JPH07114938A - Manufacture of sealed type metal hydride storage battery - Google Patents

Manufacture of sealed type metal hydride storage battery

Info

Publication number
JPH07114938A
JPH07114938A JP5260009A JP26000993A JPH07114938A JP H07114938 A JPH07114938 A JP H07114938A JP 5260009 A JP5260009 A JP 5260009A JP 26000993 A JP26000993 A JP 26000993A JP H07114938 A JPH07114938 A JP H07114938A
Authority
JP
Japan
Prior art keywords
battery
negative electrode
oxygen gas
positive electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5260009A
Other languages
Japanese (ja)
Inventor
Yoshiaki Yano
義明 箭野
Tadashi Furukawa
忠司 古川
Makio Sakata
牧男 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5260009A priority Critical patent/JPH07114938A/en
Publication of JPH07114938A publication Critical patent/JPH07114938A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To reduce electric charging/discharging cycles required for activation by discharging, outside of a battery, oxygen gas to be generated after a positive electrode is fully charged in the battery provided with a negative electrode made of a hydrogen storage alloy and the positive electrode having a chargeable capacity smaller than that of the negative electrode. CONSTITUTION:A sealed type metal hydride storage battery is provided with a metal case 1, a metal cover 2, a positive electrode terminal 3, and a negative electrode terminal 4 and a metal pipe 5 provided in the metal cover 2, for injecting an electrolyte. A resin tube 6 is connected to the metal pipe 5, to be led into water 7. Oxygen gas 10 to be generated inside a battery 8 is collected into a cylinder filled with and erected inside the water 7. A predetermined quantity of the oxygen gas 10 is discharged outside of the battery, thus restraining oxygen gas consumption in a negative electrode so as to proceed electric charging of the negative electrode by that quantity. Consequently, it is possible to increase an electrically dischargeable capacity of the negative electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極に水素吸蔵合金を
用いた密閉型金属水素化物蓄電池の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sealed metal hydride storage battery using a hydrogen storage alloy for a negative electrode.

【0002】[0002]

【従来の技術】再充電可能な密閉型電池としては、従来
ニッケル−カドミウム蓄電池がよく用いられていたが、
近年、このニッケル−カドミウム蓄電池よりエネルギー
密度が高く、電池容量を大きくすることが可能な電池と
して、負極に水素吸蔵合金を用いた金属水素化物蓄電池
が使用されるようになってきた。
2. Description of the Related Art Nickel-cadmium storage batteries have been often used as rechargeable sealed batteries.
In recent years, as a battery having a higher energy density than this nickel-cadmium storage battery and capable of increasing the battery capacity, a metal hydride storage battery using a hydrogen storage alloy for a negative electrode has come to be used.

【0003】そして、この密閉型の金属水素化物蓄電池
は、通常、特開昭53−111439号公報に記載され
るように、正極が十分に放電した際に、負極に放電可能
な充電部分が残存するように構成することによって、過
放電時に正極で発生する水素を負極で吸収させ、また、
正極が十分に充電された際に、負極に未充電部分が残存
するように構成することによって、過充電時に正極から
発生する酸素を負極で消費するようにしている。
In this sealed type metal hydride storage battery, as described in Japanese Patent Application Laid-Open No. 53-111439, usually, when the positive electrode is sufficiently discharged, a dischargeable charging portion remains on the negative electrode. With this configuration, the negative electrode absorbs hydrogen generated in the positive electrode during overdischarge, and
When the positive electrode is sufficiently charged, the negative electrode has a structure in which an uncharged portion remains, so that the negative electrode consumes oxygen generated from the positive electrode during overcharge.

【0004】ところで、この金属水素化物蓄電池は、電
池構成時点では、負極に用いた水素吸蔵合金が不活性な
ため、ニッケル−カドミウム蓄電池のごとく電池構成後
の1回の充放電によってほぼ通常の電池容量を得ること
はできない。したがって、所定の容量が得られるように
なるまで、数サイクルから十数サイクルの充放電を行い
電池を活性化する必要がある。このため、この活性化処
理のために、多くの時間を費やし、また、この活性化の
ための設備を配置する大きなスペースを必要とする。
By the way, in this metal hydride storage battery, since the hydrogen storage alloy used for the negative electrode is inactive at the time of battery construction, it is almost a normal battery by one charge / discharge after the battery is constructed like a nickel-cadmium storage battery. You cannot get the capacity. Therefore, it is necessary to charge and discharge the battery for several cycles to more than ten cycles until the predetermined capacity is obtained, thereby activating the battery. Therefore, a lot of time is spent for this activation process, and a large space for arranging equipment for this activation is required.

【0005】上記電池構成後の充放電による活性化処理
の回数を低減するため、特開平1−102861号公報
では、電解液の注液前に水素ガス中で水素吸蔵合金に水
素を少なくとも1回吸蔵及び放出させることが提案され
ている。しかし、この方法では、水素ガスを負極の水素
吸蔵合金に吸蔵放出させるために、耐圧容器や水素ガス
を導入、排出させるための大がかりな装置を必要とし、
その作業も煩雑という問題があり、活性化工程を十分に
簡略化することはできない。
In order to reduce the number of activation treatments due to charge and discharge after the battery is constructed, in JP-A-1-102861, hydrogen is stored in a hydrogen storage alloy at least once in hydrogen gas before injecting an electrolyte. It has been proposed to occlude and release. However, this method requires a pressure resistant container and a large-scale device for introducing and discharging hydrogen gas in order to store and release hydrogen gas in the hydrogen storage alloy of the negative electrode,
The work is also complicated, and the activation process cannot be sufficiently simplified.

【0006】[0006]

【発明が解決しようとする課題】本発明は、比較的簡便
な操作、及び工程を付加することで、上記金属水素化物
蓄電池を構成した後に行う活性化のための充放電回数を
低減しようとするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to reduce the number of times of charge and discharge for activation performed after the above-mentioned metal hydride storage battery is constructed by adding relatively simple operations and steps. It is a thing.

【0007】[0007]

【課題を解決するための手段】本発明の密閉型金属水素
化物蓄電池の製造方法は、水素吸蔵合金を用いた負極
と、前記負極よりも充電可能な容量が小さい正極とを電
池容器に収納し、電解液を注液した後に、過充電を行う
ことにより、電池内部にガスを発生させ、このガスを電
池外部に所定量放出させることを特徴とするものであ
る。
A method for manufacturing a sealed metal hydride storage battery according to the present invention comprises a negative electrode using a hydrogen storage alloy and a positive electrode having a smaller chargeable capacity than the negative electrode, housed in a battery container. By injecting the electrolytic solution and then overcharging, a gas is generated inside the battery and a predetermined amount of this gas is released to the outside of the battery.

【0008】[0008]

【作用】密閉型金属水素化物蓄電池において、電解液注
液後の活性化のための充放電サイクルで、初期の数サイ
クルのみでは容易に所定の電池容量を得ることができな
い原因は負極にある。これは、電池構成後の初回の充電
では、負極の水素吸蔵合金に吸蔵された水素が、放電時
に100%放出されないためである。したがって、初期
の充電において、水素吸蔵合金に吸蔵する水素の量を増
加することができれば、相対的にその後の放電において
放出可能な水素量が増加し、放電容量が増加することが
可能になる。
In the sealed metal hydride storage battery, the reason why the predetermined battery capacity cannot be easily obtained by only the initial few cycles in the charge / discharge cycle for activation after injecting the electrolytic solution is the negative electrode. This is because the hydrogen stored in the hydrogen storage alloy of the negative electrode is not 100% released during discharge at the first charge after the battery is constructed. Therefore, if the amount of hydrogen stored in the hydrogen storage alloy can be increased in the initial charge, the amount of hydrogen that can be released in the subsequent discharge can be relatively increased and the discharge capacity can be increased.

【0009】ところで、密閉型金属水素化物蓄電池で
は、正極の充電可能な容量を、負極の充電可能な容量よ
りも小さく設計している。このため、充電により正極が
満充電になった後は、引き続く充電により正極から発生
する酸素ガスは、負極に吸蔵された水素によって水に戻
り、電池内で消費される。つまり、正極が満充電になっ
た後は、正極において酸素ガス発生に費やされた電気量
分だけ、負極に水素が吸蔵されるが、その水素の量に相
当する負極に吸蔵された水素は、正極から発生した酸素
ガスの消費に費やされ、合金中に吸蔵された状態で残ら
ないため、その後は負極における水素吸蔵量は実質的に
増加しなくなる。したがって、電池構成後の初回充電時
に、単に過充電を行っても、負極の水素吸蔵合金に吸蔵
させる水素量を増加させ、これによって、負極の放電容
量を増大させることはできない。
By the way, in the sealed metal hydride storage battery, the chargeable capacity of the positive electrode is designed to be smaller than the chargeable capacity of the negative electrode. For this reason, after the positive electrode is fully charged by charging, the oxygen gas generated from the positive electrode by subsequent charging is returned to water by the hydrogen stored in the negative electrode and consumed in the battery. That is, after the positive electrode is fully charged, hydrogen is stored in the negative electrode by the amount of electricity spent for oxygen gas generation in the positive electrode, but hydrogen stored in the negative electrode corresponding to the amount of hydrogen is Since the oxygen gas generated from the positive electrode is consumed and does not remain stored in the alloy in a stored state, the hydrogen storage amount in the negative electrode does not substantially increase thereafter. Therefore, at the time of initial charging after the battery is configured, even if the battery is simply overcharged, the amount of hydrogen stored in the hydrogen storage alloy of the negative electrode cannot be increased, and thus the discharge capacity of the negative electrode cannot be increased.

【0010】本発明では、電池構成後に行う充電時にお
いて、正極が満充電になった後に正極から発生する酸素
ガスを、所定量電池の外部に放出させることによって、
上述した負極における酸素ガス消費を抑制し、その分負
極の充電を進行させることを可能とする。そして、これ
によって、負極の放電可能な容量を増大し、活性化に必
要な充放電サイクル数を低減することが可能となる。
In the present invention, at the time of charging after the battery is constructed, a predetermined amount of oxygen gas generated from the positive electrode after the positive electrode is fully charged is released to the outside of the battery,
It is possible to suppress the oxygen gas consumption in the above-mentioned negative electrode and allow the negative electrode to be charged correspondingly. As a result, the dischargeable capacity of the negative electrode can be increased and the number of charge / discharge cycles required for activation can be reduced.

【0011】尚、電池構成後の初回の充放電時に得られ
る負極の放電可能な容量は、水素吸蔵合金の組成、製
法、及び種々の前処理により異なるため、これらを考慮
して、電池の外部に放出する酸素ガスの量を設定する必
要がある。
The dischargeable capacity of the negative electrode obtained during the first charge / discharge after the battery is constructed depends on the composition of the hydrogen storage alloy, the manufacturing method, and various pretreatments. It is necessary to set the amount of oxygen gas released to the.

【0012】[0012]

【実施例】以下に、本発明を実施例を示し説明する。 [実施例1]負極に用いる水素吸蔵合金の原材料金属と
して、市販のミッシュメタル(Mm、希土類元素の混合
物)とニッケルとコバルトとアルミニウムとマンガンを
用い、MmNi3.2CoAl0.2Mn0.6からなる水素吸
蔵合金粉末を作製した。この合金に糊料と純水を混合し
てペーストを作製し、鉄板にニッケルメッキを施し、パ
ンチング加工を行った集電板に、前記ペーストを塗着
し、乾燥して負極板を作製した。
EXAMPLES The present invention will now be described with reference to examples. As raw metal of the hydrogen storage alloy used in Example 1 a negative electrode, a commercially available misch metal (Mm, a mixture of rare earth elements) and a nickel, cobalt and aluminum and manganese, the hydrogen storage alloy consisting of MmNi 3.2 CoAl 0.2 Mn 0.6 A powder was made. A paste was prepared by mixing a paste and pure water with this alloy, an iron plate was nickel-plated, and the paste was applied to a punched current collector plate and dried to prepare a negative electrode plate.

【0013】こうして作製した負極板15枚と、焼結式
ニッケル正極板14枚とを、これらの極板間にナイロン
不織布セパレーターを介して交互に重ね合わせ、次い
で、金属蓋に配設した正負極端子に正極板及び負極板を
夫々溶接し、金属ケースに収納した後、前記金属ケース
と金属蓋を溶接して公称容量20Ahの角形電池Aを組
み立てた。この電池の斜視図を図1に示す。図1中、1
は金属ケース、2は金属蓋、3は正極端子、4は負極端
子、5は金属蓋2に設けられた電解液を注液するための
金属管である。
The 15 negative electrode plates thus produced and the 14 sintered nickel positive electrode plates were alternately laminated with a nylon non-woven fabric separator interposed therebetween, and then the positive and negative electrode ends arranged on the metal lid. A positive electrode plate and a negative electrode plate were respectively welded to the child, housed in a metal case, and then the metal case and a metal lid were welded to assemble a prismatic battery A having a nominal capacity of 20 Ah. A perspective view of this battery is shown in FIG. 1 in FIG.
Is a metal case, 2 is a metal lid, 3 is a positive electrode terminal, 4 is a negative electrode terminal, and 5 is a metal tube for injecting an electrolytic solution provided on the metal lid 2.

【0014】上記電池Aの金属管5から、水酸化カリウ
ムを主成分とする電解液を注入した後、2Aの電流で充
電を行った。充電時には、図2に示すように、金属管5
に樹脂チューブ6を接続し、この樹脂チューブ6を水7
中に導き、内部を水7で満たされ水7中に立てられたシ
リンダー9中に電池8内で発生したガス10を採取する
ようにした。
After injecting an electrolytic solution containing potassium hydroxide as a main component from the metal tube 5 of the battery A, the battery was charged at a current of 2A. When charging, as shown in FIG.
Connect the resin tube 6 to the
The gas 10 generated in the battery 8 was collected in a cylinder 9 that was filled with water 7 and was stood in the water 7.

【0015】充電開始後10時間で電池からガスが発生
し始め、約1.4リットルの気体が採取できた時点で充
電を停止した。この後、電池を水中から取り出し、直ち
に電池7の金属管5を封止し、電池内部を密閉した。次
いで、この電池に0.3Ωの抵抗を接続することにより
放電し、電池電圧が1Vになった時点で放電を停止し
た。
Gas started to be generated from the battery 10 hours after the start of charging, and the charging was stopped when about 1.4 liters of gas could be collected. After that, the battery was taken out of the water, the metal tube 5 of the battery 7 was immediately sealed, and the inside of the battery was sealed. Then, the battery was discharged by connecting a resistance of 0.3Ω, and the discharge was stopped when the battery voltage became 1V.

【0016】上記処理を施した本発明電池、及び前記実
施例において、電解液注液後何ら処理を施していない比
較電池を夫々、20℃の温度雰囲気において、2Aの電
流で16時間充電した後、10Aの電流で放電し、電池
電圧が1Vになった時点で放電を停止するサイクル条件
で充放電を7サイクル繰り返し、電池容量を測定した。
この結果を図3に示す。図3から明らかなように、前記
処理を施した本発明電池は、初期の充放電時から、20
Ahを超える容量が得られており、所定の電池容量が得
られるまでの充放電サイクルを大きく短縮できることが
分かる。
The battery of the present invention which had been subjected to the above treatment, and the comparative battery which had not been subjected to any treatment after injection of the electrolytic solution in the above-mentioned Examples were each charged with a current of 2 A for 16 hours in a temperature atmosphere of 20 ° C. The battery capacity was measured by discharging the battery at a current of 10 A and repeating charging / discharging 7 cycles under the cycle condition of stopping the discharging when the battery voltage became 1V.
The result is shown in FIG. As is clear from FIG. 3, the battery of the present invention, which has been subjected to the above-mentioned treatment, has been
It can be seen that the capacity exceeding Ah is obtained, and the charge / discharge cycle until the predetermined battery capacity is obtained can be greatly shortened.

【0017】次いで、上記電池容量の測定を終えた電池
を夫々、20℃の温度雰囲気で同一のサイクル条件で充
放電し、更に、−5℃の温度雰囲気で同一のサイクル条
件で充放電して放電容量を測定し、各温度雰囲気におけ
る本発明電池と比較電池の放電容量を表1に示した。ま
た、表中のカッコ内には、各電池の20℃における放電
容量の値を夫々100%とし、−5℃における放電容量
を%で示している。
Next, each of the batteries whose battery capacity has been measured is charged / discharged under the same cycle condition in a temperature atmosphere of 20 ° C., and further charged / discharged under the same cycle condition in a temperature atmosphere of −5 ° C. The discharge capacities were measured, and Table 1 shows the discharge capacities of the battery of the present invention and the comparative battery in each temperature atmosphere. Further, in the parentheses in the table, the discharge capacity value at 20 ° C. of each battery is 100%, and the discharge capacity at −5 ° C. is shown in%.

【0018】[0018]

【表1】 本発明電池は、比較電池に比べて低温充放電時における
放電容量の低下が抑制されることが分かる。
[Table 1] It can be seen that the battery of the present invention suppresses the decrease in discharge capacity during low temperature charge / discharge as compared with the comparative battery.

【0019】[実施例2]実施例1よりも面積の大きな
負極板を作製し、この負極17枚と、焼結式ニッケル正
極板16枚を用い、実施例1における電池Aと同様にし
て、公称容量35Ahの角形電池を組み立てた。
Example 2 A negative electrode plate having a larger area than that of Example 1 was prepared, and 17 negative electrodes and 16 sintered nickel positive electrode plates were used in the same manner as the battery A in Example 1, A prismatic battery having a nominal capacity of 35 Ah was assembled.

【0020】この電池に、実施例1と同様に金属管から
水酸化カリウムを主成分とする電解液を注入した後、図
3に示すようにして、電池を5℃以下の水で冷却しなが
ら3.5Aの電流で充電を行った。図3において、11
は電池であり、冷却槽12内の冷却水13に浸漬され、
その電池11の注液管には圧力計14とバルブ15が接
続され、バルブ15は常時閉じられている。また、冷却
水13は、冷却装置16に循環することにより温度が低
温に保たれている。尚、低温で充電を行うのは、正極で
発生した酸素ガスに対する負極の酸素ガス吸収能力を低
下させるためである。
After injecting an electrolytic solution containing potassium hydroxide as a main component from a metal tube into the battery as in Example 1, the battery was cooled with water at 5 ° C. or lower as shown in FIG. Charging was performed at a current of 3.5A. In FIG. 3, 11
Is a battery, immersed in the cooling water 13 in the cooling tank 12,
A pressure gauge 14 and a valve 15 are connected to the liquid injection pipe of the battery 11, and the valve 15 is always closed. The temperature of the cooling water 13 is kept low by circulating it to the cooling device 16. The reason why charging is performed at a low temperature is to reduce the oxygen gas absorption capacity of the negative electrode with respect to the oxygen gas generated in the positive electrode.

【0021】充電開始後10時間が経過した時点で、正
極からの酸素ガス発生を促進させるために、充電電流を
10Aに増加させ、引き続き充電を継続し、圧力計が4
kg/cm2(絶対圧5kg/cm2)になったときに、
バルブを開き電池内部のガスを電池外部に放出し、圧力
計が0kg/cm2(絶対圧力1kg/cm2)まで下が
った時点でバルブを閉じ、この操作を10回繰り返して
行い、充電を停止した。尚、予め測定しておいた電池内
部の空間体積から計算した結果、1回の操作で0.2リ
ットルのガスが放出したことになり、上記操作によっ
て、合計2リットルのガスが電池外部に放出したことに
なる。
At the time when 10 hours had elapsed after the start of charging, the charging current was increased to 10 A in order to accelerate the generation of oxygen gas from the positive electrode, and then the charging was continued and the pressure gauge was set to 4
When it reaches kg / cm 2 (absolute pressure 5 kg / cm 2 ),
Open the valve to release the gas inside the battery to the outside of the battery, close the valve when the pressure gauge drops to 0 kg / cm 2 (absolute pressure 1 kg / cm 2 ), repeat this operation 10 times, and stop charging. did. As a result of calculation from the space volume inside the battery that was measured in advance, 0.2 liters of gas was released in one operation, and a total of 2 liters of gas was released to the outside of the battery by the above operation. It has been done.

【0022】そして、充電停止後、電池を冷却水から取
り出し、圧力計及びバルブを外し、直ちに電池の金属管
を封止し、電池内部を密閉した。次いで、この電池に
0.3Ωの抵抗を接続することにより放電し、電池電圧
が1Vになった時点で放電を停止した。
After the charging was stopped, the battery was taken out of the cooling water, the pressure gauge and the valve were removed, the metal tube of the battery was immediately sealed, and the inside of the battery was sealed. Then, the battery was discharged by connecting a resistance of 0.3Ω, and the discharge was stopped when the battery voltage became 1V.

【0023】上記処理を施した本発明電池、及び前記実
施例2において、電解液注液後何ら処理を施していない
比較電池を夫々、20℃の温度雰囲気において、3.5
Aの電流で16時間充電した後、17.5Aの電流で放
電し、電池電圧が1Vになった時点で放電を停止するサ
イクル条件で充放電を繰り返して、電池容量を測定し
た。この結果を図5に示す。図5から明らかなように、
前記処理を施した本発明電池は、初期の充放電時から、
35Ahを超える容量が得られており、実施例1の場合
と同様に、所定の電池容量が得られるまでの充放電サイ
クルを大きく短縮できることが分かる。
The battery of the present invention which was subjected to the above treatment and the comparative battery which was not subjected to any treatment after injection of the electrolytic solution in Example 2 were subjected to an atmosphere of 20.degree.
After charging for 16 hours with a current of A, discharging was performed with a current of 17.5 A, and charging / discharging was repeated under cycle conditions in which discharging was stopped when the battery voltage reached 1 V, and the battery capacity was measured. The result is shown in FIG. As is clear from FIG.
The battery of the present invention that has been subjected to the above treatment, from the initial charge and discharge,
A capacity of more than 35 Ah was obtained, and it can be seen that the charge / discharge cycle until a predetermined battery capacity is obtained can be greatly shortened, as in the case of Example 1.

【0024】[0024]

【発明の効果】本発明の密閉型金属水素化物蓄電池の製
造方法は、上述したように、電池内で発生したガスを所
定量電池外部に放出させることにより、過充電時に正極
で発生する酸素ガスが、負極で吸収されることを抑制す
ることによって、負極の充電量を増加させ、初期の電池
容量を増大させることができる。また、これによって、
電池の活性化に要する充放電の回数を低減することが可
能となり、更に、低温でじの放電容量の低下を抑制する
ことができる。
As described above, the method for manufacturing a sealed metal hydride storage battery according to the present invention releases oxygen gas generated in the battery to the outside of the battery by a predetermined amount, thereby generating oxygen gas at the positive electrode during overcharge. However, by suppressing absorption by the negative electrode, the amount of charge of the negative electrode can be increased and the initial battery capacity can be increased. Also, with this,
It is possible to reduce the number of times of charge and discharge required for activation of the battery, and further it is possible to suppress a decrease in discharge capacity even at low temperature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明電池の斜視図である。FIG. 1 is a perspective view of a battery of the present invention.

【図2】本発明の処理装置の概略図である。FIG. 2 is a schematic diagram of a processing apparatus of the present invention.

【図3】本発明電池と比較電池のサイクル特性図であ
る。
FIG. 3 is a cycle characteristic diagram of the battery of the present invention and a comparative battery.

【図4】本発明の他の実施例における処理装置の概略図
である。
FIG. 4 is a schematic view of a processing apparatus according to another embodiment of the present invention.

【図5】本発明電池と比較電池のサイクル特性図であ
る。
FIG. 5 is a cycle characteristic diagram of the battery of the present invention and the comparative battery.

【符号の説明】[Explanation of symbols]

6 樹脂チューブ 7 水 8、11 電池 9 シリンダー 10 ガス 12 冷却槽 13 冷却水 14 圧力計 15 バルブ 16 冷却装置 6 Resin Tube 7 Water 8, 11 Battery 9 Cylinder 10 Gas 12 Cooling Tank 13 Cooling Water 14 Pressure Gauge 15 Valve 16 Cooling Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水素吸蔵合金を用いた負極と、前記負極
よりも充電可能な容量が小さい正極とを電池容器に収納
し、電解液を注液した後に、過充電を行うことにより、
電池内部にガスを発生させ、このガスを電池外部に所定
量放出させることを特徴とする密閉型金属水素化物蓄電
池の製造方法。
1. A negative electrode using a hydrogen storage alloy and a positive electrode having a chargeable capacity smaller than that of the negative electrode are housed in a battery container, and after injecting an electrolytic solution, overcharging is performed.
A method for producing a sealed metal hydride storage battery, which comprises generating a gas inside the battery and discharging the gas to the outside of the battery by a predetermined amount.
JP5260009A 1993-10-18 1993-10-18 Manufacture of sealed type metal hydride storage battery Pending JPH07114938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260009A JPH07114938A (en) 1993-10-18 1993-10-18 Manufacture of sealed type metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260009A JPH07114938A (en) 1993-10-18 1993-10-18 Manufacture of sealed type metal hydride storage battery

Publications (1)

Publication Number Publication Date
JPH07114938A true JPH07114938A (en) 1995-05-02

Family

ID=17342042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260009A Pending JPH07114938A (en) 1993-10-18 1993-10-18 Manufacture of sealed type metal hydride storage battery

Country Status (1)

Country Link
JP (1) JPH07114938A (en)

Similar Documents

Publication Publication Date Title
Jeyaseelan et al. Ni‐Cd Batteries
US6669742B2 (en) Method for producing a nickel metal-hydride storage battery
JP2001319682A (en) Square alkaline storage battery, and unit battery and assembled battery using the same
JP7193420B2 (en) Nickel-metal hydride secondary battery manufacturing method
JP3390309B2 (en) Sealed alkaline storage battery
JP3948421B2 (en) Hybrid electric vehicle with sealed nickel-metal hydride secondary battery
JP4010630B2 (en) Hydrogen storage alloy electrode
JPH07114938A (en) Manufacture of sealed type metal hydride storage battery
JP3339327B2 (en) Storage battery
CN114300759B (en) Method for manufacturing nickel-hydrogen storage battery
JP7355772B2 (en) Manufacturing method of nickel metal hydride storage battery
JP2002260721A (en) Nickel hydrogen secondary battery
JP2000030736A (en) Nickel hydrogen secondary battery
JP3057737B2 (en) Sealed alkaline storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JP4400113B2 (en) Nickel-hydrogen battery manufacturing method
JP3746086B2 (en) Method for manufacturing nickel-metal hydride battery
JP3412162B2 (en) Alkaline storage battery
JP2856855B2 (en) Method for manufacturing prismatic nickel-metal hydride storage battery
JP3266153B2 (en) Manufacturing method of sealed alkaline storage battery
CN114975896A (en) Method for manufacturing nickel-metal hydride storage battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JPH05144432A (en) Electrode with hydrogen storage alloy
CN112886075A (en) Method for manufacturing nickel-metal hydride storage battery
JPH05314972A (en) Manufacture of sealed nickel hydrogen storage battery