JPH07113821A - Terminal and method for measuring electric characteristic - Google Patents

Terminal and method for measuring electric characteristic

Info

Publication number
JPH07113821A
JPH07113821A JP28165993A JP28165993A JPH07113821A JP H07113821 A JPH07113821 A JP H07113821A JP 28165993 A JP28165993 A JP 28165993A JP 28165993 A JP28165993 A JP 28165993A JP H07113821 A JPH07113821 A JP H07113821A
Authority
JP
Japan
Prior art keywords
terminal
circuit
measuring
measurement
measuring circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28165993A
Other languages
Japanese (ja)
Inventor
Hiroyasu Sugiyama
博康 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28165993A priority Critical patent/JPH07113821A/en
Publication of JPH07113821A publication Critical patent/JPH07113821A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Leads Or Probes (AREA)

Abstract

PURPOSE:To make it easy to measure electric characteristics by providing a needle-shaped or drill-like terminal and a rotating mechanism for the terminal, and insulating and coating other parts than a front end part. CONSTITUTION:A female screw and a male screw are formed in an inner periphery of a cylindrical body 1 and in an outer periphery of a rotation body 2, respectively. The screws are meshed with each other. A needle-shaped terminal 3 of copper is built in at the center of the rotation body 2, which projects from a bottom of the rotation body 2. A GND layer 5 is provided in an outer periphery of the terminal 3 via an insulating layer 4. The terminal 3 and insulating layer 4, GND layer 5 are connected to a measuring apparatus by a coaxial cable 6. In order to measure electric characteristics of a printed board having an insulating protective layer on a measuring circuit, the terminal 3 is placed on the board and set on the measuring circuit while a front end of the terminal 3 is observed from a peephole. The rotation body 2 is rotated and descended to bring the front end of the terminal 3 into the insulating protective layer to be in touch with the measuring circuit. If an insulating film is coated at other parts than the front end part of the terminal 3, the terminal 3 is allowed to penetrate the protective layer and a circuit not to be subjected to measurement to be in touch with the measuring circuit even when the not-to-be-measured circuit is on the measuring circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプリント回路などの電気
的特性を測定するための端子及び方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a terminal and method for measuring electric characteristics of a printed circuit or the like.

【0002】[0002]

【従来の技術】従来、この種の端子としては、図6に示
すように測定用の回路端もしくは測定回路20から引き出
したリード線21をクリップ22などで挟む方式のものや、
図7に示すように先端が棒状あるいは針状の端子23を測
定回路上に直接接触させる方式のものが利用されてい
る。
2. Description of the Related Art Conventionally, as a terminal of this type, as shown in FIG. 6, a method of sandwiching a lead wire 21 drawn from a measuring circuit end or a measuring circuit 20 with a clip 22 or the like,
As shown in FIG. 7, a method is used in which the terminal 23 having a rod-shaped or needle-shaped tip is brought into direct contact with the measuring circuit.

【0003】[0003]

【発明が解決しようとする課題】しかし、挟む方式のも
のでは平板状の回路について測定を行う場合、半田付け
などによりリード線を引き出す必要がある。またリード
線などを用いた場合、高周波での電気的特性の測定にお
いてノイズの影響も問題となる。さらに、リード線と測
定端子−測定装置間のケーブルとの間でインピーダンス
の不整合を生じることがあり、測定内容によっては不都
合を生じる。
However, in the case of the sandwiching type, it is necessary to pull out the lead wire by soldering or the like when the measurement is performed on a flat plate-shaped circuit. Further, when a lead wire or the like is used, the influence of noise also becomes a problem when measuring electrical characteristics at high frequencies. Furthermore, impedance mismatch may occur between the lead wire and the cable between the measuring terminal and the measuring device, which causes inconvenience depending on the measurement content.

【0004】一方、端子を直接測定回路に接触させるも
のでは、回路上に保護層がある場合、予めその一部を除
去しなければ端子を測定回路に接触できない。そのた
め、測定試料作製時に予め測定用端子として保護層を設
けない箇所を形成するか、測定用端子部の保護層を除去
することが必要になる。しかし、前者は保護層を設けな
い箇所を形成すること自体が煩雑である。また後者は保
護層を除去する煩雑さに加え、測定回路の表面を傷つけ
たり構造を変化させてしまうことがあるため測定精度の
低下を招く。即ち、いずれの場合においても、測定のた
めに時間・労力・特殊な技術などが必要で、場合によっ
ては測定精度の低下を招くため、電気的特性の測定を困
難なものとしていた。
On the other hand, in the case where the terminal is brought into direct contact with the measuring circuit, when the protective layer is provided on the circuit, the terminal cannot be brought into contact with the measuring circuit unless part of it is removed beforehand. Therefore, it is necessary to previously form a portion where the protective layer is not provided as the measuring terminal when the measurement sample is prepared, or to remove the protective layer of the measuring terminal portion. However, in the former case, it is complicated to form a portion where the protective layer is not provided. In addition, in the latter case, in addition to the complexity of removing the protective layer, the surface of the measurement circuit may be damaged or the structure may be changed, resulting in a decrease in measurement accuracy. That is, in any case, measurement requires time, labor, special technique, and the like, and in some cases, the measurement accuracy is deteriorated, so that the measurement of electrical characteristics is difficult.

【0005】[0005]

【課題を解決するための手段】本発明はこのような課題
を解決するためになされたもので、その特徴は針状又は
ドリル状の端子とその回転機構とを具えることにある。
ここで、端子の先端部以外を絶縁体で被覆すれば、測定
回路上に測定回路とは別の回路(非測定回路)がある場
合にも対応できる。又、このような端子を用いた測定方
法は、端子を回転し測定回路上の絶縁体を貫通させ、端
子を測定回路に接触させることを特徴とする。特に、端
子の先端部以外を絶縁体で被覆した端子の場合、測定回
路上の絶縁層だけでなく非測定回路も貫通でき、端子を
測定回路に到達させて測定を行うことが可能となる。
The present invention has been made to solve the above problems, and is characterized by having a needle-shaped or drill-shaped terminal and a rotating mechanism therefor.
Here, by covering an area other than the tip end portion of the terminal with an insulator, it is possible to cope with a case where there is a circuit (non-measurement circuit) different from the measurement circuit on the measurement circuit. Further, the measuring method using such a terminal is characterized in that the terminal is rotated and the insulator on the measuring circuit is penetrated to bring the terminal into contact with the measuring circuit. In particular, in the case of a terminal in which a portion other than the tip end portion of the terminal is covered with an insulator, not only the insulating layer on the measurement circuit but also the non-measurement circuit can be penetrated, and the terminal can reach the measurement circuit for measurement.

【0006】[0006]

【作用】上記のように針状又はドリル状の測定端子を用
いることによって、任意の回路についてリード線の取り
出し、保護層の除去、試料作製工程の変更などの前処理
を必要とすることなく精度の高い測定ができる。即ち、
測定回路上に保護層が存在する場合、測定したい箇所の
上部に測定端子を固定し、端子を回転させながら荷重を
加えることでこれを保護層内に侵入させ、測定回路にま
で到達させて測定を行う。ここで端子が針状の場合、回
転させず単に荷重を加えるだけでも測定回路に到達させ
ることができるが、端子の測定対象との接触部周辺も圧
縮して損傷させることがある。このため、回転により円
滑に端子を侵入させ、それに伴って生じる摩擦熱で接触
部のみを損傷させて周辺への影響を最小限としている。
また、この回転により無理な荷重を加えることなく端子
を測定回路に到達できるため、作業が効率的でかつ位置
精度も向上させることができる。さらに、端子がドリル
状の場合、回転により容易に測定対象内に侵入できるこ
とに加え、ドリルの溝から切削屑を排出することができ
る。
By using the needle-like or drill-like measuring terminal as described above, accuracy can be obtained without the need for pretreatment such as lead wire extraction, protective layer removal, and sample preparation process change for any circuit. High measurement can be performed. That is,
If there is a protective layer on the measuring circuit, fix the measuring terminal on top of the point you want to measure and apply load while rotating the terminal to penetrate this into the protective layer and reach the measuring circuit. I do. Here, when the terminal is needle-shaped, it is possible to reach the measurement circuit by simply applying a load without rotating the terminal, but the periphery of the contact portion of the terminal with the measurement target may be compressed and damaged. Therefore, the terminals are smoothly intruded by the rotation, and the frictional heat generated thereby damages only the contact portions to minimize the influence on the surroundings.
Moreover, since the terminal can reach the measuring circuit without applying an unreasonable load by this rotation, the work is efficient and the positional accuracy can be improved. Further, when the terminal is in the form of a drill, the cutting waste can be easily discharged from the groove of the drill in addition to being able to easily enter the object to be measured by rotation.

【0007】一方、測定回路上に非測定回路が存在する
場合も、測定回路と測定端子の接触部以外を絶縁体で被
覆した測定端子により前記と同様端子を回転させて測定
対象内に侵入させる。この場合、端子の侵入深さは絶縁
体被覆のない端子先端のみが測定回路に到達し、絶縁体
被覆のある部分は非測定回路に対応するよう調整すれば
よい。これにより測定回路の上に他の回路が存在しても
影響を受けることなく所望の回路の電気的特性を測定す
ることができる。
On the other hand, even when a non-measurement circuit exists on the measurement circuit, the measurement terminal covered with an insulating material except the contact portion between the measurement circuit and the measurement terminal rotates the terminal in the same manner as described above so as to enter the measurement object. . In this case, the penetration depth of the terminal may be adjusted so that only the tip of the terminal without the insulating coating reaches the measuring circuit and the portion with the insulating coating corresponds to the non-measuring circuit. As a result, the electrical characteristics of the desired circuit can be measured without being affected by the presence of other circuits on the measurement circuit.

【0008】尚、いずれの場合においても、端子の先端
と測定回路とは端子の侵入深さを調整することにより点
接触となるため、精度の高い測定が可能となる。さら
に、測定端子の特性インピーダンスはその構造によって
測定端子−測定装置間のケーブルの特性インピーダンス
と一致させることができるため、接続部でのインピーダ
ンスの不整合を解消できる。即ち、図5に示すように中
心から順に導体24,絶縁体25,GND回路26,保護層27
を具える同軸ケーブルの場合、特性インピーダンスZo
は Zo=138log(b/a)/√εS (εS :絶縁体の比誘電率、a:導体半径、b:絶縁体
半径) で表される。従って、測定端子−測定装置間のケーブル
の特性インピーダンスが既知の場合、端子の導体径及び
絶縁体径の設計調整により端子の特性インピーダンスを
測定端子−測定装置間のケーブルの特性インピーダンス
に合わせることができるのである。
In any case, since the tip of the terminal and the measuring circuit are in point contact with each other by adjusting the depth of penetration of the terminal, highly accurate measurement is possible. Furthermore, since the characteristic impedance of the measuring terminal can be matched with the characteristic impedance of the cable between the measuring terminal and the measuring device due to its structure, the impedance mismatch at the connecting portion can be eliminated. That is, as shown in FIG. 5, the conductor 24, the insulator 25, the GND circuit 26, and the protective layer 27 are sequentially arranged from the center.
In the case of a coaxial cable equipped with, the characteristic impedance Zo
Is represented by Zo = 138 log (b / a) / √ε SS : relative permittivity of insulator, a: conductor radius, b: insulator radius). Therefore, if the characteristic impedance of the cable between the measuring terminal and the measuring device is known, the characteristic impedance of the terminal can be matched to the characteristic impedance of the cable between the measuring terminal and the measuring device by design adjustment of the conductor diameter and the insulator diameter of the terminal. You can do it.

【0009】端子の材質についてであるが、測定対象を
プリント回路に限定する場合、特殊な材料を使用する必
要はなく、測定端子先端の導体は銅,鉄,ステンレスな
ど測定回路の保護層に対して耐摩耗性,硬度の優れた材
料であれば良い。ただし、測定端子−測定装置間のケー
ブルに同軸ケーブルを使用し、それとのインピーダンス
整合を厳密にとる場合は銅が望ましい。しかし、厳密に
とる必要がない場合は、先端材料のみを変更することで
大きな影響は及ぼさない。また、先端部に絶縁体を被覆
する場合、その絶縁体は酸化チタンなど非測定回路に比
べて耐摩耗性・硬度の優れた材料であれば良い。
Regarding the material of the terminal, if the object to be measured is limited to the printed circuit, it is not necessary to use a special material, and the conductor at the tip of the measuring terminal is made of copper, iron, stainless steel or the like for the protective layer of the measuring circuit. Any material that has excellent wear resistance and hardness can be used. However, when a coaxial cable is used as the cable between the measuring terminal and the measuring device and impedance matching with it is strictly performed, copper is desirable. However, if it is not strictly necessary, changing only the advanced material does not have a great influence. When the tip end is coated with an insulator, the insulator may be made of a material such as titanium oxide, which has excellent wear resistance and hardness as compared with the non-measurement circuit.

【0010】[0010]

【実施例】以下、本発明の実施例について説明する。 (端子の構造)本発明端子は図1に示すように、内周に
雌ねじが形成された筒体1と、それに螺合する雄ねじが
外周に形成された回転体2を具えたものである。回転体
2はこれを回すことで筒体内を昇降でき、その中心には
銅製の端子3が軸方向に内蔵されている。そして端子3
の先端は針状に形成され、回転体2の底部より突出され
ている。また、端子3の外周には絶縁層4を介してGN
D層5が設けられ、端子と3これらの両層4,5は同軸
ケーブル6により測定装置(図示せず)へと接続されて
いる。一方、回転体2を保持する筒体1は、その外周に
複数の覗き窓7(図2参照)を具え、ここから覗くこと
で端子先端の位置合わせを行う。
EXAMPLES Examples of the present invention will be described below. (Structure of Terminal) As shown in FIG. 1, the terminal of the present invention comprises a cylindrical body 1 having an internal thread formed on the inner circumference and a rotating body 2 having an external thread formed on the outer circumference to be screwed into the cylindrical body 1. The rotating body 2 can be raised and lowered in the cylindrical body by turning the rotating body 2, and a copper terminal 3 is axially built in the center thereof. And terminal 3
Has a needle-like shape and protrudes from the bottom of the rotating body 2. In addition, GN is provided on the outer periphery of the terminal 3 through the insulating layer 4.
A D layer 5 is provided, and the terminals and 3 of these layers 4, 5 are connected by a coaxial cable 6 to a measuring device (not shown). On the other hand, the cylindrical body 1 holding the rotating body 2 is provided with a plurality of viewing windows 7 (see FIG. 2) on the outer periphery thereof, and the terminal tips are aligned by looking through them.

【0011】(測定方法)このような端子3により、測
定回路8の上に絶縁保護層が形成されたプリント基板9
の電気的特性を測定する場合、図2に示すように端子を
基板上に載せ、覗き窓7から端子の先端が測定回路8の
上に位置するよう配置する。次に回転体2を回してこれ
を下降させ、図3(A)に示すように端子3の先端を絶
縁保護層10内に侵入させる。そして端子の先端が測定回
路8に接触したところで回転体2の下降を止め、測定を
行う。
(Measurement Method) A printed circuit board 9 having an insulating protective layer formed on the measurement circuit 8 by means of such terminals 3
2 is measured, the terminals are placed on the substrate as shown in FIG. 2, and the tips of the terminals are arranged so as to be positioned above the measuring circuit 8 through the viewing window 7. Next, the rotating body 2 is rotated and lowered, and the tip of the terminal 3 is inserted into the insulating protective layer 10 as shown in FIG. Then, when the tip of the terminal comes into contact with the measuring circuit 8, the lowering of the rotating body 2 is stopped and the measurement is performed.

【0012】なお、上記の例では単に針状の端子を用い
たが、図3(B)に示すように、針状の端子2の先端部
以外に絶縁被覆11を施したものでもよい。この場合、同
図に示すように測定回路上に非測定回路12があっても、
保護層10と非測定回路11に端子3を貫通させ、非測定回
路12の位置に絶縁被覆11が対応し、端子先端が測定回路
8に到達するような深さにまで侵入させることで所望す
る測定回路の電気的特性を測定できる。また、端子の先
端形状を針状でなくドリル状としても同様の操作で容易
に電気的特性の測定を行うことができる。この場合、ド
リルを絶縁保護層に侵入させれば切削屑が出るが、これ
はドリル溝から容易に排出することができる。
Although the needle-shaped terminal is simply used in the above-mentioned example, as shown in FIG. 3B, the needle-shaped terminal 2 may be provided with the insulating coating 11 other than the tip portion. In this case, even if there is a non-measurement circuit 12 on the measurement circuit as shown in the figure,
The protective layer 10 and the non-measurement circuit 11 are penetrated through the terminal 3, the insulation coating 11 corresponds to the position of the non-measurement circuit 12, and the terminal tip is penetrated to a depth such that the measurement circuit 8 is reached. The electrical characteristics of the measuring circuit can be measured. Moreover, even if the tip shape of the terminal is not a needle shape but a drill shape, the electrical characteristics can be easily measured by the same operation. In this case, if the drill penetrates into the insulating protective layer, cutting chips are generated, which can be easily discharged from the drill groove.

【0013】(試験例1)図1に示す端子を用い、測定
回路上に絶縁保護層10を有するプリント回路(図4A,
B)についてLCRメータで各種インピーダンスの測定
を行った。また、比較のため測定回路上の絶縁保護層10
を一部を除去したプリント回路(図4C,D)について
も絶縁保護層10を除去した箇所から直接図1の端子を測
定回路8に接触させて同様の測定を行った。信号回路の
インダクタンスと抵抗並びに信号回路とGND回路間の
漏れキャパシタンスと漏れコンダクタンスの測定結果を
表1に示す。
(Test Example 1) Using the terminals shown in FIG. 1, a printed circuit having an insulating protective layer 10 on the measuring circuit (FIG. 4A,
Regarding B), various impedances were measured with an LCR meter. For comparison, the insulating protective layer 10 on the measurement circuit
For the printed circuit (FIGS. 4C and 4D) from which a part of is removed, the terminals of FIG. 1 were directly brought into contact with the measuring circuit 8 from the position where the insulating protective layer 10 was removed, and the same measurement was performed. Table 1 shows the measurement results of the inductance and resistance of the signal circuit and the leakage capacitance and leakage conductance between the signal circuit and the GND circuit.

【0014】[0014]

【表1】 [Table 1]

【0015】同表に示すように絶縁保護層に端子を侵入
させて測定を行う実施例方法は、予め保護層の一部を除
して測定を行う比較例方法に比べて殆ど差がないことが
確認できた。
As shown in the same table, the method of the embodiment in which the terminals are inserted into the insulating protective layer for measurement has almost no difference from the method of the comparative example in which a part of the protective layer is removed in advance for measurement. Was confirmed.

【0016】(試験例2)次に、全体構成は図1に示す
ものと同様で、図3(B)に示すように、端子の先端以
外に絶縁被覆11を施したものを用い、図4の基板を対象
として試験例1と同様の測定を行った。図4(A)の基
板をもちいたものが実施例方法、同(C)の基板を用い
たものが比較例方法である。その結果を表2に示す。
(Test Example 2) Next, the entire structure is the same as that shown in FIG. 1, and as shown in FIG. 3B, a terminal having an insulating coating 11 other than the tips is used. The same measurement as in Test Example 1 was performed on the substrate of No. 2. The method using the substrate of FIG. 4A is the example method, and the method using the substrate of FIG. 4C is the comparative method. The results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】本例の場合も試験例1の場合と同様に比較
例方法と殆ど差がないことが確認された。
In the case of this example, it was confirmed that there is almost no difference from the method of the comparative example as in the case of Test Example 1.

【0019】(試験例3)さらに、試験例1における端
子について、TDR法により測定端子−ケーブル間での
反射波を測定したところ、その間での反射は殆ど見られ
ず、インピーダンスの整合がとれていることも確認され
た。
(Test Example 3) Further, when the reflected wave between the measurement terminal and the cable was measured by the TDR method for the terminal in Test Example 1, almost no reflection was observed between them and impedance matching was achieved. It was also confirmed that

【0020】[0020]

【発明の効果】以上説明したように、本発明による電気
的特性測定用端子を使用することで、測定のための労力
・時間・特殊な技術などを必要とすることなく、精度の
高い測定を行うことができる。従って、絶縁保護層がそ
れほど頑強でないプリント配線板などの分野で高周波或
はそれより精度の高い電気的特性の測定を行う場合に効
果的である。
As described above, by using the electrical characteristic measuring terminal according to the present invention, highly accurate measurement can be performed without requiring labor, time, and special technique for measurement. It can be carried out. Therefore, it is effective when the electrical characteristics are measured at high frequency or with higher accuracy in a field such as a printed wiring board where the insulating protective layer is not so robust.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明端子の全体構成を示す断面図である。FIG. 1 is a sectional view showing an overall configuration of a terminal of the present invention.

【図2】本発明端子の使用方法を示す説明図である。FIG. 2 is an explanatory diagram showing a method of using the terminal of the present invention.

【図3】本発明端子が測定対象に侵入し、測定回路に到
達した状態を示す断面図で、(A)は針状の端子を用い
た場合、(B)は先端以外に絶縁被覆を施した針状の端
子を非測定回路がある測定対象に適用した場合を示す。
FIG. 3 is a cross-sectional view showing a state in which the terminal of the present invention penetrates into an object to be measured and reaches a measurement circuit. (A) shows a case where a needle-shaped terminal is used, (B) shows an insulating coating other than the tip. The case where the needle-shaped terminal is applied to a measurement target having a non-measurement circuit is shown.

【図4】試験例に用いた測定対象のプリント基板を示す
もので、(A)は断面図、(B)はその平面図、(C)
は保護層の一部を除去した基板の断面図、(D)はその
平面図である。
FIG. 4 shows a printed circuit board to be measured used in a test example, (A) is a sectional view, (B) is a plan view thereof, and (C).
FIG. 3D is a cross-sectional view of the substrate with a part of the protective layer removed, and FIG.

【図5】端子−測定装置間における同軸ケーブルの断面
図である。
FIG. 5 is a cross-sectional view of a coaxial cable between a terminal and a measuring device.

【図6】クリップを用いた従来の端子による測定状況を
示す説明図である。
FIG. 6 is an explanatory diagram showing a measurement situation by a conventional terminal using a clip.

【図7】先端を針状とした従来の端子による測定状況を
示す説明図である。
FIG. 7 is an explanatory diagram showing a measurement situation using a conventional terminal having a needle-shaped tip.

【符号の説明】[Explanation of symbols]

1 筒体 2 回転体 3 端子 4 絶縁層 5 G
ND層 6 同軸ケーブル 7 覗き窓 8 測定回路 9 プ
リント基板 10 絶縁保護層 11 絶縁被覆 12 非測定回路 13
絶縁層 20 測定回路 21 リード線 22 クリップ 23 端子
24 導体 25 絶縁体 26 GND回路 27 保護層
1 Cylindrical body 2 Rotating body 3 Terminal 4 Insulating layer 5 G
ND layer 6 Coaxial cable 7 Viewing window 8 Measurement circuit 9 Printed circuit board 10 Insulation protection layer 11 Insulation coating 12 Non-measurement circuit 13
Insulation layer 20 Measurement circuit 21 Lead wire 22 Clip 23 Terminal
24 Conductor 25 Insulator 26 GND circuit 27 Protective layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 針状又はドリル状の端子とその回転機構
とを具えることを特徴とする電気的特性測定用端子。
1. A terminal for measuring electrical characteristics, comprising a needle-shaped or drill-shaped terminal and a rotating mechanism thereof.
【請求項2】 請求項1記載の測定用端子において、端
子の先端部以外を絶縁体で被覆したことを特徴とする電
気的特性測定用端子。
2. The terminal for measuring electrical characteristics according to claim 1, wherein the terminal other than the tip end portion of the terminal is covered with an insulator.
【請求項3】 請求項1又は2記載の測定用端子を回転
し、測定回路上の絶縁体を貫通させ、該端子を測定回路
に接触させることを特徴とする電気的特性の測定方法。
3. A method for measuring electrical characteristics, which comprises rotating the measuring terminal according to claim 1 or 2 to penetrate an insulator on the measuring circuit and bringing the terminal into contact with the measuring circuit.
【請求項4】 請求項2記載の測定用端子を回転し、測
定回路上の非測定回路と絶縁層とを貫通させて、該端子
を測定回路に接触させることを特徴とする電気的特性の
測定方法。
4. A measuring terminal according to claim 2, wherein the non-measuring circuit on the measuring circuit and the insulating layer are made to penetrate, and the terminal is brought into contact with the measuring circuit. Measuring method.
JP28165993A 1993-10-14 1993-10-14 Terminal and method for measuring electric characteristic Pending JPH07113821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28165993A JPH07113821A (en) 1993-10-14 1993-10-14 Terminal and method for measuring electric characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28165993A JPH07113821A (en) 1993-10-14 1993-10-14 Terminal and method for measuring electric characteristic

Publications (1)

Publication Number Publication Date
JPH07113821A true JPH07113821A (en) 1995-05-02

Family

ID=17642193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28165993A Pending JPH07113821A (en) 1993-10-14 1993-10-14 Terminal and method for measuring electric characteristic

Country Status (1)

Country Link
JP (1) JPH07113821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197402A (en) * 2003-11-05 2010-09-09 Nhk Spring Co Ltd Conductive-contact holder and conductive-contact unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197402A (en) * 2003-11-05 2010-09-09 Nhk Spring Co Ltd Conductive-contact holder and conductive-contact unit

Similar Documents

Publication Publication Date Title
US7385392B2 (en) Eddy current sensing arrays and system
EP2341354B1 (en) Contactless measuring system
EP1506428A1 (en) Method for calibrating and de-embedding, set of devices for de-embedding and vector network analyzer
CN108735678B (en) Quantum bare chip three-dimensional packaging structure and packaging method thereof
CN108152606A (en) Electric field passive probe
CN108184306A (en) Electric field passive probe
JPS60260861A (en) Probe
GB1360086A (en) Method of and apparatus for measuring the thickness of layers
US20030001567A1 (en) Magnetic field probe having a shielding layer to protect lead wires with an isolating layer
Pandey et al. Impedance spectroscopy: a powerful technique for study of electronic ceramics
JPH08248080A (en) Electromagnetic noise measuring magnetic field probe, electromagnetic noise measuring electric field probe and electromagnetic noise measuring apparatus
JPH07113821A (en) Terminal and method for measuring electric characteristic
JP2012032165A (en) Apparatus and method for measuring permeability of magnetic substance
US6201400B1 (en) Bulls-eye mid-frequency impedance probe
JP5219395B2 (en) Wafer polishing monitoring method and apparatus
US11800627B2 (en) Probe for measuring plasma parameters
JPH07336115A (en) Contact type high frequency signal connecting structure
CN206710469U (en) Oscillograph high-voltage probe expansion module
CN106970344A (en) A kind of method for reducing open circuit device calibrating device edge capacitance and open circuit device calibrating device
JP2001324522A (en) Method for measuring of dielectric constant or magnetic permeability
US6753676B1 (en) RF test probe
JPH11133074A (en) Method and device for measuring common mode impedance of electronic circuit board
JP2003232834A (en) Inspection method of high-frequency high-speed device and inspection tool
JPH08313555A (en) Tester probe
Lian et al. Air-gap effect and the importance of the electrodes on the sample in the lumped-capacitance method for dielectric measurements