O) is diffused out of the crystal substrate, and lithium having a slightly larger refractive index than the substrate (hereinafter referred to as Li 2 O) There is a method of forming a vacancy layer. By the Li 2 O outdiffusion method, the threshold of optical damage is higher than the internal diffusion process of Ti metal literature [R.
L. Holman & P.J. Cressman, IOC, 90, 28 April (1981)].

ところで、光偏向器,光変調器を光音響効果や電気光学
効果を利用して実現しようとする場合、前記各効果の効
率を上げることが素子形成において重要になる。光音響
効果を利用する代表例としては、光導波路上にホトリソ
グラフイーで作製したくし形電極に高周波電解を印加
し、光導波路上に弾性表面波を烈起させる方法がある。
この場合、光導波路上に励起された弾性表面波と光導波
路中を伝播する導波光との相互作用は、導波光のエネル
ギー分布が基板表面近傍に閉じ込められるほど増大する
ことが知られている。〔C.S.Tsai,IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS,VOL.CAS−26,12,1979〕 上記相互作用を最大限に利用するという観点からする
と、前述のLi2O外部拡散法で形成される光導波路(Li空
格子層)の厚さは、その屈折率変化が小さい為、10〜10
0μm程度とかなり厚くする必要があり、導波光のエネ
ルギー分布が厚さ方向に広がつて好ましくない。従つ
て、前述のLi2O外部拡散法によつて作製された薄膜光導
波路を前記光偏向器等に利用する場合、効率の高い装置
の実現が困難であつた。
By the way, when the optical deflector and the optical modulator are to be realized by utilizing the photoacoustic effect and the electro-optical effect, it is important to increase the efficiency of each of the above effects in the formation of the element. As a typical example of utilizing the photoacoustic effect, there is a method of applying high-frequency electrolysis to a comb-shaped electrode manufactured by photolithography on an optical waveguide to cause surface acoustic waves to swell on the optical waveguide.
In this case, it is known that the interaction between the surface acoustic wave excited on the optical waveguide and the guided light propagating in the optical waveguide increases as the energy distribution of the guided light is confined near the substrate surface. (CSTsai, IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS, VOL.CAS-26,12,1979] From the viewpoint of maximizing the use of the above interaction, the optical waveguide (Li vacancy layer) formed by the Li 2 O external diffusion method described above is used. The thickness is 10 to 10 because the change in the refractive index is small.
It is necessary to make the thickness as thick as 0 μm, which is not preferable because the energy distribution of the guided light spreads in the thickness direction. Therefore, when the thin film optical waveguide manufactured by the above-mentioned Li 2 O external diffusion method is used for the optical deflector or the like, it is difficult to realize a highly efficient device.

また、Li2O外部拡散法は、単なる熱処理により行なわれ
るので、チヤネル型導波路を形成できないという問題点
も有していた。
In addition, the Li 2 O outdiffusion method has a problem that a channel type waveguide cannot be formed because it is performed only by heat treatment.

一方、光学損傷を改善する薄膜光導波路の他の作製方法
として、イオン交換法が知られている。この方法は、硝
酸タリウム(以下TlNO3と記す)又は硝酸銀(以下AgNO3
と記す)の溶媒塩中でLiNbO3又はLiTaO3の結晶基板を低
温熱処理することにより、該結晶基板の表面から深さ方
向に対して1〜3μm程度の範囲で、該結晶基板内のリ
チウムイオン(Li+)が、溶融塩中のタリウム(Tl)又
は銀(Ag)のイオン種と交換され、大きな屈折率差(△
n〜0.12)をもつ光導波層が形成されるものである。
On the other hand, an ion exchange method is known as another method for producing a thin film optical waveguide that improves optical damage. This method uses thallium nitrate (hereinafter referred to as TlNO 3 ) or silver nitrate (hereinafter AgNO 3
Lithium ion in the crystal substrate within a range of about 1 to 3 μm in the depth direction from the surface of the crystal substrate by low-temperature heat treating the crystal substrate of LiNbO 3 or LiTaO 3 in a solvent salt of (Li + ) is exchanged with ion species of thallium (Tl) or silver (Ag) in the molten salt, and a large difference in refractive index (△
An optical waveguide layer having a thickness of n to 0.12) is formed.

しかし、上記イオン交換法により作製された薄膜光導波
路の光学損傷のしきい値は、文献〔J.L.Jackel,D.H.Ols
on and A.M.Glass,J.Appl.Phys.52(7)July1981〕に
示されているように、Ti内部拡散法よりも2倍程度向上
するだけで、十分とは言えず、また、処理時間が約10時
間と長いという問題点をもつていた。
However, the threshold of optical damage of the thin film optical waveguide prepared by the above ion exchange method has been reported in the literature [JL Jackel, DHOls
on and AMGlass, J.Appl.Phys.52 (7) July 1981], it is not enough just to improve by about twice as much as the Ti internal diffusion method, and the processing time is about It had the problem of being as long as 10 hours.

本発明の目的は、前記従来例の問題点を解決し、光学損
傷のしきい値が十分高く、且つ、導波光と光音響効果や
電気光学効果との相互作用の大きな外部拡散薄膜光導波
路およびその作製方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the conventional example, a threshold value of optical damage is sufficiently high, and an external diffusion thin film optical waveguide having a large interaction between guided light and a photoacoustic effect or an electro-optical effect, and It is to provide a manufacturing method thereof.

本発明の他の目的は、光学損傷のしきい値が十分高く、
且つ、導波光と光音響効果や電気光学効果との相互作用
の大きなチヤンネル型の外部拡散薄膜光導波路およびそ
の作製方法を提供することにある。
Another object of the invention is that the threshold of optical damage is high enough,
Another object of the present invention is to provide a channel type external diffusion thin film optical waveguide in which the interaction between guided light and photoacoustic effect or electro-optical effect is large, and a method for manufacturing the same.

本発明の別の目的は、光学損傷のしきい値が十分高く、
作製の際の処理時間が短い外部拡散薄膜導波路およびそ
の作製方法を提供することにある。
Another object of the invention is that the threshold of optical damage is high enough,
An object of the present invention is to provide an external diffusion thin film waveguide and a method for manufacturing the same, which requires a short processing time during manufacturing.

本発明の上記目的は、ニオブ酸リチウム結晶又はタンタ
ル酸リチウム結晶から成る基板の表面に、前記結晶内の
酸化リチウムを外部拡散させることによって形成された
リチウム空格子層を有する外部拡散薄膜光導波路におい
て、前記リチウム空格子層の表面金傍に、更にイオン種
を注入することによって形成された該リチウム空格子層
よりも高屈折率のイオン種注入層を有することを特徴と
する外部拡散薄膜光導波路、及びニオブ酸リチウム結晶
又はタンタル酸リチウム結晶から成る基板の表面を高温
で熱処理することによって、前記結晶内の酸化リチウム
を外部拡散させ、リチウム空格子層を形成する過程を有
する外部拡散薄膜光導波路の作製方法において、前記リ
チウム空格子層を形成した後、更に該リチウム空格子層
の表面近傍にイオン種を注入してリチウム空格子層より
も高屈折率のイオン種注入層を形成する過程を有するこ
とを特徴とする外部拡散薄膜光導波路の作製方法によっ
て達成される。
The above object of the present invention is to provide an external diffusion thin film optical waveguide having a lithium vacancy layer formed by externally diffusing lithium oxide in the crystal on the surface of a substrate made of a lithium niobate crystal or a lithium tantalate crystal. An external diffusion thin film optical waveguide having an ion species injection layer having a higher refractive index than the lithium vacancy layer formed by further injecting an ion species near the surface of the lithium vacancy layer. And an external diffusion thin film optical waveguide including a process of externally diffusing lithium oxide in the crystal by heat-treating the surface of a substrate made of a lithium niobate crystal or a lithium tantalate crystal at a high temperature. In the method for manufacturing the same, after forming the lithium vacancy layer, an ion is further formed near the surface of the lithium vacancy layer. It is achieved by a method for manufacturing a outdiffusion thin film optical waveguide and having a process of forming an ion species implanted layer of high refractive index than the lithium vacancy layer by implanting species.

以下、本発明を図面を用いて説明する。The present invention will be described below with reference to the drawings.

第1図は、本発明の外部拡散薄膜光導波路の構造を示す
概略図である。図中、1は結晶基板、2はLi空格子層、
3はイオン種注入層を示す。ここで結晶基板1の材料と
しては、Xカツト〔基板表面が結晶軸方向(2,,0)若
しくは(,1,0)に垂直〕LiNbO3,Zカット〔基板表面が
結晶軸方向(0,0,1)に垂直〕LiNbO3,XカツトLiTaO3,Z
カツトLiTaO3のいずれかの結晶を用いることが可能であ
る。Li空格子層は、該結晶基板を高温熱処理して、Li2O
を外部拡散することによつて形成される。イオン種注入
層3は、前記Li空格子層2に、イオン交換法等を用い
て、イオン種を注入することによつて形成することが可
能である。本発明の外部拡散薄膜光導波路において、Li
空格子層2の結晶基板1に相対する屈折率変化量は、0.
01程度、イオン種注入層3の屈折率変化量は0.1〜0.2程
度であり、導波光は、イオン種注入層3中伝播する。ま
た、該イオン種注入層3の下部のLi空格子層2は、光照
射によつて生ずる光電子を、Li空格子によつて捕獲し、
該光電子による光導波路の破損を防ぎ、光学損傷のしき
い値を向上させる効果を有する。この効果を十分に生か
す為には、前記Li格子層2は、導波光の結晶基板内への
しみ出し深さを考慮して、10〜100μmの厚さを有する
ことが望ましい。
FIG. 1 is a schematic view showing the structure of an external diffusion thin film optical waveguide of the present invention. In the figure, 1 is a crystal substrate, 2 is a Li vacancy layer,
Reference numeral 3 indicates an ion species injection layer. Here, as a material of the crystal substrate 1, X-cut [the substrate surface is perpendicular to the crystal axis direction (2,0) or (, 1,0)] LiNbO 3 , Z cut [the substrate surface is the crystal axis direction (0, Perpendicular to 0,1)] LiNbO 3 , X cut LiTaO 3 , Z
It is possible to use either crystal of cut LiTaO 3 . The Li vacancy layer is formed by heating the crystal substrate at a high temperature to obtain Li 2 O.
Are formed by external diffusion. The ionic species implantation layer 3 can be formed by implanting ionic species into the Li vacancy layer 2 by using an ion exchange method or the like. In the external diffusion thin film optical waveguide of the present invention, Li
The amount of change in the refractive index of the vacancy layer 2 relative to the crystal substrate 1 is 0.
The amount of change in the refractive index of the ion species injection layer 3 is about 0.1, and the guided light propagates in the ion species injection layer 3. Further, the Li vacancy layer 2 below the ionic species injection layer 3 captures photoelectrons generated by light irradiation by the Li vacancy,
It has an effect of preventing the optical waveguide from being damaged by the photoelectrons and improving the threshold value of the optical damage. In order to make full use of this effect, it is desirable that the Li lattice layer 2 has a thickness of 10 to 100 μm in consideration of the depth of guided light penetrating into the crystal substrate.

次に、本発明において、LiNbO3結晶基板にイオン交換法
を用いてイオン種を注入する場合のメカニズムを説明す
る。LiNbO3結晶は第2図(a)に示す如き三方晶で、C
軸8上に、リチウム(Li)5,空孔6,ニオブ(Nb)7が順
に配列している。ここで4は酸素(O)である。
Next, in the present invention, the mechanism in the case of implanting ion species into the LiNbO 3 crystal substrate by using the ion exchange method will be described. The LiNbO 3 crystal is a trigonal crystal as shown in FIG.
Lithium (Li) 5, holes 6, and niobium (Nb) 7 are sequentially arranged on the shaft 8. Here, 4 is oxygen (O).

第2図(a)に示すLiNbO3結晶を約1000℃の高温で熱処
理すると、第2図(b)に示す如くLiイオンが外部に放
出れ、Li空格子9が形成される。上記状態において、た
とえばイオン交換法により、Ag,Tl,K等のイオン種を注
入すると第2図(c)に示す如く、前記Li空格子の位置
に上記イオン種10がはいる。通常のイオン交換の機構
は、Liイオンと注入イオンの交換を同時に行なう為、処
理時間が長くなる。これに対し、本発明の場合は、Liサ
イトがイオン交換処理前に、熱処理で外部拡散されて空
いている為、イオン種が注入されやすく、通常のイオン
交換法よりも処理時間が短縮でき、また、更に大きな屈
折率差を有する光導波路が実現できる。
When the LiNbO 3 crystal shown in FIG. 2 (a) is heat-treated at a high temperature of about 1000 ° C., Li ions are released to the outside to form Li vacancies 9 as shown in FIG. 2 (b). In the above state, when ion species such as Ag, Tl, and K are implanted by, for example, an ion exchange method, the ion species 10 is present at the position of the Li vacancies as shown in FIG. 2 (c). In a normal ion exchange mechanism, Li ions and implanted ions are exchanged at the same time, resulting in a long processing time. On the other hand, in the case of the present invention, since the Li site is externally diffused by the heat treatment and is vacant before the ion exchange treatment, the ion species are easily injected, and the treatment time can be shortened as compared with the usual ion exchange method. Further, an optical waveguide having a larger difference in refractive index can be realized.

また、本発明のイオン種注入層から成る光導波層は、前
述のように屈折率差が大きいので、該光導波層の厚さを
薄くすることが可能である。
Further, since the optical waveguide layer formed of the ion species injection layer of the present invention has a large difference in refractive index as described above, it is possible to reduce the thickness of the optical waveguide layer.

第3図において、11は周波数1GHzの弾性表面波の結晶基
板の深さ方向の振幅分布、12は本発明の外部拡散薄膜光
導波路における導波光のエネルギー分布、13は従来のTi
内部拡散によつて作製された光導波路における導波光の
エネルガー分布を示す。第3図に示す如く、弾性表面波
の強度は、基板表面から深さ方向に約0.5μmはいつた
所にピークをもつ。これに対して、本発明の光導波路の
エネルギー分布12のピークも表面から深さ方向に約0.7
μmはいつた所に存在し、弾性表面波のエネルギー分布
11と重なる割合が従来のものよりも飛躍的に大きくな
り、導波光と弾性表面波との相互作用が増大する。本発
明において、前記の様な大きな相互作用を得る為には、
光導波層即ちイオン種注入層は、なるべく薄く、1〜2
μm程度が望ましい。
In FIG. 3, 11 is the amplitude distribution of the surface acoustic wave at a frequency of 1 GHz in the depth direction of the crystal substrate, 12 is the energy distribution of the guided light in the external diffusion thin film optical waveguide of the present invention, and 13 is the conventional Ti.
6 shows the Energer distribution of guided light in an optical waveguide manufactured by internal diffusion. As shown in FIG. 3, the surface acoustic wave intensity has a peak about 0.5 μm from the substrate surface in the depth direction. On the other hand, the peak of the energy distribution 12 of the optical waveguide of the present invention is also about 0.7 in the depth direction from the surface.
μm exists everywhere, and the energy distribution of surface acoustic waves
The overlapping ratio with 11 becomes dramatically larger than the conventional one, and the interaction between the guided light and the surface acoustic wave increases. In the present invention, in order to obtain a large interaction as described above,
The optical waveguide layer, that is, the ion species injection layer is as thin as possible,
About μm is desirable.

以下、本発明を実施例によつて具体的に説明する。Hereinafter, the present invention will be specifically described with reference to examples.

〔実施例1.〕 xカットのLiNbO3結晶基板(x方向に2mm厚,z方向およ
びy方向に夫々1インチ)の一面(例えばx+面)を、ニ
ユートンリング数本以内の平面度に研摩した後、夫々、
メタノール,アセトン,純水による通常の超音波洗浄を
行ない、窒素ガスを吹きつけて乾燥させた。次に該LiNb
O3基板からLiO2を外部拡散するために前記洗浄,乾燥し
た基板を溶融石英製のホルダーに立て、1000℃の熱拡散
炉にセットした。雰囲気ガスとして乾燥したO2ガスを2
/minの流量で拡散炉に導入した。室温から1000℃まで
16℃/minの速度で炉内温度を上げ、1時間後炉内の温度
が一定になつた後8時間1000℃に保持し、その後基板を
引続いて600℃に保持した第2の熱拡散炉に移動した。
更に、該第2の拡散炉への通電を中止し600℃から室温
まで放冷した。基板を1000℃から600℃へ急冷する理由
は序例によつて基板内にLiNb3O8が形成されるのを防
ぎ、光伝播損失の少ない光導波路を形成する為であるが
1.5〜1dB/cm程度の光伝播損失が許容され得るならば、
単一の熱拡散路を用い、1000℃から放冷し形成してもよ
い。
Example 1. An x-cut LiNbO 3 crystal substrate (2 mm thick in the x direction, 1 inch in each of the z direction and the y direction) was used to make one surface (for example, the x + surface) flat within a few Newton rings. After polishing,
Usual ultrasonic cleaning with methanol, acetone and pure water was performed, and nitrogen gas was blown to dry it. Next, the LiNb
In order to externally diffuse LiO 2 from the O 3 substrate, the washed and dried substrate was placed in a holder made of fused silica and set in a thermal diffusion furnace at 1000 ° C. 2 dry O 2 gas as atmosphere gas
It was introduced into the diffusion furnace at a flow rate of / min. From room temperature to 1000 ° C
A second thermal diffusion in which the temperature inside the furnace was raised at a rate of 16 ° C / min, and after 1 hour the temperature inside the furnace became constant, then the temperature was kept at 1000 ° C for 8 hours, and then the substrate was kept at 600 ° C. Moved to the furnace.
Further, the power supply to the second diffusion furnace was stopped and the temperature was allowed to cool from 600 ° C. to room temperature. The reason for quenching the substrate from 1000 ° C to 600 ° C is to prevent LiNb 3 O 8 from being formed in the substrate and form an optical waveguide with little optical propagation loss according to the example.
If a light propagation loss of about 1.5 to 1 dB / cm can be tolerated,
It may be formed by cooling from 1000 ° C. using a single heat diffusion path.

冷却した後に得られたLiO2外部拡散光導波路の特性を測
定するため、ルチルプリズムから波長6328ÅのHe−Ne光
を導入し光伝播損失を測定したところ0.3dB/cmの良質な
光導波路が作製されていることが判つた。これは200Å
の厚さにTiを内部拡散させて作製した光導波路とほぼ同
じ光伝播損失であつた。プリズムへの入射角を変え伝播
モードを測定したところTEモードで4つのモードが観測
できた。また入力光ビーム径を2mmとし入力光と出力光
の比を入力光強度を変化させて光学損傷の様子を測定し
たところ、Ti内部拡散による光導波路が1mWの入力光で
1秒以内に光学損傷が生じるのに較べ、LiO2外部拡散に
よるものは、20mWの入力光に対しても数時間に亘り安定
した出力値を得た。このことからLiO2外部拡散により、
Ti内部拡散により作製した光導波路に比べ、光伝播損失
は同等、又光学損傷に関しては20倍程度の損傷しきい値
をもつ光導波路が作成できることがわかつた。モードイ
ンデツクスからLiO2外部拡散深さを求めたところ、約10
μmとなり、基板との屈折率差△nが0.01で厚いLi空格
子層が形成されていた。
In order to measure the characteristics of the LiO 2 external diffusion optical waveguide obtained after cooling, the He-Ne light with a wavelength of 6328 Å was introduced from the rutile prism and the optical propagation loss was measured to produce a good optical waveguide of 0.3 dB / cm. It turned out that it was done. This is 200Å
The optical propagation loss was almost the same as the optical waveguide fabricated by internally diffusing Ti to the thickness of. When the propagation mode was measured by changing the incident angle to the prism, four modes were observed in TE mode. When the input light beam diameter was set to 2 mm and the ratio of the input light to the output light was changed to change the input light intensity, the optical damage was measured and the optical waveguide due to Ti internal diffusion was damaged within 1 second with the input light of 1 mW. In contrast, the LiO 2 outdiffusion resulted in a stable output value for several hours even with an input light of 20 mW. From this, LiO 2 outdiffusion
It was found that an optical waveguide with an optical propagation loss equal to that of an optical waveguide fabricated by Ti internal diffusion, and an optical waveguide having a damage threshold of about 20 times can be fabricated. When the LiO 2 outdiffusion depth was calculated from the mode index, it was about 10
μm, the refractive index difference Δn from the substrate was 0.01, and a thick Li vacancy layer was formed.

光学特性を測定した後、再び前述した基板の洗浄を繰り
返し行い基板表面を清浄にしてから、イオン交換処理を
実施した。イオン交換処理は100CCの石英製ビーカー中
に特級AgNO3結晶片を30g入れその上に前記洗浄乾燥した
Li2O外部拡散後の基板をLi空格子層の形成された面を上
にして置き、ビーカーごと熱炉に入れ330℃の温度で6
時間保持した。イオン交換中は溶融塩を撹拌することが
望ましい。又、この際AgNO3溶液から発生するNO2ガスを
炉外へ排出できるよう留意した。このようなイオン交換
処理の後炉への通電を切り炉内の温度が室温にの戻るま
で放置した。その後熱炉から固化した基板とAgNO3をビ
ーカーに入れたまま取り出し約60〜70℃に温めた純水を
ビーカー内に注ぎ基板とAgNO3が分離するまで放置し
た。1時間後分離した基板のみを取り出し、更に温水で
数時間基板表面からAgNO3の微小結晶が完全に取れるま
で洗浄した。又、前記微小結晶が取れ難い場合、光導波
路表面をコロイダルシリカ等の研摩剤を使用様して軽く
研摩した。
After measuring the optical characteristics, the above-mentioned cleaning of the substrate was repeated again to clean the substrate surface, and then the ion exchange treatment was carried out. Ion exchange treatment was carried out by placing 30 g of special grade AgNO 3 crystal pieces in a 100 CC quartz beaker and washing and drying the same.
The substrate after Li 2 O outdiffusion is placed with the surface on which the Li vacancy layer is formed facing up, and the beaker is placed in a heating furnace at a temperature of 330 ° C.
Held for hours. It is desirable to stir the molten salt during ion exchange. At this time, attention was paid so that the NO 2 gas generated from the AgNO 3 solution could be discharged to the outside of the furnace. After such an ion exchange treatment, the furnace was de-energized and left to stand until the temperature in the furnace returned to room temperature. After that, the solidified substrate and AgNO 3 were taken out from the heat furnace with the beaker taken out, and pure water warmed to about 60 to 70 ° C. was poured into the beaker and allowed to stand until the substrate and AgNO 3 were separated. After 1 hour, only the separated substrate was taken out, and further washed with warm water for several hours until the AgNO 3 microcrystals were completely removed from the substrate surface. When it is difficult to remove the fine crystals, the surface of the optical waveguide is lightly polished by using an abrasive such as colloidal silica.

彼様にして作成した本発明のプラナー型外部拡散薄膜光
導波路の特性を調べるため、ルチルプリズムで波長6328
ÅのHe−Ne光を再び導波路面内のy方向へ導入し光伝播
損失の測定を行い、0.6dB/cmの値を得た。光学損傷しき
い値はHe−Ne光で24mW/cmの値を得た。比較の為に、x
カットLiNbO3基板にLiO2を外部拡散させずに同一の条件
でイオン交換のみを行つた場合の光伝播損失は1dB/cm,
光学損傷しきい値は4mW/cmであつた。
In order to investigate the characteristics of the planar type external diffusion thin film optical waveguide of the present invention produced by him, the wavelength of 6328 was measured by a rutile prism.
The He-Ne light of Å was again introduced into the waveguide surface in the y direction, and the optical propagation loss was measured to obtain a value of 0.6 dB / cm. The optical damage threshold of He-Ne light was 24 mW / cm. X for comparison
The optical propagation loss is 1 dB / cm when only ion exchange is performed under the same conditions without external diffusion of LiO 2 on the cut LiNbO 3 substrate.
The optical damage threshold was 4 mW / cm.

本実施例で作成した外部拡散薄膜導波路の伝播モード
は、同一条件のイオン交換法のみで作成した光導波路の
伝播モードTEoとほぼ同じ伝播モードであつた。
The propagation mode of the external diffusion thin film waveguide prepared in this example was almost the same as the propagation mode TEo of the optical waveguide prepared only by the ion exchange method under the same conditions.

次に測定後の本実施例の光導波路を再度洗浄,乾燥した
後に、ポジ型ホトレジストをスピナーで厚さ1〜1.5μ
mにスピナーコートし、くし型電極のネガマスクで密着
露光し、くし形電極部のみが残らないように現象した。
水洗後乾燥し、真空蒸着装置に装荷して、1×10-6Torr
まで排気を行い、EB蒸着によつてAl(膜厚1500Å)を蒸
着した。蒸着後アセトンに数分浸すことによつて、ホト
レジスト上のAl膜がリフトオフで除去され、くし形電極
部分のみが光導波路上に形成された。この際のくし形電
極は、弾性表面波の中心波長が600MHzになるように設計
したので、該くし形電極の電極幅と電極間隔は、双方共
1.45μmであつた。この様に本発明の光導波路上にくし
形電極を設け、光導波型光偏向器を作製した。
Next, the optical waveguide of the present example after the measurement was washed again and dried, and then the positive photoresist was spinner-coated to a thickness of 1 to 1.5 μm.
m was spinner-coated, and contact exposure was performed with a negative mask of a comb-shaped electrode, and a phenomenon occurred so that only the comb-shaped electrode portion was not left.
After washing with water, drying, loading in a vacuum evaporation system, and 1 × 10 -6 Torr
Evacuation was performed and Al (film thickness 1500Å) was deposited by EB deposition. The Al film on the photoresist was removed by lift-off by immersing in acetone for several minutes after vapor deposition, and only the comb-shaped electrode portion was formed on the optical waveguide. At this time, the comb-shaped electrode was designed so that the center wavelength of the surface acoustic wave was 600 MHz. Therefore, both the electrode width and the electrode interval of the comb-shaped electrode were
It was 1.45 μm. Thus, a comb-shaped electrode was provided on the optical waveguide of the present invention to fabricate an optical waveguide type optical deflector.

一方、200Åの厚さにTiを熱拡散することにより作製し
た光導波路に対して、前記と同様のリフトオフ法により
くし形電極を形成して光型波型光偏向器を作成し、本発
明の光導波路を用いて作成した光導波型光偏向器と次の
条件の下で性能の比較を行なつた。両者とも、入射光は
波長6328ÅのHe−Neレーザーを用い、くし形電極に0.6W
のRF電力を印加した。RFの周波数が600MHzの場合、回折
効率は、Ti熱拡散光導波路上に作製した光導波型光偏向
器に較べて、本実施例の光導波路上に作製したものが約
3倍であり、高い回折効率が得られた。又、He−Neレー
ザー光の強度は、1mW以下で測定を行なつたが、5mW,10
W,15mWとレーザー光強度を増加すると、Ti熱拡散光導波
路の場合、入力強度が5mWで既に光学損傷が生じ、出力
光が破滅的に減少したが、本実施例の場合、入力強度が
15mWを超えた場合でも、出力光強度は入力光強度に比例
して増加し、光学損傷が全く生じていないことが判明し
た。
On the other hand, with respect to the optical waveguide produced by thermally diffusing Ti to a thickness of 200Å, a comb-shaped electrode is formed by the lift-off method similar to the above to produce an optical wave type optical deflector, The performance of the optical waveguide type optical deflector made by using the optical waveguide was compared under the following conditions. In both cases, the incident light uses a He-Ne laser with a wavelength of 6328Å, and 0.6 W is applied to the comb electrode.
RF power was applied. When the RF frequency is 600 MHz, the diffraction efficiency is about three times as high as that produced on the optical waveguide of this embodiment, as compared with the optical waveguide type optical deflector produced on the Ti thermal diffusion optical waveguide. Diffraction efficiency was obtained. The intensity of He-Ne laser light was measured at 1 mW or less.
When the laser light intensity was increased to W, 15 mW, in the case of the Ti thermal diffusion optical waveguide, the input intensity was 5 mW, optical damage had already occurred, and the output light was reduced catastrophically, but in the case of this example, the input intensity was
It was found that the output light intensity increased in proportion to the input light intensity even when it exceeded 15 mW, and no optical damage occurred.

〔実施例2〕 次に本発明の第2実施例について説明する。第1実施例
の場合、イオン交換処理を330℃ AgNO3溶融塩中で行な
つたが、第2実施例では、イオン種をK(カリウム)と
するため、イオン交換処理をKNO3溶融塩中で行なつた。
第1実施例と同じ条件で作製したLiO2外部拡散後のxカ
ツトLiNbO3基板を360℃ KNO3溶融塩中で数10分から数時
間処理することによつて本発明の光導波路を作製した。
光伝播損失は0.48dB/cmと低損失な光導波路が作製でき
た。第1実施例と同様の工程で光導波路上にくし形電極
を作製し、周波数600MHz,0.6WのRF電力をくし形電極に
印加し、回折効率の測定を行なつたが、第1実施例とほ
ぼ同じ結果が得られた。又、光学損傷に関しても第1実
施例と同様の結果が得られた。KNO3は、AgNO3よりも融
点が高く、360℃〜400℃程度の加熱状態でも他の化合物
へ分解する割合が少ないため、AgNO3溶融塩を用いる場
合よりも、光伝播損失が小さく、且つ、屈折率差が大き
い導波路が作製可能であるという特長がある。
Second Embodiment Next, a second embodiment of the present invention will be described. In the case of the first embodiment, the ion exchange treatment was carried out in 330 ° C. AgNO 3 molten salt, but in the second embodiment, the ion species is K (potassium), so the ion exchange treatment is carried out in KNO 3 molten salt. I went to.
The x-cut LiNbO 3 substrate after LiO 2 outdiffusion prepared under the same conditions as in the first embodiment was treated in a 360 ° C. KNO 3 molten salt for several tens of minutes to several hours to fabricate the optical waveguide of the present invention.
An optical waveguide with a low optical propagation loss of 0.48 dB / cm could be fabricated. A comb-shaped electrode was formed on the optical waveguide in the same process as in the first embodiment, and RF power of frequency 600 MHz and 0.6 W was applied to the comb-shaped electrode, and the diffraction efficiency was measured. The almost same result was obtained. Also, with respect to optical damage, the same results as in the first embodiment were obtained. KNO 3 has a higher melting point than AgNO 3 and has a low rate of decomposing into other compounds even in a heated state of about 360 ° C. to 400 ° C., so that light propagation loss is smaller than when AgNO 3 molten salt is used, and The advantage is that a waveguide with a large difference in refractive index can be manufactured.

〔実施例3〕 次に本発明の第3実施例であるチヤンネル型の外部拡散
薄膜光導波路の場合を説明する。最初に第1実施例と同
じ条件でLiO2外部拡散処理を行ない、次に上記LiO2外部
拡散xカットLiNbO3基板を再度洗浄,乾燥した後、ネガ
型ホトレジストをスピナーで厚さ1〜1.5μmにスピナ
ーコートし、チヤンネル型光導波路のネガマスクで密着
露光し、チヤンネル部分のみが残るように現像した。水
洗後乾燥し、真空蒸着装置に装荷して1×10-6Torrまで
排気を行ない、EB蒸着により、金属膜のAl(膜厚1500
Å)を蒸着した。ただし、金属膜としては、Alに限定さ
れるものではなく、引き続き行なうイオン交換処理にお
いて、イオン種が基板に侵入することを妨げる金属膜
(たとえばTi,Au)であつても良い。
[Embodiment 3] Next, a case of a channel type external diffusion thin film optical waveguide according to a third embodiment of the present invention will be described. First, LiO 2 outdiffusion treatment is performed under the same conditions as in the first embodiment, and then the LiO 2 outdiffusion x-cut LiNbO 3 substrate is washed again and dried, and then a negative photoresist is spun to a thickness of 1 to 1.5 μm. Was spinner-coated, and contact exposure was performed with a negative mask of a channel type optical waveguide, and development was performed so that only the channel portion remained. After washing with water, drying, loading in a vacuum evaporation system, evacuation to 1 x 10 -6 Torr, and EB evaporation, the metal film Al (film thickness 1500
Å) was deposited. However, the metal film is not limited to Al, and may be a metal film (for example, Ti, Au) that prevents ionic species from entering the substrate in the subsequent ion exchange treatment.

蒸着後アセトンに数分浸すことによつて、ホトレジスト
上にのつたAl膜がリフトオフで除去され、チヤンネル部
分以外の部分のみAl膜が形成された。この際のチヤンネ
ル幅は5μmとした。
The Al film deposited on the photoresist was removed by lift-off by immersing it in acetone for several minutes after vapor deposition, and the Al film was formed only on the portion other than the channel portion. At this time, the channel width was 5 μm.

次に、上記チヤンネル部に、イオン種が注入された層を
形成するために、第1実施例と同様のイオン交換処理を
行なつた。上記イオン交換処理後、エツチング液で金属
膜をおとし、再洗浄して、本発明の構造を有するチヤン
ネル型光導波路が作製できた。ここで金属膜がAlの場
合、エツチング液としては、リン酸を用いれば良い。第
1実施例と同様に、光伝播損失,光学損傷の測定を行な
つたが、ほぼ同じ結果が得られた。
Next, the same ion exchange treatment as in the first embodiment was performed in order to form a layer in which the ion species were implanted in the above channel portion. After the above ion exchange treatment, the metal film was covered with an etching solution and rewashed, whereby a channel type optical waveguide having the structure of the present invention could be manufactured. Here, when the metal film is Al, phosphoric acid may be used as the etching liquid. The light propagation loss and the optical damage were measured in the same manner as in the first embodiment, but almost the same results were obtained.

〔実施例4〕 次に本発明の第4実施例について説明する。Fourth Embodiment Next, a fourth embodiment of the present invention will be described.

以上に述べた実施例は、イオン交換処理というウエット
な処理工程が含まれているが、本第4実施例は、すべて
ドライな処理工程で本発明の光導波路を作製するもので
ある。まず最初に、第1実施例と同じ条件でLiNbO3結晶
基板に対して、LiO2外部拡散処理を行なう。それに引き
続いて、上記基板を真空蒸着装置に装荷し、1×10-6To
rrまで排気を行ない、EB蒸着により、金属膜、たとえば
Ag(膜厚2000Å)を蒸着した。再び電気炉にいれ、550
℃で1時間の熱処理を行なつた。550℃まで立ち上がる
時間は0.5時間であり、熱処理後は、通電を停止し、550
℃から室温まで放熱を行なつた。上記の熱処理により、
金属膜中のイオン種が基板内に拡散し本発明の光導波路
が作製できた。作製後、第1実施例と同様に光伝播損
失,光学損傷の測定を行なつたが、第1実施例とほぼ同
じ結果が得られた。本実施例において、内部拡散させる
金属は、Agに限らずの他の金属(例えばTi等)を用いて
もかまわない。
The above-described embodiment includes a wet treatment process called ion exchange treatment, but the fourth embodiment is one in which the optical waveguide of the present invention is manufactured by a dry treatment process. First, a LiNbO 3 crystal substrate is subjected to LiO 2 external diffusion treatment under the same conditions as in the first embodiment. Subsequently, the above substrate was loaded into a vacuum vapor deposition apparatus and 1 × 10 −6 To
Evacuate to rr and deposit a metal film such as
Ag (film thickness 2000Å) was vapor deposited. Put it in the electric furnace again, 550
Heat treatment was performed at 1 ° C. for 1 hour. It takes 0.5 hours to rise to 550 ° C, and after heat treatment, stop energizing and
Heat was released from ℃ to room temperature. By the above heat treatment,
The ionic species in the metal film diffused into the substrate, and the optical waveguide of the present invention could be manufactured. After the fabrication, the light propagation loss and the optical damage were measured in the same manner as in the first embodiment, and almost the same results as in the first embodiment were obtained. In the present embodiment, the metal to be internally diffused is not limited to Ag, and other metals (such as Ti) may be used.

前述の実施例においては、結晶基板にLiNbO3を用いた例
を示したが、LiTaO3結晶基板を用いても、全く同様に本
発明を実施することが可能である。
In the above-mentioned embodiments, an example in which LiNbO 3 is used as the crystal substrate has been shown, but the present invention can be carried out in the same manner even if a LiTaO 3 crystal substrate is used.

以上説明したように、本発明は、従来の薄膜光導波路お
よびその作製方法において、 1)光学損傷のしきい値を高める 2)光偏向器等に利用する場合、導波光と光音響効果や
電気光学効果との相互作用を大きくする 3)するに要する処理時間を短縮する 等の効果を有するものである。
As described above, according to the present invention, in the conventional thin film optical waveguide and the manufacturing method thereof, 1) increase the threshold value of optical damage, 2) when it is used for an optical deflector or the like, guided light and photoacoustic effect and electrical It has the effect of shortening the processing time required for increasing the interaction with the optical effect 3).

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の外部拡散薄膜光導波路の構造を示す概
略図、第2図(a),(b),(c)は夫々、本発明の
作製過程におけるイオン種注入の様子を説明する概略
図、第3図は本発明における基板の深さ方向の導波光の
エネルギー分布および弾性表面波の振幅分布を示す図で
ある。 1……結晶基板、2……Li空格子層、3……イオン種注
入層、4……酸素、5……リチウム、6……空孔、7…
…ニオブ、8……C軸、9……Li空格子、10……イオン
種。
FIG. 1 is a schematic view showing the structure of an external diffusion thin film optical waveguide of the present invention, and FIGS. 2 (a), (b) and (c) respectively explain the state of ion species implantation in the manufacturing process of the present invention. FIG. 3 is a schematic diagram showing the energy distribution of guided light and the amplitude distribution of surface acoustic waves in the depth direction of the substrate in the present invention. 1 ... Crystal substrate, 2 ... Li vacancy layer, 3 ... Ion seed injection layer, 4 ... Oxygen, 5 ... Lithium, 6 ... Vacancy, 7 ...
... niobium, 8 ... C axis, 9 ... Li vacancy, 10 ... ion species.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−27453(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-54-27453 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ニオブ酸リチウム結晶又はタンタル酸リチ
ウム結晶から成る基板の表面に、前記結晶内の酸化リチ
ウムを外部拡散させることによって形成されたリチウム
空格子層を有する外部拡散薄膜光導波路において、 前記リチウム空格子層の表面近傍に、更にイオン種を注
入することによって形成された該リチウム空格子層より
も高屈折率のイオン種注入層を有することを特徴とする
外部拡散薄膜光導波路。
1. An external diffusion thin film optical waveguide having a lithium vacancy layer formed by externally diffusing lithium oxide in the crystal on a surface of a substrate made of a lithium niobate crystal or a lithium tantalate crystal, An external diffusion thin film optical waveguide comprising an ion species injection layer having a higher refractive index than the lithium vacancy layer formed by further implanting an ion species near the surface of the lithium vacancy layer.
【請求項2】ニオブ酸リチウム結晶又はタンタル酸リチ
ウム結晶から成る基板の表面を高温で熱処理することに
よって、前記結晶内の酸化リチウムを外部拡散させ、リ
チウム空格子層を形成する過程を有する外部拡散薄膜光
導波路の作製方法において、 前記リチウム空格子層を形成した後、更に該リチウム空
格子層の表面近傍にイオン種を注入してリチウム空格子
層よりも高屈折率のイオン種注入層を形成する過程を有
することを特徴とする外部拡散薄膜光導波路の作製方
法。
2. External diffusion having a process of externally diffusing lithium oxide in the crystal by heat-treating the surface of a substrate made of a lithium niobate crystal or a lithium tantalate crystal at a high temperature to form a lithium vacancy layer. In the method for manufacturing a thin film optical waveguide, after forming the lithium vacancy layer, an ionic species is further injected near the surface of the lithium vacancy layer to form an ionic species injection layer having a higher refractive index than the lithium vacancy layer. A method of manufacturing an external diffusion thin film optical waveguide, which comprises the steps of:
JP57202470A 1982-11-17 1982-11-17 External diffusion thin film optical waveguide and method of manufacturing the same Expired - Lifetime JPH0711609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202470A JPH0711609B2 (en) 1982-11-17 1982-11-17 External diffusion thin film optical waveguide and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202470A JPH0711609B2 (en) 1982-11-17 1982-11-17 External diffusion thin film optical waveguide and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS5991403A JPS5991403A (en) 1984-05-26
JPH0711609B2 true JPH0711609B2 (en) 1995-02-08

Family

ID=16458050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202470A Expired - Lifetime JPH0711609B2 (en) 1982-11-17 1982-11-17 External diffusion thin film optical waveguide and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0711609B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781743A (en) * 1987-01-16 1988-11-01 American Telephone And Telegraph Company At&T Bell Laboratories Method of improving waveguide uniformity in optical substrate and product

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427453A (en) * 1977-08-02 1979-03-01 Nec Corp Integrated light circuit

Also Published As

Publication number Publication date
JPS5991403A (en) 1984-05-26

Similar Documents

Publication Publication Date Title
US4799750A (en) Optical function element and a method for manufacturing the same
US4705346A (en) Thin film type optical device
JP2750231B2 (en) Method of manufacturing waveguide type second harmonic generation element
US5323262A (en) Wavelength conversion device
JPH0711609B2 (en) External diffusion thin film optical waveguide and method of manufacturing the same
Tien et al. Research in optical films for the applications of integrated optics
EP0484796B1 (en) Device for doubling the frequency of a light wave
JP4081398B2 (en) Optical wavelength conversion element
JPS6170541A (en) Thin film type optical element and its manufacture
JPS602904A (en) Optical waveguide element and its manufacture
JPS60156039A (en) Manufacture of optical function element
JPH0517295A (en) Lithium niobate single crystal thin film subjected to domain inversion treatment
JP3213619B2 (en) Method for manufacturing optical waveguide device and optical waveguide device
JPS60156038A (en) Optical function element and its manufacture
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JPS60156015A (en) Thin film type optical element and its preparation
JPS6098422A (en) Optical function element and its manufacture
JPS6170533A (en) Thin film type optical element and its manufacture
KR100238167B1 (en) Optical polarizer and its fabrication method
JPH0827471B2 (en) Method of manufacturing thin film type optical element
JPS60119512A (en) Structural body for optical waveguide
JPH0792514A (en) Wavelength conversion solid-state laser element
JPH05107421A (en) Method of forming partial polarization inverting layer and manufacture of second harmonic wave generating element
JPS60119511A (en) Integrated optical structural body
JPS6170534A (en) Thin film type optical element and its manufacture