JPH0711360A - Carbon-aluminum composite material - Google Patents

Carbon-aluminum composite material

Info

Publication number
JPH0711360A
JPH0711360A JP15365493A JP15365493A JPH0711360A JP H0711360 A JPH0711360 A JP H0711360A JP 15365493 A JP15365493 A JP 15365493A JP 15365493 A JP15365493 A JP 15365493A JP H0711360 A JPH0711360 A JP H0711360A
Authority
JP
Japan
Prior art keywords
carbon
aluminum
composite material
thermal expansion
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15365493A
Other languages
Japanese (ja)
Inventor
Masaji Ishihara
正司 石原
Kyoichi Suzuki
恭一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP15365493A priority Critical patent/JPH0711360A/en
Publication of JPH0711360A publication Critical patent/JPH0711360A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a carbon-aluminum composite material in which the coefficient of linear thermal expansion is controlled equally to that of a ferrous material as a piston for a reciprocating internal combustion engine and a seal material used in an environment of high temps. or that in which the temp. changes, light in weight and having self-lubricity. CONSTITUTION:The carbon-aluminum composite material in which, in a composite material in which the phases of carbon and aluminum or their alloy are all formed of continuous ones, the volume content of carbon occupied in the composite material is regulated to 50 to 85vol%, pores are present at the inside of the carbon by 1 to 14vol% to the carbon, the content of pores other than those in the carbon is regulated to <=10vol% to the whole body of the composite material, and the balance aluminum or the alloy thereof, and the coefficient of linear thermal expansion is regulated to 7X10<-6>/K to 15X10<-6>/K is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱膨張係数が鉄系材料と
同等に制御され、軽量で自己潤滑性のある炭素・アルミ
ニウム複合材を提供し、該材料は往復型内燃機関用のピ
ストンや高温あるいは温度が変化する環境で使用される
シール材として好適である。
FIELD OF THE INVENTION The present invention provides a carbon-aluminum composite material having a coefficient of thermal expansion controlled to be equal to that of an iron-based material and having a light weight and self-lubricating property. The material is a piston or a piston for a reciprocating internal combustion engine. It is suitable as a sealing material used in high temperatures or environments where the temperature changes.

【0002】[0002]

【従来の技術】アルミニウムは軽量であるため内燃機関
のピストンなどに使用されている。しかし、アルミニウ
ムあるいはその合金は熱膨張係数が21×10-6/Kと
大きい。一般の鉄系材料の熱膨張係数は10〜12×1
-6/Kであり、アルミニウムの約半分である。往復型
内燃機関ではピストンとシリンダーの間隙が狭いほど燃
料の消費効率が良くなる。この間隙は材料の熱膨張係数
が小さいほど小さくできる。あるいはシリンダーとピス
トンの熱膨張率が近いほど間隙は狭くできる。現在シリ
ンダーは鉄系の材料が広く用いられており、軽量なアル
ミニウム製のピストンの熱膨張係数を鉄系材料と同じに
できればメリットは大きい。さらに材料自身に潤滑性が
あればエンジンオイルを少なくすることができる。
2. Description of the Related Art Aluminum is lightweight and is used for pistons of internal combustion engines. However, aluminum or its alloy has a large thermal expansion coefficient of 21 × 10 −6 / K. The thermal expansion coefficient of general iron-based materials is 10-12 x 1
It is 0 -6 / K, which is about half that of aluminum. In a reciprocating internal combustion engine, the narrower the gap between the piston and the cylinder, the better the fuel consumption efficiency. This gap can be made smaller as the coefficient of thermal expansion of the material is smaller. Alternatively, the closer the coefficient of thermal expansion between the cylinder and the piston, the narrower the gap. At present, iron-based materials are widely used for cylinders, and it would be a great advantage if the lightweight aluminum piston could have the same coefficient of thermal expansion as iron-based materials. Furthermore, if the material itself has lubricity, the amount of engine oil can be reduced.

【0003】炭素は自己潤滑性を有するため、回転軸の
シール材や固体の軸受けとして使われている。炭素質あ
るいは黒鉛質粒子を焼き固めた一般の炭素材料は、靱性
が低く構造材料として使用するときには信頼性に欠け
る。熱膨張係数は3〜5×10 -6/Kと鉄系材料に比べ
てかなり小さい。また、炭素繊維で強化した炭素材料で
あるC/C複合材は強度も高く、また靱性も構造材料に
使用できる程度に十分高いが、その熱膨張係数は炭素繊
維の熱膨張率に支配され0〜1×10-6/Kと非常に低
い。また、繊維強化複合材であるためその物性に異方性
があり、また、部品としての形状が制約される場合が多
く、構造材としては使い難い。シール材や軸受け材が接
触する相手の軸には鉄系材料が広く用いられている。し
かし、一般の炭素材料あるいはC/C複合材と鉄系材料
との熱膨張係数の差は大きく、高温あるいは温度が変化
する環境での使用には適さない。
Since carbon has a self-lubricating property,
It is used as a sealant and solid bearing. Carbonaceous
The general carbon material obtained by baking and hardening graphite particles is tough
Is low and lacks reliability when used as a structural material
It Coefficient of thermal expansion is 3-5 × 10 -6/ K compared to iron-based materials
Is quite small. Also, with carbon material reinforced with carbon fiber
A C / C composite material has high strength and toughness as a structural material.
It is high enough to be used, but its coefficient of thermal expansion is carbon fiber.
0-1x10 controlled by the thermal expansion coefficient of fiber-6/ K and very low
Yes. Since it is a fiber-reinforced composite material, its physical properties are anisotropic.
However, there are many cases where the shape of a part is restricted.
It is difficult to use as a structural material. Contact with sealing materials and bearing materials
Iron-based materials are widely used for the shaft of the person to be touched. Shi
However, general carbon material or C / C composite material and iron material
The difference in the coefficient of thermal expansion between
It is not suitable for use in an environment where

【0004】アルミニウムや炭素製の材料は単独で使用
されることは希であり、多くの場合ある部品として他の
材料と、特に鉄系の材料と組み合わされて使用される。
特に高温あるいは温度が変化する環境で使用される場
合、熱膨張係数が鉄系の材料に近いことは重要である。
Materials made of aluminum or carbon are rarely used alone, and in many cases, they are used as a part in combination with other materials, especially iron-based materials.
Especially when used in an environment where the temperature is high or the temperature changes, it is important that the coefficient of thermal expansion be close to that of an iron-based material.

【0005】[0005]

【発明が解決しようとする課題】アルミニウムあるいは
その合金と、炭素あるいは黒鉛との複合材は軽量で自己
潤滑性を有する材料として知られているが、熱膨張挙動
に関して既存の材料には以下のような問題点がある。炭
素繊維強化アルミニウム複合材の熱膨張係数αc は、v
をアルミニウム体積含有率として下記の式(I)で表さ
れる。ここでα1 はアルミニウムの熱膨張係数、α2
炭素繊維の熱膨張係数、E1 はアルミニウムの弾性率、
2 は炭素繊維の弾性率である。代表値としてE1 に7
0GPa、E2 に250GPa、α1に21×10-6
K、α2 に0×10-6/Kをそれぞれ用い、該複合材の
熱膨張係数のアルミニウムの濃度に対する変化を図1の
曲線1に示す。
A composite material of aluminum or its alloy and carbon or graphite is known as a material having a light weight and a self-lubricating property. However, regarding the thermal expansion behavior, the existing materials are as follows. There is a problem. The thermal expansion coefficient α c of the carbon fiber reinforced aluminum composite material is v
Is represented by the following formula (I), where is the aluminum volume content. Where α 1 is the coefficient of thermal expansion of aluminum, α 2 is the coefficient of thermal expansion of carbon fiber, E 1 is the elastic modulus of aluminum,
E 2 is the elastic modulus of the carbon fiber. 7 for E 1 as a typical value
0 GPa, E 2 250 GPa, α 1 21 × 10 -6 /
Curves 1 in FIG. 1 show changes in the coefficient of thermal expansion of the composite material with respect to the concentration of aluminum, using 0 × 10 −6 / K for K and α 2 , respectively.

【0006】[0006]

【数1】 [Equation 1]

【0007】炭素質あるいは黒鉛質粒子を焼き固めた炭
素材料にアルミニウムを含浸した複合材では、炭素繊維
強化アルミニウム複合材と同様に炭素相とアルミニウム
相はそれぞれ連続相であるから、式(I)で該複合材の
熱膨張係数は表される。代表値としてE1 に70GP
a、E2 に10GPa、α1 に3.5×10-6/K、α
2 に21×10-6/K、をそれぞれ用い、該複合材の熱
膨張係数のアルミニウムの濃度に対する変化を図1の曲
線2に示す。
Charcoal obtained by baking carbonaceous or graphite particles
In the composite material in which the base material is impregnated with aluminum, carbon fiber
Carbon phase and aluminum as in reinforced aluminum composites
Since each of the phases is a continuous phase, according to formula (I)
The coefficient of thermal expansion is expressed. E as a representative value170 GP
a, E210 GPa, α13.5 × 10-6/ K, α
221 × 10-6/ K, respectively, the heat of the composite material
The change in expansion coefficient with respect to the concentration of aluminum is shown in the curve of Fig. 1.
Shown in line 2.

【0008】炭素あるいは黒鉛粒子をアルミニウム中に
分散した複合材は、炭素が連続相でないので、炭素質あ
るいは黒鉛質粒子を焼き固めた炭素材料にアルミニウム
を含浸した複合材より、アルミニウムの影響をより強く
受ける。したがって、炭素あるいは黒鉛粒子をアルミニ
ウム中に分散した複合材の熱膨張係数は一般に図1の曲
線2より大きく、例えば曲線3に代表される変化を示
す。
Since the composite material in which carbon or graphite particles are dispersed in aluminum does not have a continuous phase of carbon, the influence of aluminum is more exerted than the composite material obtained by impregnating aluminum in a carbon material obtained by baking and hardening carbonaceous or graphite particles. Receive strongly. Therefore, the coefficient of thermal expansion of the composite material in which carbon or graphite particles are dispersed in aluminum is generally larger than that of the curve 2 in FIG. 1, and shows a change represented by the curve 3, for example.

【0009】すなわち、既存の技術ではアルミニウムと
炭素を複合した効果が十分に発揮される組成比(アルミ
ニウムの体積含有率が15〜85vol%、残りが炭
素)では、鉄系材料の熱膨張係数10〜12×10-6
Kを得ることができない。そこで本発明者はこれらの課
題を解決すべく鋭意検討した結果、炭素とアルミニウム
が共に連続相であって、かつ炭素に適当量の気孔が含ま
れる複合材により、上記問題が解決できる事を見いだし
本発明に至った。すなわち、本発明の目的は熱膨張係数
が鉄系材料に近く、かつ軽量で自己潤滑性を有する炭素
・アルミニウム複合材を提供することにある。
That is, in the existing technology, at a composition ratio (aluminum volume content is 15 to 85 vol% and the balance is carbon) in which the effect of combining aluminum and carbon is sufficiently exerted, the thermal expansion coefficient of the iron-based material is 10 ~ 12 × 10 -6 /
I can't get K. Therefore, the present inventor has conducted intensive studies to solve these problems, and found that the above problems can be solved by a composite material in which carbon and aluminum are both continuous phases and carbon contains an appropriate amount of pores. The present invention has been completed. That is, an object of the present invention is to provide a carbon-aluminum composite material which has a thermal expansion coefficient close to that of an iron-based material, is lightweight, and has a self-lubricating property.

【0010】[0010]

【課題を解決するための手段】しかしてかかる目的は、
炭素とアルミニウムもしくはその合金が共に連続相であ
る複合材において、該複合材に占める炭素の体積含有率
が50〜85vol%で、該炭素に対して3〜10vo
l%の気孔が炭素内部に存在し、該炭素の外の気孔が複
合材全体に対して6vol%以下で、残りがアルミニウ
ムもしくはその合金であり、線熱膨張係数が15×10
-6/K以下、7×10-6/K以上であることを特徴とす
る炭素・アルミニウム複合材により容易に達成される。
[Means for Solving the Problems]
In a composite material in which carbon and aluminum or their alloys are both continuous phases, the volume content of carbon in the composite material is 50 to 85 vol%, and 3 to 10 vo with respect to the carbon.
1% of the pores exist inside the carbon, the pores outside the carbon are 6 vol% or less with respect to the whole composite material, and the rest are aluminum or its alloy, and the coefficient of linear thermal expansion is 15 × 10
-6 / K or less is readily accomplished by a carbon-aluminum composite material, characterized in that it is 7 × 10 -6 / K or more.

【0011】以下に詳しく本発明を説明する。本発明の
炭素とは、実質的に炭素原子からなり3次元的に連続で
ある。炭素の形態は特に限定されるものでない。例え
ば、黒鉛結晶が発達した黒鉛質、黒鉛結晶の発達が悪い
炭素質、あるいはX線回折をほとんど示さないアモルフ
ァスカーボンやグラッシーカーボンなど、あるいはこれ
らの混合物などを用いる事ができる。更に具体的には天
然黒鉛、人造黒鉛、製鋼用コークス、鋳物用コークス、
ピッチコークス、ニードルコークス、カーボンブラッ
ク、活性炭などを原料とすることができる。メタン等の
ガスを熱分化して気相から直接作られた炭素質物質を原
料とすることができる。また、炭素の前駆体としてはピ
ッチや熱硬化性樹脂などの有機物を用いることができ
る。炭素を炭素粒子として用いる場合、一般には0.1
〜5000μm程度のものが好適である。
The present invention will be described in detail below. The carbon of the present invention is substantially composed of carbon atoms and is three-dimensionally continuous. The form of carbon is not particularly limited. For example, it is possible to use a graphite material in which a graphite crystal is developed, a carbon material in which a graphite crystal is not well developed, amorphous carbon or glassy carbon which hardly shows X-ray diffraction, or a mixture thereof. More specifically, natural graphite, artificial graphite, steel making coke, foundry coke,
Pitch coke, needle coke, carbon black, activated carbon, etc. can be used as a raw material. A carbonaceous substance produced directly from a gas phase by thermally differentiating a gas such as methane can be used as a raw material. Further, as the carbon precursor, an organic material such as pitch or thermosetting resin can be used. When carbon is used as carbon particles, it is generally 0.1
It is preferably about 5,000 μm.

【0012】炭素相が連続でないと大きなアルミニウム
の熱膨張の影響をより強く受け、図1の曲線3に示すご
とく複合材の熱膨張係数は大きくなり好ましくない。ま
た、炭素に炭素繊維のみを用いると、後述する炭素内部
の気孔が本発明の範囲外となり、かつ炭素繊維の弾性率
はアルミニウムより約1桁高く、図1の曲線1に示すご
とく、炭素繊維の熱膨張率が支配的となり不適当である
が、炭素相に少量の炭素繊維を添加することはさしつか
えない。複合材中の炭素の濃度は50〜85vol%で
ある。これより炭素濃度が高いと熱膨張係数が小さくな
り過ぎるとともに、アルミニウムの含有率が低下するた
め複合材の靱性が低下するので好ましくない。また、ア
ルミニウムが過剰であると、熱膨張係数が鉄系材料より
大きくなり過ぎ、また複合材の自己潤滑性が失われるこ
とになる。
If the carbon phase is not continuous, it is more affected by the large thermal expansion of aluminum, and the thermal expansion coefficient of the composite material becomes large as shown by the curve 3 in FIG. 1, which is not preferable. Further, when only carbon fiber is used for carbon, the pores inside the carbon which will be described later are out of the scope of the present invention, and the elastic modulus of carbon fiber is about one digit higher than that of aluminum, and as shown by curve 1 in FIG. The coefficient of thermal expansion of (1) is dominant and unsuitable, but a small amount of carbon fiber may be added to the carbon phase. The carbon concentration in the composite is 50-85 vol%. When the carbon concentration is higher than this, the thermal expansion coefficient becomes too small, and the aluminum content decreases, so that the toughness of the composite material decreases, which is not preferable. Further, when aluminum is excessive, the coefficient of thermal expansion becomes too large as compared with the iron-based material, and the self-lubricating property of the composite material is lost.

【0013】一方、本発明のアルミニウムとは、純アル
ミニウムもしくはその合金である。アルミニウム合金の
熱膨張係数はその組成によりあまり変化しないので、合
金の組成は複合材の弾性率等の他の物性により選ぶこと
ができる。唯一の要件は、複合材においてアルミニウム
が三次元的に連続していればよい。アルミニウムが不連
続であると、複合材の靱性が低下する。周知の様に炭素
自身は脆性材料であり、複合材の高靱性はアルミニウム
に依存する。このアルミニウムが不連続であれば複合材
は脆くなり構造用材料として適当でない。
On the other hand, the aluminum of the present invention is pure aluminum or its alloy. Since the coefficient of thermal expansion of an aluminum alloy does not change much depending on its composition, the composition of the alloy can be selected according to other physical properties such as the elastic modulus of the composite material. The only requirement is that the aluminum be three-dimensionally continuous in the composite. The discontinuity of aluminum reduces the toughness of the composite material. As is well known, carbon itself is a brittle material, and the high toughness of composite materials depends on aluminum. If this aluminum is discontinuous, the composite becomes brittle and is not suitable as a structural material.

【0014】炭素中の気孔とは炭素により取り囲まれた
気孔である。炭素の熱膨張係数はアルミニウムより小さ
い。気孔を取り巻く炭素は気孔があるゆえに変形しやす
く、アルミニウムの大きな熱膨張を吸収し、式(I)か
ら予想される値より小さな熱膨張係数を実現する。この
炭素中の気孔は本発明中最も重要な要件である。気孔量
は炭素に対して1〜14vol%、好ましくは3〜10
vol%が良い。炭素中の気孔が多すぎると、炭素相が
本来の性質を発現しなくなり不適当である。また、少な
すぎると熱膨張係数を制御する能力を失うので不適当で
ある。気孔の大きさは、連続な炭素相に含まれ、かつ炭
素相が一つの相として機能する大きさ、すなわち炭素相
の代表的大きさの約1桁小さい大きさがその上限として
適当である。気孔が炭素原子と同程度の大きさになる
と、原子欠陥となりもはや気孔として機能しなくなるの
で不適当である。したがって、炭素中の気孔の大きさは
0.01〜100μmが好ましい。なお、気孔の形状は
特に限定されるものではない。
The pores in carbon are pores surrounded by carbon. The coefficient of thermal expansion of carbon is smaller than that of aluminum. The carbon surrounding the pores is susceptible to deformation due to the presence of the pores, absorbs the large thermal expansion of aluminum and achieves a coefficient of thermal expansion smaller than that expected from equation (I). The pores in this carbon are the most important requirement in the present invention. Porosity is 1 to 14 vol% with respect to carbon, preferably 3 to 10
vol% is good. If there are too many pores in the carbon, the carbon phase will not exhibit its original properties and is unsuitable. On the other hand, if it is too small, the ability to control the coefficient of thermal expansion is lost, which is unsuitable. A suitable upper limit of the pore size is a size that is contained in a continuous carbon phase and the carbon phase functions as one phase, that is, a size that is about one order of magnitude smaller than the typical size of the carbon phase. If the pores have the same size as the carbon atoms, it becomes unsuitable because it becomes an atomic defect and no longer functions as pores. Therefore, the size of pores in carbon is preferably 0.01 to 100 μm. The shape of the pores is not particularly limited.

【0015】炭素の外の気孔とは、炭素とアルミニウム
の界面あるいはアルミニウム内部に存在する気孔であ
る。複合材の強度は主にアルミニウムに依存し、炭素の
外の気孔はアルミニウムの破壊の起点となり、複合材の
強度を低下させる。したがって、炭素の外の気孔量は複
合材全体に対して10vol%以下であり、好ましくは
6vol%以下がよい。
The pores outside the carbon are the pores existing at the interface between the carbon and aluminum or inside the aluminum. The strength of the composite material depends mainly on aluminum, and the pores outside the carbon serve as the starting point of aluminum fracture, which reduces the strength of the composite material. Therefore, the amount of pores other than carbon is 10 vol% or less, preferably 6 vol% or less, based on the whole composite material.

【0016】本発明の複合材を作る方法として、例え
ば、内部に適当な気孔を有する炭素質粒子を不活性雰囲
気中で焼き固め多孔質体を作り、該多孔質体にアルミニ
ウムの溶湯を含浸する方法がある。得られた炭素・アル
ミニウム複合材は、炭素とアルミニウムあるいはその合
金がともに連続相をなし、該複合材に占める炭素の体積
含有率が50〜85vol%であり、該炭素に対して1
〜14vol%の気孔が炭素内部に存在し、該炭素の外
の気孔が複合材全体に対して10vol%以下で、残り
がアルミニウムもしくはその合金であり、線熱膨張係数
が15×10-6/K以下、7×10-6/K以上である。
この複合材は常法により成型され、往復型内燃機関のピ
ストン又は各種シール材等として好適に用いられる。
As a method for producing the composite material of the present invention, for example, carbonaceous particles having appropriate pores inside are baked and solidified in an inert atmosphere to form a porous body, and the porous body is impregnated with a molten aluminum. There is a way. In the obtained carbon / aluminum composite material, both carbon and aluminum or an alloy thereof form a continuous phase, and the volume content of carbon in the composite material is 50 to 85 vol%, which is 1% of the carbon.
Porosity of up to 14 vol% is present inside the carbon, pores outside the carbon are 10 vol% or less with respect to the entire composite material, and the rest is aluminum or its alloy, and the linear thermal expansion coefficient is 15 × 10 −6 / K or less and 7 × 10 −6 / K or more.
This composite material is molded by a conventional method and is suitably used as a piston or various sealing materials for a reciprocating internal combustion engine.

【0017】[0017]

【実施例】以下に実施例を用いて更に詳細に本発明を説
明する。 実施例1 炭素質粒子(ピッチコークス、平均100μm)とバイ
ンダー(フェノール樹脂)を混合し圧力を加えて成形し
た後約3000℃で焼成して、嵩密度1.17g/c
c、室温から125℃までの平均線熱膨張係数4.4×
10-6/Kの多孔質体を得た。この多孔質体の炭素中の
気孔を水銀圧入法で測定したところ、炭素に対して約8
vol%であった。これに800℃に加熱したJIS
H2117(1975)に定められた8種Aアルミニウ
ム合金(AC8A)を約800MPaの圧力で含浸して
複合材を作った。
EXAMPLES The present invention will be described in more detail with reference to the following examples. Example 1 Carbonaceous particles (pitch coke, average 100 μm) and a binder (phenolic resin) were mixed, pressure was applied to the mixture, and the mixture was baked at about 3000 ° C. to obtain a bulk density of 1.17 g / c.
c, average linear thermal expansion coefficient from room temperature to 125 ° C. 4.4 ×
A porous body of 10 −6 / K was obtained. The porosity in the carbon of this porous body was measured by the mercury porosimetry, and it was about 8
It was vol%. JIS heated to 800 ℃
A composite material was prepared by impregnating an aluminum alloy of Class 8A (AC8A) specified in H2117 (1975) at a pressure of about 800 MPa.

【0018】得られた炭素・アルミニウム複合材の室温
から125℃までの平均線熱膨張係数は14×10-6
Kであった。該複合材の断面を走査型電子顕微鏡で観察
したところ、気孔はすべて炭素中に存在した。また、該
気孔の大きさは約50μm以下であった。炭素の密度を
2.2g/cc、アルミニウム合金の密度を2.64g
/ccとして、各工程での重量変化から算出した各構成
要素の含有率は、それぞれ炭素53vol%、アルミニ
ウム合金43vol%、炭素中の気孔8vol%(炭素
に対して)、炭素の外の気孔0vol%であった。
The average linear thermal expansion coefficient of the obtained carbon / aluminum composite material from room temperature to 125 ° C. is 14 × 10 -6 /
It was K. When the cross section of the composite material was observed with a scanning electron microscope, all the pores were present in carbon. The size of the pores was about 50 μm or less. Carbon density is 2.2 g / cc, aluminum alloy density is 2.64 g
/ Cc, the content rate of each constituent element calculated from the weight change in each step is 53 vol% carbon, 43 vol% aluminum alloy, 8 vol% in carbon (relative to carbon), 0 vol outside the carbon. %Met.

【0019】実施例2 バインダーとしてコールタールピッチを用いるほかは実
施例1と同様の方法で嵩密度1.31g/cc、室温か
ら125℃までの平均線熱膨張係数4.5×10-6/K
の多孔質体を得た。この多孔質体の炭素中の気孔を水銀
圧入法で測定したところ、炭素に対して約4vol%で
あった。以後実施例1と同じ方法で複合材を作った。得
られた炭素・アルミニウム複合材の室温から125℃ま
での平均線熱膨張係数14×10-6/Kであった。該複
合材の断面を走査型電子顕微鏡で観察したところ、気孔
はすべて炭素中に存在した。また、該気孔の大きさは約
25μm以下であった。実施例1と同じ方法で算出した
各構成要素の含有率は、それぞれ炭素60vol%、ア
ルミニウム合金38vol%、炭素中の気孔4vol%
(炭素に対して)、炭素の外の気孔0vol%であっ
た。
Example 2 A bulk density of 1.31 g / cc and an average coefficient of linear thermal expansion from room temperature to 125 ° C. of 4.5 × 10 -6 / were obtained in the same manner as in Example 1 except that coal tar pitch was used as the binder. K
To obtain a porous body of. When the pores in carbon of this porous body were measured by the mercury porosimetry, it was about 4 vol% with respect to carbon. Thereafter, a composite material was prepared in the same manner as in Example 1. The average linear thermal expansion coefficient of the obtained carbon / aluminum composite material from room temperature to 125 ° C. was 14 × 10 −6 / K. When the cross section of the composite material was observed with a scanning electron microscope, all the pores were present in carbon. The size of the pores was about 25 μm or less. The content of each constituent element calculated by the same method as in Example 1 is 60 vol% of carbon, 38 vol% of aluminum alloy, and 4 vol% of pores in carbon.
(Relative to carbon), the amount of pores outside the carbon was 0 vol%.

【0020】実施例3 平均粒径50μmのピッチコークスを用いる以外は実施
例1と同様の方法で嵩密度1.54g/cc、室温から
125℃までの平均線熱膨張係数5.0×10 -6/Kの
多孔質体を得た。この多孔質体の炭素中の気孔を水銀圧
入法で測定したところ、炭素に対して約5vol%であ
った。以後実施例1と同じ方法で複合材を作った。得ら
れた炭素・アルミニウム複合材の室温から125℃まで
の平均線熱膨張係数は11.3×10-6/Kであった。
実施例1と同じ方法で算出した各構成要素の含有率は、
それぞれ炭素70vol%、アルミニウム合金28vo
l%、炭素中の気孔5vol%(炭素に対して)、炭素
の外の気孔0vol%であった。
Example 3 Performed except that a pitch coke having an average particle size of 50 μm was used.
Bulk density of 1.54 g / cc from room temperature
Average linear thermal expansion coefficient up to 125 ℃ 5.0 × 10 -6/ K's
A porous body was obtained. The porosity in the carbon of this porous body is determined by the mercury pressure.
It was about 5 vol% with respect to carbon as measured by the in-house method.
It was. Thereafter, a composite material was prepared in the same manner as in Example 1. Got
Carbon-aluminum composites from room temperature to 125 ° C
Has an average linear thermal expansion coefficient of 11.3 × 10-6Was / K.
The content rate of each component calculated by the same method as in Example 1 is
70 vol% carbon and 28 vo aluminum alloy
1%, 5 vol% of pores in carbon (relative to carbon), carbon
The outside pores were 0 vol%.

【0021】実施例4 ニードルコークス(平均50μm)とバインダー(コー
ルタールピッチ)を混合し押出し成形した後約3000
℃で焼成して、嵩密度1.66g/cc、室温から12
5℃までの平均線熱膨張係数2.4×10-6/Kの多孔
質体を得た。この多孔質体の炭素中の気孔を水銀圧入法
で測定したところ、炭素に対して約5vol%であっ
た。以後実施例1と同じ方法で複合材を作った。得られ
た炭素・アルミニウム複合材の室温から125℃までの
平均線熱膨張係数は7.8×10-6/Kであった。該複
合材の断面を走査型電子顕微鏡で観察したところ、一部
の気孔は炭素中に、残り気孔は主に炭素とアルミニウム
合金の界面に存在した。また、炭素中の気孔の大きさは
約10μm以下であった。実施例1と同じ方法で算出し
た各構成要素の含有率は、それぞれ炭素75vol%、
アルミニウム合金18vol%、炭素中の気孔5vol
%(炭素に対して)、炭素の外の気孔4.5vol%で
あった。以上実施例で得られた炭素・アルミニウム複合
材の線熱膨張係数を図1に丸印で示す。鉄系材料の熱膨
張係数10〜12×10-6/Kと同じあるいは近い材料
が得られる。
Example 4 Needle coke (average 50 μm) and binder (coal tar pitch) were mixed and extruded, and then about 3000
Calcined at ℃, bulk density 1.66g / cc, room temperature to 12
A porous body having an average linear thermal expansion coefficient of 2.4 × 10 −6 / K up to 5 ° C. was obtained. When the pores in carbon of this porous body were measured by the mercury porosimetry, it was about 5 vol% with respect to carbon. Thereafter, a composite material was prepared in the same manner as in Example 1. The average linear thermal expansion coefficient of the obtained carbon / aluminum composite material from room temperature to 125 ° C. was 7.8 × 10 −6 / K. When the cross section of the composite material was observed with a scanning electron microscope, some pores were present in carbon and the remaining pores were mainly present at the interface between carbon and the aluminum alloy. The size of pores in carbon was about 10 μm or less. The content rate of each constituent element calculated by the same method as in Example 1 is 75 vol% of carbon,
Aluminum alloy 18vol%, pores in carbon 5vol
% (Relative to carbon), and pores outside the carbon were 4.5 vol%. The linear thermal expansion coefficients of the carbon / aluminum composite materials obtained in the above examples are shown by circles in FIG. A material having a thermal expansion coefficient of 10 to 12 × 10 −6 / K which is the same as or close to that of the iron-based material can be obtained.

【0022】(比較例) 比較例1 引張弾性率250GPaのピッチ系炭素繊維とJIS
H2117(1975)に定められた8種Aアルミニウ
ム合金(AC8A)を高圧凝固鋳造法により複合化し、
繊維体積分率35vol%、アルミニウム合金体積分率
75vol%の一方向強化アルミニウム複合材を作っ
た。繊維方向に測定した室温から125℃までの平均線
熱膨張係数は7.5×10-6/Kであった。
Comparative Example Comparative Example 1 Pitch-based carbon fiber having a tensile elastic modulus of 250 GPa and JIS
H2117 (1975) defined 8 type A aluminum alloy (AC8A) is compounded by high pressure solidification casting method,
A unidirectionally reinforced aluminum composite material having a fiber volume fraction of 35 vol% and an aluminum alloy volume fraction of 75 vol% was prepared. The average linear thermal expansion coefficient from room temperature to 125 ° C. measured in the fiber direction was 7.5 × 10 −6 / K.

【0023】比較例2 引張弾性率250GPaのピッチ系炭素繊維とJIS
H2117(1975)に定められた8種Aアルミニウ
ム合金(AC8A)を高圧凝固鋳造法により複合化し、
繊維体積分率50vol%、アルミニウム合金体積分率
50vol%の一方向強化アルミニウム複合材を作っ
た。繊維方向に測定した室温から125℃までの平均線
熱膨張係数は5.1×10-6/Kであった。
Comparative Example 2 Pitch-based carbon fiber having tensile elasticity of 250 GPa and JIS
H2117 (1975) defined 8 type A aluminum alloy (AC8A) is compounded by high pressure solidification casting method,
A unidirectionally reinforced aluminum composite material having a fiber volume fraction of 50 vol% and an aluminum alloy volume fraction of 50 vol% was prepared. The average linear thermal expansion coefficient from room temperature to 125 ° C. measured in the fiber direction was 5.1 × 10 −6 / K.

【0024】[0024]

【発明の効果】本発明は、往復型内燃機関用のピストン
や高温あるいは温度が変化する環境で使用されるシール
材として好適である、線熱膨張係数が鉄系材料と同等に
制御され、軽量で自己潤滑性のある炭素・アルミニウム
複合材料を提供する。
INDUSTRIAL APPLICABILITY The present invention is suitable as a piston for a reciprocating internal combustion engine and a sealing material used in a high temperature or an environment where the temperature changes. Provides a self-lubricating carbon-aluminum composite material.

【図面の簡単な説明】[Brief description of drawings]

【図1】既存の炭素・アルミニウム複合材(曲線1〜
3)および本発明による複合材料の熱膨張係数とアルミ
ニウムの体積含有率との関係とを説明する。
FIG. 1 Existing carbon / aluminum composites (curves 1 to
3) and the relationship between the thermal expansion coefficient of the composite material according to the present invention and the volume content of aluminum will be described.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素とアルミニウムもしくはその合金が
ともに連続相である複合材において、該複合材に占める
炭素の体積含有率が50〜85vol%で、該炭素に対
して1〜14vol%の気孔が炭素内部に存在し、該炭
素の外の気孔が複合材全体に対して10vol%以下
で、残りがアルミニウムもしくはその合金であり、線熱
膨張係数が15×10-6/K以下、7×10-6/K以上
であることを特徴とする炭素・アルミニウム複合材。
1. A composite material in which both carbon and aluminum or an alloy thereof are in a continuous phase, the volume content of carbon in the composite material is 50 to 85 vol%, and the pores of 1 to 14 vol% with respect to the carbon. It exists inside carbon, the pores outside the carbon are 10 vol% or less with respect to the whole composite material, and the rest is aluminum or its alloy, and the linear thermal expansion coefficient is 15 × 10 −6 / K or less, 7 × 10 Carbon / aluminum composite material characterized by -6 / K or more.
【請求項2】 請求項1に記載された炭素・アルミニウ
ム複合材からなる往復型内燃機関用ピストン。
2. A piston for a reciprocating internal combustion engine comprising the carbon-aluminum composite material according to claim 1.
JP15365493A 1993-06-24 1993-06-24 Carbon-aluminum composite material Pending JPH0711360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15365493A JPH0711360A (en) 1993-06-24 1993-06-24 Carbon-aluminum composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15365493A JPH0711360A (en) 1993-06-24 1993-06-24 Carbon-aluminum composite material

Publications (1)

Publication Number Publication Date
JPH0711360A true JPH0711360A (en) 1995-01-13

Family

ID=15567267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15365493A Pending JPH0711360A (en) 1993-06-24 1993-06-24 Carbon-aluminum composite material

Country Status (1)

Country Link
JP (1) JPH0711360A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949042A (en) * 1995-08-09 1997-02-18 Zexel Corp Wear resistant composite material
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949042A (en) * 1995-08-09 1997-02-18 Zexel Corp Wear resistant composite material
US6933531B1 (en) 1999-12-24 2005-08-23 Ngk Insulators, Ltd. Heat sink material and method of manufacturing the heat sink material

Similar Documents

Publication Publication Date Title
KR101367347B1 (en) Biphasic nanoporous vitreous carbon material and method of making the same
US7799250B2 (en) Ceramic materials for friction linings
CN105829560B (en) The method through sintered components of manufacture and through sintered components
Liu et al. Mechanical and tribological properties of NiCr–Al2O3 composites at elevated temperatures
Liu et al. Tribological properties and wear mechanisms of NiCr–Al 2 O 3–SrSO 4–Ag self-lubricating composites at elevated temperatures
JP3082152B2 (en) Material for piston and method of manufacturing the same
JP3350394B2 (en) Graphite composite silicon carbide sintered body, graphite composite silicon carbide sintered composite, and mechanical seal
US20030118757A1 (en) Process for producing hollow bodies comprising fibre-reinforced ceramic materials
JP2006306970A (en) Friction material
JPH0711360A (en) Carbon-aluminum composite material
CN103693963B (en) A kind of Ti 3siC 2-TiC-Graphene self-lubricating composite and synthesizing preparation method in situ thereof
US5948330A (en) Method of fabricating chopped-fiber composite piston
JPS61132575A (en) Silicon carbide composite body
EP2265398B1 (en) Carbon body impregnated with a light alloy
JP4338362B2 (en) Method for producing aluminum composite material
Zhu et al. Microstructure and sliding wear performance of Cr 7 C 3-(Ni, Cr) 3 (Al, Cr) coating deposited from Cr 7 C 3 in situ formed atomized powder
CN106048306A (en) Copper-alloyed Ti-8Si alloy and preparation method thereof
JPH0634045A (en) Graphite-aluminium alloy complex piston
Kheruvimov et al. Investigations of composite materials for their applications in designs of vehicles
JP4150954B2 (en) Metal-impregnated carbon sliding material and manufacturing method thereof
JP4176184B2 (en) Sliding member for dry gas
JPH0310702B2 (en)
JPH04293998A (en) Sliding member
JPS61281086A (en) Sliding material
JPH03290367A (en) Production of carbon/silicon carbide composite material