JPS5991403A - Thin film optical waveguide for external diffusion and its manufacture - Google Patents

Thin film optical waveguide for external diffusion and its manufacture

Info

Publication number
JPS5991403A
JPS5991403A JP57202470A JP20247082A JPS5991403A JP S5991403 A JPS5991403 A JP S5991403A JP 57202470 A JP57202470 A JP 57202470A JP 20247082 A JP20247082 A JP 20247082A JP S5991403 A JPS5991403 A JP S5991403A
Authority
JP
Japan
Prior art keywords
optical waveguide
crystal substrate
layer
lithium
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57202470A
Other languages
Japanese (ja)
Other versions
JPH0711609B2 (en
Inventor
Yoichi Fujii
陽一 藤井
Hideto Hidaka
秀人 日高
Shigetaro Ogura
小倉 繁太郎
Mamoru Miyawaki
守 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP57202470A priority Critical patent/JPH0711609B2/en
Publication of JPS5991403A publication Critical patent/JPS5991403A/en
Publication of JPH0711609B2 publication Critical patent/JPH0711609B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1342Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the threshold value against an optical damage by forming an ion seed implanted layer and a lithium vacancy layer on the surface of an LiNbO3 crystal substrate or LiTaO3 crystal substrate. CONSTITUTION:An Li vacancy layer 2 is formed by subjecting a lithium niobate LiNbO3 crystal substrate or lithium tantalate LiTaO3 crystal substrate to a high temp. heat treatment and diffusing externally Li2O. An ion seed implanted layer 3 is formed by implanting an ion seed by using an ion exchange method. The layer 2 captures the photoelectron generated by irradiation of light by Li vacancy, thereby preventing the damage of an optical waveguide by photoelectron and improving the threshold value against an optical damage.

Description

【発明の詳細な説明】 本発明は、集積光学構造体等の外部拡散薄膜光導波路お
よびその作製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an externally diffusing thin film optical waveguide, such as an integrated optical structure, and a method for making the same.

現在、光偏向器、光変調器を集積光学構造体で実現する
場合、光導波路基板として、圧電性。
Currently, when realizing optical deflectors and optical modulators with integrated optical structures, piezoelectric materials are used as optical waveguide substrates.

光音響効果、電気光学効果に優れ、且つ、光伝播損失が
少ないニオブ酸リチウム(以下Li NbO3と記す)
結晶及びタンタル酸リチウム(以下LiTaO3と記す
)結晶が広く用いられている。
Lithium niobate (hereinafter referred to as LiNbO3), which has excellent photoacoustic effects and electro-optic effects, and low light propagation loss
Lithium tantalate (hereinafter referred to as LiTaO3) crystals are widely used.

前記結晶基板を用いて、薄膜光導波路を作製する代表的
な方法として、チタン(以下Tiと記す)金属を前記結
晶基板の表面に、高温で熱拡散するととに上り、該結晶
基板の表面に基板の屈折率よりわずかに大きな屈折率を
有する光導波層を形成する方法がある。しかし、この方
法により作製された薄膜光導波路は、光学損傷を受は易
く、非常に小さいパワ、−の光しか該導波路に導入でき
ないという欠点がある。ここで光学損傷とは、[光導波
路に入力する光強度を増大1−でいったときに、該光導
波路内を伝播し外部に取り出される光の強度が、散乱に
よって前記入力光強度に比例して増大しなくなる現象」
を言う。
As a typical method for manufacturing a thin film optical waveguide using the crystal substrate, titanium (hereinafter referred to as Ti) metal is thermally diffused onto the surface of the crystal substrate at high temperature, and the metal is diffused onto the surface of the crystal substrate. There is a method of forming an optical waveguide layer having a refractive index slightly larger than the refractive index of the substrate. However, the thin film optical waveguide produced by this method is susceptible to optical damage and has the drawback that only very low power light can be introduced into the waveguide. Here, optical damage is defined as ``When the intensity of light input to an optical waveguide is increased by 1-, the intensity of light propagated within the optical waveguide and taken out to the outside is proportional to the intensity of the input light due to scattering. "A phenomenon where it stops increasing."
say.

前記光学損傷を改善する光導波路の作製方法としては、
LiNbO3やLiTaO3の結晶基板を高温で熱処理
し、該結晶基板中から酸化リチウム(以下L t 20
と記す)を外部拡散し、基板の表面近傍に基板よりわず
かに屈折率の大きなリチウム(以下Llと記す)空格子
層を形成させる方法がある。
As a method for manufacturing an optical waveguide that improves the optical damage,
A crystal substrate of LiNbO3 or LiTaO3 is heat treated at high temperature, and lithium oxide (hereinafter L t 20
There is a method of externally diffusing lithium (hereinafter referred to as Ll) to form a vacancy layer of lithium (hereinafter referred to as Ll) having a slightly larger refractive index than the substrate near the surface of the substrate.

上記Li、O外部拡散法により、光学損傷のしきい値が
Ti金属の内部拡散法に比べて高くなることが文献CR
,L、 Holman & P、 J 、 Cress
man 。
According to the literature CR, the above Li,O external diffusion method increases the optical damage threshold compared to the Ti metal internal diffusion method.
, L., Holman & P., J., Cress
man.

IOC,90,28April(1981))に示され
ている○ところで、光倒向器、光変調器を光音響効果や
電気光学効果を利用して実現しようとする場合、前記各
効果の効率を上げることが素子形成において重要になる
。光音響効果を利用する代表例としては、光導波路上に
ホトリソグラフィーで作製したくし形電極に高周波電界
を印加し、光導波路上に弾性表面波を励起させる方法が
ある。この場合、光導波路上に励起された弾性表面波と
光導波路中を伝播する導波光との相互作用は、導波光の
エネルギー分布が基板表面近傍に閉じ込められるほど増
大することが知られている。[C,S、Tsai 、 
IEEE TRANSACTIONSON CIRCU
ITS AND SYSTEMS、 VOL、 CAS
−26゜12、1979 ] 上記相互作用を最大限に利用するという観点からすると
、前述のLi2O外部拡散法で形成される光導波層(L
i空格子層)の厚さは、その屈折率変化が小さい為、1
0〜100μm程度とかなり厚くする必要があり、導波
光のエネルギー分布が厚さ方向に広がって好ましくない
。従って、前述のLi2O外部拡散法によって作製され
た薄膜光導波路を前記光偏向器等に利用する場合、効率
の高い装置の実現が困難であった。
IOC, 90, 28 April (1981)) By the way, when trying to realize an optical inverter or optical modulator using photoacoustic effects or electro-optic effects, it is necessary to increase the efficiency of each of the above effects. This becomes important in device formation. A typical example of utilizing the photoacoustic effect is a method in which a high-frequency electric field is applied to comb-shaped electrodes fabricated by photolithography on an optical waveguide to excite surface acoustic waves on the optical waveguide. In this case, it is known that the interaction between the surface acoustic wave excited on the optical waveguide and the guided light propagating in the optical waveguide increases as the energy distribution of the guided light is confined near the substrate surface. [C, S, Tsai,
IEEE TRANSACTION SON CIRCU
ITS AND SYSTEMS, VOL, CAS
-26゜12, 1979] From the viewpoint of maximizing the above interaction, the optical waveguide layer (L
The thickness of the i vacancy layer is 1 because its refractive index change is small.
It is necessary to make it quite thick, about 0 to 100 μm, which is undesirable because the energy distribution of the guided light spreads in the thickness direction. Therefore, when a thin film optical waveguide fabricated by the above-mentioned Li2O external diffusion method is used for the optical deflector or the like, it has been difficult to realize a highly efficient device.

また、LLO外部拡散法は、単なる熱処理によゆ行なわ
れるので、チャネル型導波路を形成できないという間誼
点も有していた。
Furthermore, the LLO outdiffusion method involves a simple heat treatment, and therefore has the disadvantage that a channel type waveguide cannot be formed.

一方、光学損傷を改善する薄膜光導波路の他の作製方法
として、イオン交換法が知られている。この方法は、硝
酸タリウム(以下T/Nosと記す)又は硝酸銀(以下
AgNO3ど記す)の溶融塩中でLiNb0.又はLi
TaO3の結晶基板を低温熱処理することにより、該結
晶基板の表面から深さ方向に対し、て1〜3μm程度の
範囲で、該結晶基板内のリチウムイオン(Li+)が、
溶融塩中のタリウム(T/’)又は銀(Ag)のイオン
種と交換され、大きな屈折率差(△n〜0.12)をも
つ光導波層が形成されるものである。
On the other hand, an ion exchange method is known as another method for manufacturing a thin film optical waveguide that improves optical damage. This method uses LiNb0. Or Li
By subjecting a TaO3 crystal substrate to low-temperature heat treatment, lithium ions (Li+) within the crystal substrate are
This is exchanged with ion species of thallium (T/') or silver (Ag) in the molten salt, and an optical waveguide layer having a large refractive index difference (Δn~0.12) is formed.

しかし、上記イオン交換法により作製された薄膜光導波
路の光学損傷のしきい値は、文献子 CJ、L、fackel 、I)、H,01son  
and A、M、Glass  。
However, the optical damage threshold of the thin film optical waveguide fabricated by the above ion exchange method is
and A, M, Glass.

J 、 Appl、 Phys、 52(7) Jul
y 1981 :]に示されているように、1゛i内部
拡散法よりも2倍程度向上するだけで、十分とは言えず
、壕だ、処理時間が数10時間と長いという問題点をも
っていた。
J, Appl, Phys, 52(7) Jul
y 1981:], the improvement was only about twice that of the 1゛i internal diffusion method, but it was not sufficient, and it had the problem of a long processing time of several tens of hours. .

本発明の目的は、前記従来例の問題点を解決し、光学損
傷のしきい値が十分高く、且つ、導波光と光音響効果や
電気光学効果との相互作用の大きな外部拡散薄膜光導波
路およびその作製方法を提供することにある。
An object of the present invention is to solve the problems of the conventional example, and to provide an externally diffusing thin film optical waveguide which has a sufficiently high optical damage threshold and has a large interaction between guided light and photoacoustic effects and electro-optic effects. The object of the present invention is to provide a method for producing the same.

本発明の他の目的は、光学損傷の1.きい値が十分高く
、且つ、導波光と光音響効果や電気光学効果との相互作
用の大きなチャレネル型の外部拡散薄膜光導波路および
その作製方法を提供することにある。
Another object of the present invention is to reduce optical damage. It is an object of the present invention to provide a channel-type externally diffused thin film optical waveguide having a sufficiently high threshold and a large interaction between guided light and photoacoustic effects and electro-optic effects, and a method for manufacturing the same.

本発明の別の目的は、光学損傷のしきい値が十分高く、
作製の際の処理時間が短い外部拡散薄膜光導波路および
その作製方法を提供することにある。
Another object of the invention is that the optical damage threshold is sufficiently high;
It is an object of the present invention to provide an externally diffusing thin film optical waveguide that requires a short processing time during production, and a method for producing the same.

本発明は、ニオブ酸リチウム(LiNb0s)結晶基板
又はタンタル酸リチウム(LiNbO3)結晶基板の表
面に、該結晶基板内にイオン種を注入して成るイオン種
注入層が形成され、該イオン種注入層より結晶基板内側
にリチウム(J、、D’=格子層が形成された外部拡散
薄膜先導波路およびニオブ酸リチウム(LiNbO3)
結晶基板又はタンタル酸リチウム(LiTa03)結晶
基板を高温熱処理17、該結晶基板表面にリチウム(L
i )空格子層を、形成する過程と、該リチウム(Li
 )空格子層の結晶基板表面側にイオン種を注入してイ
オン釉注入層を形成する過程とから成る外部拡散薄膜光
導波路の作製方法によって上記目的を達成するものであ
る。
In the present invention, an ion species implantation layer is formed on the surface of a lithium niobate (LiNbOs) crystal substrate or a lithium tantalate (LiNbO3) crystal substrate by implanting ion species into the crystal substrate, and the ion species implantation layer is formed by implanting ion species into the crystal substrate. Lithium (J,, D' = external diffusion thin film guiding waveguide with lattice layer formed inside the crystal substrate and lithium niobate (LiNbO3)
A crystal substrate or a lithium tantalate (LiTa03) crystal substrate is subjected to high-temperature heat treatment 17, and lithium (L) is applied to the surface of the crystal substrate.
i) The process of forming a vacancy layer and the lithium (Li
) The above object is achieved by a method of manufacturing an externally diffused thin film optical waveguide, which comprises the step of injecting ion species into the crystal substrate surface side of the vacant lattice layer to form an ion glaze implanted layer.

以下、本発明を図面を用いて説明する。Hereinafter, the present invention will be explained using the drawings.

第1図は、本発明の外部拡散薄膜光導波路の構造を示す
概略図である。図中、1は結晶基板、カットLiTaO
5のいずれかの結晶を用いることが可能である。Li空
格子層は、該結晶基板を高温熱処理して、Li2Oを外
部拡散するととだよって形成される。イオン種注入/#
3は、前記Li空格子層2に、イオン交換法等を用いて
、イオン種を注入することによって形成することが可能
である。本発明の外部拡散薄膜光導波路において、Li
空格子層2の結晶基板Jに対する屈折率変化量は、0.
01程度、イオン種注入層3の屈折率変化量は0.1〜
0.2程度であり、導波光は、イオン種注入層3中を伝
播する。また、該イオン種注入Ji813の下部のLi
空格子層2は、光照射によって生ずる光電子を、Li空
格子によって捕獲し、該光電子による光導波路の破損を
防ぎ、光学(0傷のしきい値を向上させる効果を有する
FIG. 1 is a schematic diagram showing the structure of an externally diffusing thin film optical waveguide of the present invention. In the figure, 1 is a crystal substrate, cut LiTaO
5 can be used. The Li vacancy layer is formed by subjecting the crystal substrate to high-temperature heat treatment to diffuse Li2O to the outside. Ion species implantation/#
3 can be formed by implanting ion species into the Li vacancy layer 2 using an ion exchange method or the like. In the externally diffusing thin film optical waveguide of the present invention, Li
The amount of change in refractive index of the vacant lattice layer 2 with respect to the crystal substrate J is 0.
01, and the amount of change in refractive index of the ion species implanted layer 3 is 0.1 to 0.01.
The guided light propagates through the ion species implantation layer 3. In addition, the Li below the ion species implanted Ji813
The vacancy layer 2 has the effect of capturing photoelectrons generated by light irradiation with the Li vacancy, preventing the optical waveguide from being damaged by the photoelectrons, and improving the optical (zero scratch threshold).

この効果を十分に生かす為には、前記Li空格子層2t
よ、導波光の結晶基板内へのしみ出し深さを考慮して、
10〜100μmの厚さを有することが望ましい。
In order to fully utilize this effect, the Li vacancy layer 2t
Considering the depth of the guided light seeping into the crystal substrate,
It is desirable to have a thickness of 10 to 100 μm.

次に、本発明において、L t NbO3結晶基板にイ
オン交換法を用いてイオン種を注入する場合のメカニズ
ムを説明する。L i Nb03結晶は第2図(a)に
示す如き三方晶で、C軸8上に、リチウム(Li)5.
空孔6.ニオブ(Nb)7が順に配列している。とこで
4は酸素(0)である。
Next, in the present invention, a mechanism for implanting ion species into an L t NbO3 crystal substrate using an ion exchange method will be explained. The L i Nb03 crystal is a trigonal crystal as shown in FIG. 2(a), with lithium (Li) 5.
Hole 6. Niobium (Nb) 7 is arranged in order. Here, 4 is oxygen (0).

第2図Ca)に示すTJiNbO3結晶を約1000”
Oの高温で熱処理すると、第2図(b)に示す如<Li
イオンが外部に放出され、Li空格子9が形成される。
The TJiNbO3 crystal shown in Figure 2 Ca) is approximately 1000"
When heat treated at high temperature of O, as shown in Fig. 2(b), <Li
Ions are emitted to the outside and Li vacancies 9 are formed.

上記状態において、たとえばイオン交換法により、Ag
、T1.に等のイオン種を注入すると@2図(c)に示
す如く、前記Li空格子の位置に上記イオン種10がは
いる。通常のイオン交換の機構は、Liイオンと注入イ
オンの交換を同時に行なう為、処理時間が長くなる。こ
れ如対し、本発明の場合は、Liサイトがイオン交換処
理前に、熱処理で外部拡散されて空いている為、イオン
種が注入されやすく、通常のイオン交換法よりも処理時
間が短縮でき、寸た、更に大きな屈折率差を有する光導
波路が実現できる。
In the above state, for example, by ion exchange method, Ag
, T1. When an ion species such as 10 is implanted, the ion species 10 enters the position of the Li vacancy, as shown in Figure 2 (c). In a normal ion exchange mechanism, Li ions and implanted ions are exchanged at the same time, which results in a long processing time. On the other hand, in the case of the present invention, since the Li sites are diffused outside by heat treatment and are vacant before ion exchange treatment, ion species can be easily injected, and the treatment time can be shortened compared to the usual ion exchange method. An optical waveguide having an even larger refractive index difference can be realized.

また、本発明のイオン種注入層から成る光導波層は、前
述のように屈折率差が大きいので、該光導波層の厚さを
薄くすることが可能である。
Further, since the optical waveguide layer made of the ion species implantation layer of the present invention has a large difference in refractive index as described above, it is possible to reduce the thickness of the optical waveguide layer.

第3図において、】1は周波数I G)I7.の弾性表
面波の結晶基板の深さ方向の振幅分布、12は本発明の
外部拡散薄膜光導波路における導波光のエネルギー分布
、13は従来のIll i内部拡散によって作製されだ
光導波路における導波光のエネルギー分布を示す。第3
図に示す如く、弾性表面波の強度は、基板表面から深さ
方向に約0.5μmはいった所にピークをもつ。これに
対して、本発明の光導波路のエネルギー分布12のピー
クも表面から深さ方向に約0.7μmはいった所に存在
し、弾性表面波のエネルギー分布11と重なる割合が従
来のものよシも飛躍的に大きくなり、導波光と弾性表面
波との相互作用が増大する。本発明において、前記の様
な大きな相互作用を得る為には、光導波層即ちイオン種
注入層は、なるべく薄く、1〜2μm程度が望ましい。
In FIG. 3, ]1 is the frequency IG)I7. 12 is the energy distribution of the guided light in the external diffusion thin film optical waveguide of the present invention, and 13 is the amplitude distribution of the guided light in the optical waveguide fabricated by conventional Illi internal diffusion. Shows energy distribution. Third
As shown in the figure, the intensity of the surface acoustic wave has a peak at a depth of about 0.5 μm from the substrate surface. On the other hand, the peak of the energy distribution 12 of the optical waveguide of the present invention also exists at a depth of about 0.7 μm from the surface, and the proportion of overlap with the energy distribution 11 of surface acoustic waves is similar to that of the conventional optical waveguide. The surface acoustic wave becomes larger dramatically, and the interaction between the guided light and the surface acoustic wave increases. In the present invention, in order to obtain the above-mentioned large interaction, the optical waveguide layer, that is, the ion species implantation layer, is preferably as thin as possible, preferably about 1 to 2 μm.

以下、本発明を実施例によって具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例1〕 XカットのLi Nb O,、結晶基板(X方向に2關
厚。
[Example 1] X-cut Li Nb O, crystal substrate (2 dimensions thick in the X direction.

Z方向およびZ方向に夫々1インチ)の−面(例えばX
1面)を、ニュートンリング数本以内の平面度に研摩し
た後、夫々、メタノール、アセトン、純水((よる通常
の超音波洗浄を行ない、窒素ガスを吹きつけて乾燥させ
た。次に該LiNbO5基板からし120を外部拡散す
るために前記洗浄。
-plane (for example, X
1 side) was polished to a flatness within a few Newton rings, and then subjected to normal ultrasonic cleaning using methanol, acetone, and pure water, and dried by blowing nitrogen gas. Said cleaning to out-diffuse the mustard 120 on the LiNbO5 substrate.

乾燥した基板を溶融石英製のホルダーに立て、1000
’(jの熱拡散炉にセットした。雰囲気ガスとして乾燥
したO、ガスを2 l/minの流量で拡散炉に導入し
た。室温から1000°Cまで16°O/minの速度
で炉内温度を−にげ、1時間後炉内の温度が一定になっ
た後8時間1 (l fJ O”Oに保持し、その後基
板を引続いて600°Cに保持した第2の熱拡散炉に移
動した。更に、該第2の拡(if炉への通電を中上し6
()0°Cから室温まで放冷しだ。
Stand the dried substrate in a fused silica holder and hold it for 1000
'(j) was set in a thermal diffusion furnace. Dry O gas was introduced into the diffusion furnace at a flow rate of 2 l/min as an atmospheric gas. The temperature inside the furnace was increased from room temperature to 1000°C at a rate of 16° After 1 hour, after the temperature in the furnace became constant, it was held at 1 (l fJ Furthermore, the power supply to the second expansion (if furnace) was raised to 6
() Allow to cool from 0°C to room temperature.

基板を101) 0 ’Oから600°0へ急冷する理
由は序冷によって基板内にLiNbO3基板が形成され
るのを防ぎ、光伝播損失の少ない光導波路を形成する為
であるが1.5〜i dB/m程度の光伝播損失が許容
され得るならば、単一の熱拡散炉を用い、1000°C
から放冷し形成してもよい。
The reason for rapidly cooling the substrate from 101)0'O to 600°0 is to prevent the formation of a LiNbO3 substrate within the substrate due to gradual cooling and to form an optical waveguide with low optical propagation loss. If a light propagation loss on the order of i dB/m can be tolerated, a single thermal diffusion furnace can be used to
It may be formed by being left to cool.

冷却した後に得られたLi、0外部拡散光導波路の特性
を測定するため、ルチルプリズムから波長6328 人
のHe−Ne光を導入し光伝播損失を測定したところ0
.3 dB/釧の良質な光導波路が作製されていること
が判った。これは200人の厚さにTiを内部拡散させ
て作製した光導波路とほぼ同じ光伝播損失であった。プ
リズムへの入射角を変え伝播モードを測定したところT
Eモ大 一ドで4つのモードが観測できた。また入力だ一ム径を
2門とし入力光と出力光の比を入力光強度を変化させて
光学損傷の様子を測定したところ、Ti内部拡散による
光導波路が1mWの入力光で1秒以内に光学損傷が生じ
るのに較べ、Li2O外部拡散によるものは、20mW
の入力光に対しても数時間に亘り安定した出力値を得た
In order to measure the characteristics of the Li, 0 externally diffused optical waveguide obtained after cooling, we introduced He-Ne light with a wavelength of 6328 from a rutile prism and measured the optical propagation loss.
.. It was found that a high-quality optical waveguide of 3 dB/segment was fabricated. This was approximately the same optical propagation loss as an optical waveguide fabricated by internally diffusing Ti to a thickness of 200 mm. When the propagation mode was measured by changing the angle of incidence on the prism, T
Four modes could be observed in the E mode. In addition, when we measured the state of optical damage by changing the input light intensity and the ratio of input light to output light with two input beam diameters, we found that the optical waveguide due to internal Ti diffusion was Compared to optical damage caused by external diffusion of Li2O, the power consumption is 20 mW.
A stable output value was obtained for several hours even with input light of .

このことからLi、0外部拡散により、Ti内部拡散に
より作製した光導波路に比べ、光伝播損失は同等、又光
学損傷に関しては20倍程度の損傷しきい値をもつ光導
波路が作製できることがわかった。モードインデックス
からLi2O外部拡散深さを求めたところ、約10μm
となり、基板との屈折率差△nが0.01で厚いLi空
格子層が形成されていた。
From this, it was found that by external diffusion of Li, 0, it was possible to fabricate an optical waveguide with the same optical propagation loss and a damage threshold about 20 times higher than that produced by internal Ti diffusion. . The Li2O external diffusion depth was determined from the mode index and was approximately 10 μm.
Thus, a thick Li vacancy layer was formed with a refractive index difference Δn of 0.01 with respect to the substrate.

光学特性を測定した後、再び前述した基板の洗浄を繰り
返し行い基板表面を清浄にしてから、イオン交換処理を
実施した。イオン交換処理は100CCの石英製ビーカ
ー中に特級AgN0.結晶片を30y入れその上に前記
洗浄乾燥したLi2O外部拡散後の基板をLi空格子層
の形成された面を上にして置き、ビーカーごと熱炉に入
れ330°0の温度で6時間保持した。イオン交換中は
溶融塩を攪拌することが望ましい。又、この際AgNO
s溶液から発生するNo 2ガスを炉外へ排出できるよ
う留意した。このようなイオン交換処理の後炉への通電
を切り炉内の温度が室温に戻る寸で放置した。その後熱
炉から固化した基板とAgNOsをビーカーに入れたま
ま取抄出し約60〜70°Cに温めた純水をビーカー内
に注ぎ基板とAgNO3が分離するまで放置した。1時
間後分離した基板のみを取り出し、更に温水で数時間基
板表面からAgNO3の微小結晶が完全に取れるまで洗
浄した。又、前記微小結晶が取れ難い場合、光導波路表
面をコロイダルシリカ等の研摩剤を使用して軽く研摩し
た。
After measuring the optical properties, the above-described cleaning of the substrate was repeated again to clean the substrate surface, and then ion exchange treatment was performed. For ion exchange treatment, special grade AgN0. A crystal piece was placed for 30y, and the washed and dried Li2O externally diffused substrate was placed on top of it with the surface on which the Li vacancy layer was formed facing up, and the beaker was placed in a thermal furnace and maintained at a temperature of 330°0 for 6 hours. . It is desirable to stir the molten salt during ion exchange. Also, at this time, AgNO
Care was taken to allow the No 2 gas generated from the S solution to be discharged to the outside of the furnace. After such ion exchange treatment, the power to the furnace was turned off and the furnace was allowed to stand until the temperature inside the furnace returned to room temperature. Thereafter, the solidified substrate and AgNOs were taken out from the heat furnace while still in a beaker, and purified water heated to about 60 to 70°C was poured into the beaker and left until the substrate and AgNO3 were separated. After 1 hour, only the separated substrate was taken out and further washed with warm water for several hours until the AgNO3 microcrystals were completely removed from the substrate surface. If the microcrystals were difficult to remove, the surface of the optical waveguide was lightly polished using an abrasive such as colloidal silica.

彼様にして作成した本発明のプラナ−型外部拡散薄膜光
導波路の特性を調べるため、ルチルプリズムで波長63
28人のHe−Ne光を再び導波路面内のZ方向へ導入
し光伝播損失の測定を行い、0.6 dB/c1nの値
を得た。光学損傷【7きい値はHe−Ne光で24 r
r、’W/αの値を得た、比較の為に、XカットLiN
bO3基板にLi、Oを外部拡散させずに同一の条件で
イオン交換のみを行った場合の光伝播損失は1 dB/
crn、光学損傷しきい値は41nW/rrnであった
In order to investigate the characteristics of the planar type externally diffusing thin film optical waveguide of the present invention, which was created by him, we used a rutile prism to
The 28 He-Ne lights were again introduced into the Z direction within the waveguide plane, and the optical propagation loss was measured, and a value of 0.6 dB/c1n was obtained. Optical damage [7 threshold is 24 r with He-Ne light]
The values of r, 'W/α were obtained, and for comparison, X-cut LiN
When only ion exchange is performed under the same conditions without externally diffusing Li and O into the bO3 substrate, the optical propagation loss is 1 dB/
crn, the optical damage threshold was 41 nW/rrn.

本実施例で作製した外部拡散薄膜光導波路の伝播モード
は、同一条件のイオン交換法のみで作製した光導波路の
伝播モードTEoとほぼ同じ伝播モードであった。
The propagation mode of the externally diffused thin film optical waveguide produced in this example was almost the same propagation mode TEo of the optical waveguide produced only by the ion exchange method under the same conditions.

次に測定後の本実施例の光導波路を再度洗浄。Next, after the measurement, the optical waveguide of this example was cleaned again.

乾燥した後に、ポジ型ホトレジストをスピナーで厚さ1
〜1.5μmにスピナーコートシ、くし型電極のネガマ
スクで密着露光し、くし形電極部のみが残らないよう如
現像した。水洗後乾燥し、真空蒸着装置に装荷して、I
 X 10−6Torrまで排気を行い、EB蒸着によ
ってAl (膜厚1500人)を蒸着した。蒸着後アセ
トンに数分浸すことによって、ホトレジスト上のAl膜
がリフトオフで除去され、くし形電極部分のみが光導波
路上に形成された。この際のくし形電極は、弾性表面波
の中心波長が60011117.になるように設計した
ので、該くし形電極の電極幅と電極間隔は、双方共1.
45μmであった。この様に本発明の光導波路上にくし
形電極を設け、光導波型光偏向器を作製した。
After drying, use a spinner to apply positive photoresist to a thickness of 1
It was spinner coated to ~1.5 μm and closely exposed using a negative mask of comb-shaped electrodes, and developed so that only the comb-shaped electrode portions were not left. After washing with water, drying and loading into a vacuum evaporator, I
Evacuation was performed to X 10-6 Torr, and Al (thickness: 1500 mm) was deposited by EB evaporation. After the deposition, the Al film on the photoresist was removed by lift-off by immersion in acetone for several minutes, and only the comb-shaped electrode portion was formed on the optical waveguide. In this case, the comb-shaped electrode has a surface acoustic wave center wavelength of 60011117. Therefore, the electrode width and electrode spacing of the comb-shaped electrodes are both 1.
It was 45 μm. In this way, a comb-shaped electrode was provided on the optical waveguide of the present invention to produce an optical waveguide type optical deflector.

一方、200人の厚さにTiを熱拡散することにより作
製した光導波路に対して、前記と同様のリフトオフ法に
よりくし形電極を形成して光導波型光偏向器を作製し、
本発明の光導波路を用いて作製した光導波型光偏向器と
次の条件の下で性能の比較を行なった。両者とも、入射
光は波長6328人のHe−Neレーザーを用い、くし
形電極に0,6WのRF電力を印加した。RFの周波数
が600 MIIZの場合、回折効率は、Ti熱拡散光
導波路上に作製した光導波型光偏向器に較べて、本実施
例の光導波路上に作製したものが約3倍であり、高い回
折効率が得られた。又、充 H,e −Neレーザー光の強度は、1mW以下で測定
1行なったが、5 mW、 10 mW、 15 mW
とレーザー光強度を′増加すると、Ti熱拡散光導波路
の場合、入力強度が5 mWで既に光学損傷が生じ、出
力光が壊滅的に減少したが、本実施例の場合、入力強度
が15mWを超えた場合でも、出力光強度は入力光強度
に比例して増加し、光学損傷が全く生じていないことが
判明した。
On the other hand, an optical waveguide type optical deflector was fabricated by forming comb-shaped electrodes using the same lift-off method as described above on an optical waveguide fabricated by thermally diffusing Ti to a thickness of 200 mm.
Performance was compared with an optical waveguide type optical deflector manufactured using the optical waveguide of the present invention under the following conditions. In both cases, a He-Ne laser with a wavelength of 6328 was used as the incident light, and RF power of 0.6 W was applied to the comb-shaped electrodes. When the RF frequency is 600 MIIZ, the diffraction efficiency of the optical waveguide type optical deflector fabricated on the Ti thermal diffusion optical waveguide is about three times that of the optical waveguide fabricated on the optical waveguide of this example, High diffraction efficiency was obtained. In addition, the intensity of the charged H,e-Ne laser light was measured at 1 mW or less, but the intensity was 5 mW, 10 mW, and 15 mW.
When the laser light intensity was increased by '', in the case of the Ti thermal diffusion optical waveguide, optical damage already occurred at an input intensity of 5 mW, and the output light decreased catastrophically, but in the case of this example, the input intensity increased to 15 mW. It was found that even when the output light intensity exceeded the above range, the output light intensity increased in proportion to the input light intensity, and no optical damage occurred at all.

〔実施例2〕 次に本発明の第2実施例について説明する。[Example 2] Next, a second embodiment of the present invention will be described.

第1実施例の場合、イオン交換処理を330 ’OAg
NO,溶融塩中で行なったが、第2実施例では、イオン
種をK(カリウム)とするため、イオン交換処理をKN
O,溶融塩中で行なった。第1実施例と同じ条件で作製
したLi、O外部拡散後のXカットLiNbO5基板を
360 ’Q KNOs溶融塩中で数10分から数時間
処理することによって本発明の光導波路を作製した。光
伝播損失は0.4 dBAynと低損失な光導波路が作
製できた。第1実施例と同様の工程で光導波路上にくし
形電極を作製し、周波数6001111z、 0.6W
のRF電力をくし形電極に印加し、回折効率の測定を行
なったが、第1実施例とほぼ同じ結果が得られた。又、
光学損傷に関しても第1実施例と同様の結果が得られた
。KNO,は、AgNOsよりも融点が畠<、360°
C〜400°C程度の加熱状態でも他の化合物へ分解す
る割合が少ないため、AgN0.溶融塩を用いる場合よ
りも、光伝播損失が小さく、且つ、屈折率差が大きい導
波路が作製可能であるという特長があめ。
In the case of the first example, the ion exchange treatment was performed at 330'OAg.
The ion exchange treatment was carried out in NO, molten salt, but in the second example, the ion species was K (potassium), so the ion exchange treatment was performed in KN.
O, carried out in molten salt. The optical waveguide of the present invention was fabricated by treating an X-cut LiNbO5 substrate after external diffusion of Li and O produced under the same conditions as in the first example in a 360'Q KNOs molten salt for several tens of minutes to several hours. An optical waveguide with a low optical propagation loss of 0.4 dBAyn was fabricated. A comb-shaped electrode was fabricated on the optical waveguide using the same process as in the first example, and the frequency was 6001111z and 0.6W.
The diffraction efficiency was measured by applying an RF power of 100 to 100 nm to the comb-shaped electrodes, and almost the same results as in the first example were obtained. or,
Regarding optical damage, similar results to those of the first example were obtained. KNO, has a melting point lower than AgNOs by 360°.
AgN0. The advantage of this method is that it is possible to create a waveguide with a smaller optical propagation loss and a larger difference in refractive index than when using molten salt.

〔実施例3〕 次に本発明の第3実施例であるチャンネル型の外部拡散
薄膜光導波路の場合を説明する。最初に第1実施例と同
じ条件でLi2O外部拡散処理を行ない、次に上記Li
2O外部拡散Xカッ) LiNb0.。
[Embodiment 3] Next, a third embodiment of the present invention, which is a channel type externally diffused thin film optical waveguide, will be described. First, Li2O external diffusion treatment was performed under the same conditions as in the first example, and then the Li2O
2O external diffusion .

基板を再度洗浄、乾燥した後、ネガ型ホトレジストをス
ピナーで厚さ1〜1.5μmにスピナーコート(−、チ
ャンネル型光導波路のネガマスクで密着露光し、チャン
ネル部分のみが残するように現像した。水洗後乾燥し、
真空蒸着装置に装荷してI X 10’Torrまで排
気を行ない、EB蒸着により、金属膜の/V (膜厚1
500人)を蒸着した。ただし、金属膜としては、Al
に限定されるものではなく、引き続き行なうイオン交換
処理において、イオン種が基板に侵入することを妨げる
金属膜(たとえばTi、Au )であっても良い。
After cleaning and drying the substrate again, a negative photoresist was coated with a spinner to a thickness of 1 to 1.5 μm (-, and was closely exposed using a negative mask of a channel type optical waveguide, and developed so that only the channel portion remained. After washing with water, dry
Load the vacuum evaporator and evacuate to I
500 people) were deposited. However, as a metal film, Al
The substrate is not limited to the above, and may be a metal film (eg, Ti, Au) that prevents ionic species from entering the substrate in the subsequent ion exchange treatment.

蒸着後アセトンに数分浸すことによって、ホトレジスト
上にのったA/膜がリフトオフで除去さft、チャンネ
ル部分以外の部分のみAl膜が形成された。この際のチ
ャンネル幅は5μmとした。
By immersing it in acetone for several minutes after vapor deposition, the A/film on the photoresist was removed by lift-off, and an Al film was formed only in the area other than the channel area. The channel width at this time was 5 μm.

次に、上記チャンネル部に、イオン種が注入された層を
形成するために、第1実施例と同様のイオン交換処理を
行なった。上記イオン交換処理後、エツチング液で金属
膜をおとし、再洗浄して、本発明の構造を有するチャン
ネル型光導波路が作製できた。ここで金属膜がAIの場
合、エツチング液としては、リン酸を用いれば良い。
Next, in order to form a layer in which ion species were implanted in the channel portion, an ion exchange treatment similar to that in the first example was performed. After the above-mentioned ion exchange treatment, the metal film was removed with an etching solution and washed again to produce a channel type optical waveguide having the structure of the present invention. If the metal film is AI, phosphoric acid may be used as the etching solution.

第1実施例と同様に、光伝播損失、光学損傷の測定を行
々つだが、はぼ同じ結果が得られた。
Similar to the first example, optical propagation loss and optical damage were measured, and almost the same results were obtained.

〔実施例4〕 次に本発明の第4実施例について説明する。[Example 4] Next, a fourth embodiment of the present invention will be described.

以上に述べた実施例1は、イオン交換処理というウェッ
トな処理工程が含まれているが、本第4実施例は、すべ
てドライな処理工程で本発明の光導波路を作製するもの
である。まず最初に、第1実施例と同じ条件でLiNb
0.、結晶基板に対して、Li2O外部拡散処理を行な
う。それに引き続、いて、上記基板を真空蒸着装置に装
荷し、1×10’Torrまで排気を行ない、EB蒸着
により、金属膜、たとえばAg (膜厚2000 人)
を蒸着した。再び電気炉にいれ、550°Cで1時間の
熱処理を行なった。550°01で立ち一ヒがる時間は
0.5時間であり、熱処理後は、通電を停止し、550
°Cから室温まで放熱を行なった。上記の熱処理により
、金属膜中のイオン種が基板内に拡散し本発明の先導波
路が作製できた。作製後、WJ1実施例と同様に元伝播
損失、光学損傷の測定を行なったが、第1実施例とほぼ
同じ結果が得られた。本実施例において、内部拡散させ
る金属は、Agに限らず他の金属(例えばTi等)を用
いてもかまわない。
Example 1 described above includes a wet treatment process called ion exchange treatment, but in this fourth example, the optical waveguide of the present invention is manufactured using all dry treatment processes. First, under the same conditions as the first example, LiNb
0. , Li2O external diffusion treatment is performed on the crystal substrate. Subsequently, the above-mentioned substrate is loaded into a vacuum evaporation device, evacuated to 1×10' Torr, and a metal film, for example, Ag (film thickness: 2000 mm) is formed by EB evaporation.
was deposited. It was placed in the electric furnace again and heat treated at 550°C for 1 hour. The time it takes to stand at 550°01 is 0.5 hours, and after the heat treatment, the electricity is stopped and the temperature is set at 550°.
Heat was dissipated from °C to room temperature. Through the above heat treatment, the ion species in the metal film were diffused into the substrate, and the guiding waveguide of the present invention was fabricated. After fabrication, original propagation loss and optical damage were measured in the same manner as in the WJ1 example, and almost the same results as in the first example were obtained. In this embodiment, the metal to be internally diffused is not limited to Ag, and other metals (for example, Ti, etc.) may be used.

前述の実施例においては、結晶基板にLi NbO3を
用いた例を示したが、Li Ta(J、結晶基板を用い
ても、全く同様に本発明を実施することが可能である。
In the above-mentioned embodiment, an example was shown in which Li NbO3 was used as the crystal substrate, but the present invention can be carried out in exactly the same way even if a Li Ta(J) crystal substrate is used.

以上説明したように、本発明は、従来の薄膜光導波路お
よびその作製方法において、1)光学損傷のしきい値を
高める 2)光偏向器等に利用中る場合、導波光と光音響効果や
電気光学効果との相互作用を犬きくする 3)作製に要する処理時間を短縮する 等の効果を有するものである。
As explained above, the present invention has the following advantages in the conventional thin film optical waveguide and its manufacturing method: 1) Increases the threshold of optical damage 2) When used in an optical deflector etc. 3) It has the effect of reducing the processing time required for manufacturing, etc. by improving the interaction with the electro-optical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の外部拡散薄膜光導波路の構造を示す概
略図、第2図(a) 、 (b) 、 (c)は夫々、
本発明の作製過程におけるイオン種注入の様子を説明す
る概略図、第3図は本発明における基板の深さ方向の導
波光のエネルギー分布および弾性表向波の振幅分布を示
す図である。 1・・・結晶基板、2・・・Li空格子層、3・・・イ
オン種注入層、4・・・酸素、5・・・リチウム、6・
・・空孔、7・・・ニオブ、8・・・C軸、9・・・L
i空格子、10・・・イオン種。 出願人  キャノン株式会社 16−
FIG. 1 is a schematic diagram showing the structure of the externally diffused thin film optical waveguide of the present invention, and FIGS. 2(a), (b), and (c) are, respectively,
FIG. 3 is a schematic diagram illustrating the state of ion species implantation in the manufacturing process of the present invention, and FIG. 3 is a diagram showing the energy distribution of guided light and the amplitude distribution of surface acoustic waves in the depth direction of the substrate in the present invention. DESCRIPTION OF SYMBOLS 1... Crystal substrate, 2... Li vacancy layer, 3... Ion species injection layer, 4... Oxygen, 5... Lithium, 6...
...Vacancy, 7...Niobium, 8...C axis, 9...L
i vacancy, 10... ionic species. Applicant Canon Co., Ltd. 16-

Claims (5)

【特許請求の範囲】[Claims] (1)  ニオブ1賀リチウム(LiNb0.)結晶基
板又はタンタルiff IJチウム(LiTa03)結
晶基板の表面に、該結晶基板内にイオン種を注入して成
るイオン種注入層が形成され、該イオン種注入層より結
晶基板内イ111にリチウム(Li)空格子層が形成さ
れた外部拡散薄膜光導波路。
(1) An ion species implantation layer is formed on the surface of a niobium lithium oxide (LiNb0.) crystal substrate or a tantalum iff IJ lithium (LiTa03) crystal substrate by implanting ion species into the crystal substrate, and the ion species are This is an external diffusion thin film optical waveguide in which a lithium (Li) vacancy layer is formed in the crystal substrate 111 from the injection layer.
(2)  前記リチウノ−(Li)空格子層が10〜1
00μmの厚さを有する特許請求の範囲第1項記載の外
部拡散薄膜光導波路。
(2) The lithium-ion (Li) vacancy layer is 10 to 1
The externally diffusing thin film optical waveguide according to claim 1, having a thickness of 00 μm.
(3)  前記イオン(11注大層が1〜2μ■1の厚
さを有する特許請求の範囲第1項記載の外部拡散薄膜光
導波路。
(3) The externally diffusing thin film optical waveguide according to claim 1, wherein the ion (11) focusing layer has a thickness of 1 to 2 μm.
(4)前記結晶基板のカット面がX面又は2面である特
許請求の範囲第1項記載の外部拡散薄膜光導波路。
(4) The externally diffusing thin film optical waveguide according to claim 1, wherein the cut plane of the crystal substrate is the X plane or the two planes.
(5)  ニオブ酸リチウム(LiNbOs)結晶基板
又はタンタル酸リチウム(LiTa0.)結晶基板を高
温熱処理し、該結晶基板表面にリチウム(Li)空格子
層を形成する過程と、該リチウム(Li )空格子層の
結晶基板表面側にイオン種を注入してイオン種注入層を
形成する過程とから成る外部拡散薄膜光導波路の作製方
法。
(5) A process of performing high-temperature heat treatment on a lithium niobate (LiNbOs) crystal substrate or a lithium tantalate (LiTa0.) crystal substrate to form a lithium (Li) vacancy layer on the surface of the crystal substrate; A method for manufacturing an externally diffused thin film optical waveguide, which comprises the step of injecting ion species into the surface side of a crystal substrate of a child layer to form an ion species implantation layer.
JP57202470A 1982-11-17 1982-11-17 External diffusion thin film optical waveguide and method of manufacturing the same Expired - Lifetime JPH0711609B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57202470A JPH0711609B2 (en) 1982-11-17 1982-11-17 External diffusion thin film optical waveguide and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57202470A JPH0711609B2 (en) 1982-11-17 1982-11-17 External diffusion thin film optical waveguide and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS5991403A true JPS5991403A (en) 1984-05-26
JPH0711609B2 JPH0711609B2 (en) 1995-02-08

Family

ID=16458050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57202470A Expired - Lifetime JPH0711609B2 (en) 1982-11-17 1982-11-17 External diffusion thin film optical waveguide and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0711609B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239403A (en) * 1987-01-16 1988-10-05 アメリカン テレフォン アンド テレグラフ カムパニー Higher uniformity of waveguide in optical circuit board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427453A (en) * 1977-08-02 1979-03-01 Nec Corp Integrated light circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5427453A (en) * 1977-08-02 1979-03-01 Nec Corp Integrated light circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63239403A (en) * 1987-01-16 1988-10-05 アメリカン テレフォン アンド テレグラフ カムパニー Higher uniformity of waveguide in optical circuit board

Also Published As

Publication number Publication date
JPH0711609B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
JP2750231B2 (en) Method of manufacturing waveguide type second harmonic generation element
US4799750A (en) Optical function element and a method for manufacturing the same
US4705346A (en) Thin film type optical device
JPH0452922B2 (en)
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JP4081398B2 (en) Optical wavelength conversion element
JPS5991403A (en) Thin film optical waveguide for external diffusion and its manufacture
JPH06289346A (en) Dielectric substance optical waveguide element and its production
JPS6170541A (en) Thin film type optical element and its manufacture
JP3213619B2 (en) Method for manufacturing optical waveguide device and optical waveguide device
JPS60156039A (en) Manufacture of optical function element
JPS6098422A (en) Optical function element and its manufacture
CN111708188B (en) Lithium tantalate film waveguide acousto-optic modulator
JPS602904A (en) Optical waveguide element and its manufacture
KR100238167B1 (en) Optical polarizer and its fabrication method
JPS60133405A (en) Formation of pattern
JPS60156038A (en) Optical function element and its manufacture
JPS6170535A (en) Thin film type optical element and its manufactures
JP2003215379A (en) Method for producing optical waveguide element
JPS60112004A (en) Optical waveguide device
JPS60119511A (en) Integrated optical structural body
JPS6170539A (en) Thin film type optical element and its manufacture
JPS60119523A (en) Optical waveguide
JPS6170538A (en) Thin film type optical element and its manufacture
JPS6170533A (en) Thin film type optical element and its manufacture