JPH07113200A - Electrolytic polishing device and electrolyte thereof and electrolytic polishing method - Google Patents

Electrolytic polishing device and electrolyte thereof and electrolytic polishing method

Info

Publication number
JPH07113200A
JPH07113200A JP19754194A JP19754194A JPH07113200A JP H07113200 A JPH07113200 A JP H07113200A JP 19754194 A JP19754194 A JP 19754194A JP 19754194 A JP19754194 A JP 19754194A JP H07113200 A JPH07113200 A JP H07113200A
Authority
JP
Japan
Prior art keywords
electrolytic polishing
electrolytic
anode
polishing
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19754194A
Other languages
Japanese (ja)
Other versions
JP2678346B2 (en
Inventor
Yoshimaro Tezuka
良磨 手塚
Yasushi Kozuki
靖 神月
Katsuhisa Tokunaga
勝久 徳永
Masayoshi Mori
政義 森
Tadashi Nakano
正 中野
Junko Kuchiki
純子 朽木
Masaru Terao
勝 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6197541A priority Critical patent/JP2678346B2/en
Publication of JPH07113200A publication Critical patent/JPH07113200A/en
Application granted granted Critical
Publication of JP2678346B2 publication Critical patent/JP2678346B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Abstract

PURPOSE:To provide the electrolytic polishing device which is capable of electrolytically polishing the surfaces of a work so as to enable surer, flatter and better plating than heretofore and features excellent current efficiency and the electrolyte used for this electrolytic polishing as well as the electrolytic polishing method. CONSTITUTION:Cathode plates 5 and anode plates 8 alternately horizontally arranged apart spaced intervals and feed rollers 2 for the work which are arranged between these cathode plates 5 and anode plates 8 and consist of insulating materials are equipped in a tank 1. The electrolyte 6 consisting of an aq. soln. contg. 10 to 40g/l sulfuric acid, 10 to 20g/l sodium sulfate and 0.05 to 0.25g/l surfactant is put into the tank 1 in such an amt. that the upper side rollers among the feed rollers 2 are partly exposed to the air and the cathode plates 5 and the anode plates 8 are immersed therein. The electrolytic polishing is then executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リードフレーム等にメ
ッキを施す際の前処理等として用いられる、金属圧延材
料の電解研磨方法、電解研磨装置、及びその電解液に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic polishing method for a rolled metal material, an electrolytic polishing apparatus, and an electrolytic solution used as a pretreatment for plating lead frames and the like.

【0002】[0002]

【従来の技術】圧延は金属の成形方法として極めて一般
的な方法であるが、図5に示すように金属を圧延加工し
た圧延材料11の表面12には、深さ1μm以下の微細
な凹部13が存在し、この凹部13は表面12での開口
が小さく、奥に大きな空間を有することが多い。従っ
て、圧延材料11の表面12にメッキを行うと、上記凹
部13がメッキむらやメッキ層の膨れなどを生ずる原因
となる。このため、圧延材料では、メッキの前処理とし
て電解研磨を行うことが必要とされている。
2. Description of the Related Art Rolling is an extremely common method for forming a metal, but as shown in FIG. 5, a surface 12 of a rolled material 11 obtained by rolling a metal has fine recesses 13 having a depth of 1 μm or less. The recess 13 has a small opening on the surface 12 and often has a large space in the back. Therefore, when the surface 12 of the rolled material 11 is plated, the recess 13 causes uneven plating or swelling of the plated layer. Therefore, it is necessary for the rolled material to perform electrolytic polishing as a pretreatment for plating.

【0003】例えば、リードフレームの場合、一般に銅
や銅合金又は鉄合金を薄板状に圧延加工した材料が用い
られ、これを型抜きしたり、又はリード部分が残るよう
にエッチングした後、リード部分に金その他のメッキを
施して製造されている。しかしながら、リードフレーム
も圧延材料であるから、その表面に上記凹部が存在する
ことが避けられず、従ってメッキ不良を無くすためにメ
ッキの前処理として必ず電解研磨が行われている。
For example, in the case of a lead frame, a material obtained by rolling copper, a copper alloy or an iron alloy into a thin plate is generally used, and after die cutting or etching so that the lead portion remains, the lead portion is left. It is manufactured by applying gold or other plating to. However, since the lead frame is also a rolled material, it is unavoidable that the recesses exist on the surface of the lead frame. Therefore, electrolytic polishing is always performed as a pretreatment for plating in order to eliminate defective plating.

【0004】リードフレームの電解研磨装置としては、
従来、主として図4に示すような装置が用いられてい
る。この装置は槽1内に水平面に沿い間隔を置いて同一
方向に回転するように設けられた絶縁性材料からなる複
数の送りローラ2と、送りローラ2の上を送りローラ2
により移動されるリードフレーム7と接するように配置
され、送りローラ2と同一速度で逆方向に回転する複数
の給電ローラ3と、各給電ローラ3に接して配置され電
源の陽極に接続された刷子4と、送りローラ2の下に送
りローラ2に沿い延長して設けられ電源の陰極に接続さ
れた陰極板5とを備えている。
As an electrolytic polishing apparatus for lead frames,
Conventionally, an apparatus mainly shown in FIG. 4 has been used. This apparatus comprises a plurality of feed rollers 2 made of an insulating material, which are provided in a tank 1 so as to rotate in the same direction at intervals along a horizontal plane.
A plurality of feeding rollers 3 arranged in contact with the lead frame 7 moved by the feeding roller 2 and rotating in the opposite direction at the same speed as the feeding roller 2, and a brush arranged in contact with each feeding roller 3 and connected to the anode of the power source. 4 and a cathode plate 5 extending below the feed roller 2 along the feed roller 2 and connected to the cathode of the power supply.

【0005】電解研磨は、槽1に給電ローラ3の一部が
空気中に露出するように電解液6を入れ、給電ローラ3
から陰極板5に電解液6を介して通電しながら、リード
フレーム7を送りローラ2と給電ローラ3との間に供給
して行われる。リードフレーム7は給電ローラ3と接す
ることにより、給電ローラ3と同極の正に帯電してアノ
ードとして作用し、陰極板5との間で電解反応が生じて
電解研磨されることになる。
In the electrolytic polishing, the electrolytic solution 6 is put into the tank 1 so that a part of the power feeding roller 3 is exposed to the air, and the power feeding roller 3 is charged.
While supplying electricity to the cathode plate 5 via the electrolytic solution 6, the lead frame 7 is supplied between the feed roller 2 and the power feeding roller 3. When the lead frame 7 is in contact with the power feeding roller 3, the lead frame 7 is positively charged with the same polarity as the power feeding roller 3 and acts as an anode, and an electrolytic reaction occurs between the lead frame 7 and the cathode plate 5 to be electropolished.

【0006】又、かかる従来の電解研磨においては、リ
ン酸系の電解液が使用されている。例えば、ピロリン酸
カリウム50g/l、クエン酸ナトリウム30g/lを
含む水溶液のようなリン酸系電解液は、リードフレーム
として用いられる銅系部材や鉄系部材の電解研磨用の電
解液としての長い実績があり、最も一般的で安価なもの
である。
Further, in such conventional electrolytic polishing, a phosphoric acid type electrolytic solution is used. For example, a phosphoric acid-based electrolytic solution such as an aqueous solution containing 50 g / l of potassium pyrophosphate and 30 g / l of sodium citrate is long as an electrolytic solution for electrolytic polishing of a copper-based member or an iron-based member used as a lead frame. Proven, most popular and cheap.

【0007】[0007]

【発明が解決しようとする課題】近年、リードフレーム
は多ピン化に伴って従来よりも厚さが薄くなる傾向にあ
るが、厚さを薄くするには圧延回数を増加させることに
なるので、表面に生ずる凹部の数も相対的に増加するこ
とになる。このため、かかるリードフレームでも表面の
凹部をなくして平坦にすることができるように、一層効
率的で確実な電解研磨を行う必要に迫られている。
In recent years, the lead frame tends to be thinner than before due to the increase in the number of pins. However, in order to reduce the thickness, the number of rolling cycles must be increased. The number of recesses formed on the surface will also increase relatively. Therefore, it is necessary to perform more efficient and reliable electrolytic polishing so that even such a lead frame can be flattened by eliminating the concave portion on the surface.

【0008】しかし、前記した従来の電解研磨装置や電
解液を用いた方法では、多ピン化に伴って益々薄くなる
リードフレームの表面の凹部をなくして確実に平坦にす
ることが難しく、しかも電解研磨の電流効率が低いとい
う欠点があった。
However, with the above-described conventional electrolytic polishing apparatus and method using an electrolytic solution, it is difficult to eliminate the recesses on the surface of the lead frame, which become thinner as the number of pins increases, and to make the surface flat without fail. There is a drawback that the current efficiency of polishing is low.

【0009】本発明は、かかる従来の事情に鑑み、従来
よりも被処理物の表面を確実に平坦にでき、良好なメッ
キが可能となるように電解研磨でき、しかも電流効率が
優れている電解研磨装置、及びその電解研磨に用いる電
解液、並びに電解研磨方法を提供することを課題とす
る。
In view of the above-mentioned conventional circumstances, the present invention is capable of electrolytically polishing the surface of an object to be processed more surely than before, and electrolytically polishing it so that good plating can be performed, and moreover, electrolysis having excellent current efficiency. An object of the present invention is to provide a polishing apparatus, an electrolytic solution used for the electrolytic polishing, and an electrolytic polishing method.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明が提供する電解研磨装置においては、水平方
向に間隔をおいて交互に水平に配置された陰極板並びに
陽極板と、被処理物が移動する水平面に沿い被処理物と
接して回転するように上下に対をなし、前記陰極板と陽
極板の間に配置された絶縁材料からなる被処理物の送り
ローラとを、槽内に備えたことを特徴とする。
In order to achieve the above object, in the electropolishing apparatus provided by the present invention, a cathode plate and an anode plate which are alternately arranged horizontally at intervals are provided, and an object to be treated. A feed roller for the object to be treated made of an insulating material, which is paired up and down so as to rotate in contact with the object to be treated along a moving horizontal surface, is provided in the tank. It is characterized by that.

【0011】又、本発明の電解研磨に用いる電解液は、
硫酸10〜40g/l、硫酸ナトリウム10〜20g/
l、界面活性剤0.05〜0.25g/lを含む水溶液か
らなることを特徴とする。
The electrolytic solution used in the electrolytic polishing of the present invention is
Sulfuric acid 10-40 g / l, sodium sulfate 10-20 g /
1 and an aqueous solution containing 0.05 to 0.25 g / l of a surfactant.

【0012】更に、本発明の電解研磨方法は、上記の電
解研磨装置と電解液を用い、電解研磨装置の上下に対を
なす送りローラの内の上側ローラの少なくとも一部が空
気中に露出し且つ陰極板及び陽極板が浸るように、槽内
に上記の電解液を入れ、電解研磨を行うことを特徴とす
る。尚、陰極板は電源の陰極に接続され、陽極板は電源
の陽極に接続されることは当然である。
Further, the electrolytic polishing method of the present invention uses the above electrolytic polishing apparatus and the electrolytic solution, and at least a part of the upper roller of the feed rollers paired above and below the electrolytic polishing apparatus is exposed to the air. In addition, the electrolytic solution is placed in the bath so that the cathode plate and the anode plate are immersed, and electrolytic polishing is performed. The cathode plate is naturally connected to the cathode of the power source, and the anode plate is naturally connected to the anode of the power source.

【0013】[0013]

【作用】本発明の電解研磨装置は、隣接する上下に対を
なす送りローラ(以後、上下一対の送りローラと言う)
の間を単位電解槽として構成し、被処理物である金属圧
延材料を電解液以外の電気的導体と接せしめることな
く、単位電解槽において電極として作用するように構成
したことに特徴がある。即ち、本発明装置では、電解液
に浸された陰極板と陽極板から電解液を介して被処理物
に通電することにより、隣接する上下一対の送りローラ
の間に陰極板が存在する単位電解槽では被処理物をアノ
ードとして作用させ、被処理物の表面を電解研磨するよ
うにしたものである。
In the electropolishing apparatus of the present invention, the pair of adjoining upper and lower feed rollers (hereinafter referred to as a pair of upper and lower feed rollers).
It is characterized in that the space between them is configured as a unit electrolytic cell, and the rolled metal material as the object to be processed acts as an electrode in the unit electrolytic cell without contacting with an electric conductor other than the electrolytic solution. That is, in the device of the present invention, by energizing the object to be processed from the cathode plate and the anode plate immersed in the electrolytic solution through the electrolytic solution, the unit electrolysis in which the cathode plate is present between the pair of adjacent upper and lower feed rollers. In the bath, the object to be treated acts as an anode, and the surface of the object to be treated is electrolytically polished.

【0014】又、隣接する上下一対の送りローラの間に
陽極板の存在する単位電解槽では、電解液を介して通電
されている被処理物はカソードとして作用することにな
り、被処理物の表面は電解還元されるので、表面に残っ
ている強固な酸化膜などが還元除去され、表面が電解研
磨されやすくなる。従って、被処理物は送りローラによ
り移動しながら、電解研磨と電解還元が交互に行われる
ことになるので、効率良く確実な電解研磨を達成するこ
とができる。
Further, in the unit electrolytic cell in which the anode plate is present between the pair of upper and lower feed rollers adjacent to each other, the object to be processed, which is energized through the electrolytic solution, acts as a cathode, and thus the object to be processed. Since the surface is electrolytically reduced, a strong oxide film or the like remaining on the surface is reduced and removed, and the surface is easily electropolished. Therefore, the electrolytic polishing and the electrolytic reduction are alternately performed while the object to be processed is moved by the feed roller, so that efficient and reliable electrolytic polishing can be achieved.

【0015】被処理物の送りローラを上側ローラと下側
ローラとで上下に対をなして配置するのは、被処理物を
上下の送りローラで挟んで被処理物との間に滑りを生ず
ることなく、水平面に沿って一定の速度で搬送すると共
に、前記のごとく隣接する上下一対の送りローラ間で単
位電解槽を構成するためである。この単位電解槽を構成
するため、送りローラは全て絶縁材料で構成する。又、
上下の送りローラで被処理物を挟んだときに隙間を生じ
ないことが望ましく、このため送りローラはある程度の
弾性を有する絶縁材料であることが好ましい。送りロー
ラの材質としては、例えばポリエチレン、ポリ塩化ビニ
ル、ポリプロピレンなどの合成樹脂、あるいはシリコン
ゴムなどのゴムを挙げることができる。
When the feed rollers for the article to be processed are arranged in pairs vertically with the upper roller and the lower roller, the object to be treated is sandwiched between the upper and lower feed rollers and slip occurs between the article and the object to be treated. This is because the unit electrolyzer is configured to be conveyed along a horizontal plane at a constant speed without being formed and a pair of upper and lower feed rollers adjacent to each other as described above. In order to form this unit electrolytic cell, the feed rollers are all made of an insulating material. or,
It is desirable that no gap be created when the object to be processed is sandwiched between the upper and lower feed rollers, and therefore the feed roller is preferably made of an insulating material having elasticity to some extent. Examples of the material of the feed roller include synthetic resins such as polyethylene, polyvinyl chloride and polypropylene, and rubber such as silicon rubber.

【0016】上下一対の送りローラは、通常は上側ロー
ラ及び下側ローラ共に1個づつで構成されるが、それぞ
れ複数個で構成することもできる。隣接する上下一対の
送りローラ間で単位電解槽を構成するためには、上側ロ
ーラの少なくとも一部を電解液から空気中に露出させる
ことが必要である。これによって、隣接する上下一対の
送りローラの間に形成される単位電解槽が相互に分離さ
れ、電流の多くが電解液を介して陽極板から陰極板に直
接流れてしまうのを防止できる。
The pair of upper and lower feed rollers are usually composed of one upper roller and one lower roller, but may be composed of a plurality of rollers. In order to form a unit electrolytic cell between a pair of adjacent upper and lower feed rollers, it is necessary to expose at least a part of the upper roller from the electrolytic solution to the air. As a result, the unit electrolytic cells formed between the pair of adjacent upper and lower feed rollers are separated from each other, and most of the current can be prevented from flowing directly from the anode plate to the cathode plate through the electrolytic solution.

【0017】更には、下側ローラを槽の底面に接触させ
ることにより、電流が陽極板から陰極板に直接流れるの
をより完全に防止し、大部分の電流を被処理物に流して
電流効率を一層高めることができる。その場合、下側ロ
ーラ1個だけで槽の底面に接触させることも可能である
が、下側ローラを2個又はそれ以上で構成し、その最下
段の下側ローラを槽の底面に接触させるようにすれば、
槽の深さに拘らず陰極板と陽極板との間の電気反応を防
止して電解研磨の電流効率を飛躍的に高めることが可能
である。
Further, by contacting the lower roller with the bottom surface of the tank, it is possible to more completely prevent the current from directly flowing from the anode plate to the cathode plate, and most of the current is passed through the object to be processed to obtain the current efficiency. Can be further enhanced. In that case, it is possible to contact the bottom surface of the tank with only one lower roller, but the lower roller is composed of two or more rollers, and the lower roller of the lowest stage is contacted with the bottom surface of the tank. If you do
Regardless of the depth of the bath, it is possible to prevent the electric reaction between the cathode plate and the anode plate and dramatically increase the current efficiency of electrolytic polishing.

【0018】具体的に電流効率を比較すると、下側ロー
ラと槽の底面との間が相当離れている場合には被処理物
に流れる電流は全電流の10〜15%であるが、例えば
下側ローラを2段にして槽底面に接触させた場合、被処
理物に流れる電流は全電流の60〜70%にまで向上す
る。装置や材質の抵抗などによる電流の損失が5%程度
はあるので、電解に寄与することなく陽極板から陰極板
に直接流れる電流は残りの35〜25%に低減したこと
になる。
Specifically, comparing the current efficiencies, when the lower roller and the bottom of the tank are considerably separated, the current flowing through the object to be treated is 10 to 15% of the total current. When the side rollers are arranged in two stages and brought into contact with the bottom of the tank, the current flowing through the object to be treated is improved to 60 to 70% of the total current. Since the current loss due to the resistance of the device and the material is about 5%, the current flowing directly from the anode plate to the cathode plate without contributing to electrolysis is reduced to the remaining 35 to 25%.

【0019】1つの単位電解槽には陰極板又は陽極板の
いずれかが存在し、且つ陰極板と陽極板とが交互に位置
するように配置されるが、陰極板と陽極板は隣接する上
下一対の送りローラの内の上側ローラの間にだけ又は下
側ローラの間にだけ配置しても良いし、あるいは交互に
配置する陰極板と陽極板の片方(例えば陰極板)は上側
ローラの間で且つ他方(例えば陽極板)は下側ローラの
間に配置しても良い。しかし、電解の効率を上げるため
には、上下一対の送りローラの間に陰極板同士又は陽極
板同士をそれぞれ相対して配置させて1つの単位電解槽
を構成することが好ましい。
Either a cathode plate or an anode plate is present in one unit electrolytic cell, and the cathode plates and the anode plates are arranged alternately. The cathode plate and the anode plate are adjacent to each other. It may be arranged only between the upper roller of the pair of feed rollers or only between the lower rollers, or one of the alternately arranged cathode plates and anode plates (for example, the cathode plate) may be arranged between the upper rollers. The other (for example, the anode plate) may be arranged between the lower rollers. However, in order to increase the efficiency of electrolysis, it is preferable to configure one unit electrolytic cell by disposing cathode plates or anode plates facing each other between a pair of upper and lower feed rollers.

【0020】被処理物の材質や形状等により多少の差は
あるが、被処理物がアノードとして機能して電解研磨さ
れる時間を、被処理物がカソードとして機能して電解還
元される時間よりも長くした方が、理由は明らかではな
いが、得られる研磨面がより一層平滑となることが分か
った。陰極板と陽極板の被処理物の移動方向に対して直
角方向の幅は、一般に被処理物の最大幅に対応する同一
幅のものが用いられ、被処理物は一定の移動速度で移動
されるので、全ての陰極板の被処理物の移動方向長さの
和を、全ての陽極板の被処理物の移動方向長さの和より
も大きくすることが好ましい。
Although there are some differences depending on the material, shape, etc. of the object to be processed, the time during which the object to be processed functions as an anode and is electrolytically polished is defined as the time during which the object to be processed functions as a cathode and is electrolytically reduced. Although the reason is not clear, it was found that the longer polished surface makes the polished surface smoother. The width of the cathode plate and the anode plate in the direction perpendicular to the moving direction of the object to be processed is generally the same width corresponding to the maximum width of the object to be processed, and the object to be processed is moved at a constant moving speed. Therefore, it is preferable to make the sum of the lengths of all the cathode plates in the moving direction of the object to be processed larger than the sum of the lengths of all the anode plates in the moving direction of the object to be processed.

【0021】被処理物が電解研磨を受ける時間が電解還
元を受ける時間よりも長くなるに従い、被処理物の研磨
面の平滑性に与える材質や形状の影響は少なくなり、電
解研磨を受ける時間が電解還元を受ける時間の2倍以上
になると、材質や形状に関係無く平滑な研磨面が得られ
るようになる。従って、本発明装置では、全ての陰極板
の被処理物の移動方向長さの和を、全ての陽極板の被処
理物の移動方向長さの和の2倍以上とするのが最も好ま
しい。
As the time during which the object to be processed undergoes electrolytic polishing becomes longer than the time during which it undergoes electrolytic reduction, the influence of the material and shape on the smoothness of the polished surface of the object to be processed becomes less, and the time during which the object is subjected to electrolytic polishing becomes longer. If the time required for electrolytic reduction is twice or more, a smooth polished surface can be obtained regardless of the material and shape. Therefore, in the device of the present invention, it is most preferable that the sum of the moving direction lengths of all the cathode plates to be processed is at least twice the sum of the moving direction lengths of all the anode plates to be processed.

【0022】陰極板及び陽極板の材質は、従来から電解
研磨装置に使用されている材料、例えばステンレスなど
であって良い。好ましくは、陽極板を硬鉛板とすること
によって、その摩耗を減少させることができる。又、陰
極板については、被処理物が鉄合金の場合にはステンレ
スとし、銅又は銅合金の場合には銅板を用いることが好
ましい。陰極板として銅板を使用することにより、使用
後の陰極板を銅屑として再利用することが可能となる。
The material of the cathode plate and the anode plate may be a material conventionally used in an electrolytic polishing apparatus, such as stainless steel. Preferably, by making the anode plate a hard lead plate, its wear can be reduced. As for the cathode plate, it is preferable to use stainless steel when the object to be treated is an iron alloy, and to use a copper plate when it is copper or a copper alloy. By using the copper plate as the cathode plate, the used cathode plate can be reused as copper scraps.

【0023】本発明の電解液は硫酸を基本としているの
で、電解研磨と化学研磨とが同時に発生するものと考え
られる。試験の結果では、硫酸濃度が高すぎると化学研
磨が優勢になって表面が荒れ、逆に硫酸濃度が低すぎる
と電解研磨が進行せず平滑な面が得られない。従って、
電解研磨を進行させて凹凸を均一にし且つ研磨面を平滑
にするため、硫酸濃度を10〜40g/lとするもので
ある。
Since the electrolytic solution of the present invention is based on sulfuric acid, it is considered that electrolytic polishing and chemical polishing occur simultaneously. According to the test results, if the sulfuric acid concentration is too high, chemical polishing becomes dominant and the surface becomes rough, and conversely, if the sulfuric acid concentration is too low, electrolytic polishing does not proceed and a smooth surface cannot be obtained. Therefore,
The concentration of sulfuric acid is set to 10 to 40 g / l in order to proceed electrolytic polishing to make unevenness uniform and to make the polished surface smooth.

【0024】電解液の成分として硫酸ナトリウムを含有
せしめるのは、研磨により生じた金属イオンを硫酸塩と
して安定化し、研磨面近傍での局部的な水酸化物の発生
を防止し、研磨に支障が生じないようにするためであ
る。硫酸ナトリウムの含有量が少なすぎるとこの効果が
十分得られず、多すぎると研磨面に物理的或は化学的に
吸着されるナトリウム量が増加し、水洗を繰り返しても
研磨面からナトリウムを十分除去できなくなるので、硫
酸ナトリウムの濃度は10〜20g/lの範囲とする。
The inclusion of sodium sulfate as a component of the electrolytic solution stabilizes metal ions generated by polishing as a sulfate, prevents local generation of hydroxides near the polishing surface, and hinders polishing. This is to prevent it from occurring. If the content of sodium sulfate is too small, this effect will not be obtained sufficiently, and if it is too large, the amount of sodium physically or chemically adsorbed on the polishing surface will increase, and sodium will not be sufficiently removed from the polishing surface even after repeated washing with water. Since it cannot be removed, the concentration of sodium sulfate is in the range of 10 to 20 g / l.

【0025】電解液の成分としての界面活性剤の役割
は、発生する水素等の気体を速やかに浮上させ研磨面に
付着しないようにするためである。界面活性剤として、
ドデシル硫酸ナトリウムなどのようなアニオン界面活性
剤、ポリエチレングリコールアルキルエーテル、ポリエ
チレングリコール脂肪酸エステル、ソルビタン脂肪酸エ
ステル、脂肪酸モノグリセリドなどの非イオン性界面活
性剤、高級アミンハロゲン酸塩などのカチオン界面活性
剤などを使用できるが、毒性などの理由により非イオン
性界面活性剤の使用が好ましい。
The role of the surface active agent as a component of the electrolytic solution is to promptly levitate the generated gas such as hydrogen so as not to adhere to the polishing surface. As a surfactant,
Anionic surfactants such as sodium dodecyl sulfate, polyethylene glycol alkyl ethers, polyethylene glycol fatty acid esters, sorbitan fatty acid esters, nonionic surfactants such as fatty acid monoglycerides, cationic surfactants such as higher amine halogenates, etc. Although it can be used, it is preferable to use a nonionic surfactant for reasons such as toxicity.

【0026】界面活性剤の濃度は、低すぎると研磨面へ
の発生ガスの付着を防止できず、逆に多すぎると界面活
性剤自体が十分溶解しないだけでなく、電解液の粘度が
高くなり過ぎるためやはり研磨面へのガスの付着を防止
できなくなるので、界面活性剤の濃度は0.05〜0.2
5g/lとすることが必要である。
If the concentration of the surfactant is too low, the generated gas cannot be prevented from adhering to the polishing surface. On the contrary, if the concentration is too high, the surfactant itself is not sufficiently dissolved and the viscosity of the electrolytic solution becomes high. Since it is still impossible to prevent the gas from adhering to the polishing surface, the concentration of the surfactant is 0.05 to 0.2.
It is necessary to make it 5 g / l.

【0027】本発明の装置及び電解液を使用して電解研
磨を行う場合には、上側ローラの少なくとも一部が空気
中に露出し、上側ローラの間に配置された陰極板及び陽
極板が電解液に浸るようにして行う。上側ローラの少な
くとも一部を電解液の表面から空気中に突出させるの
は、前記のごとく単位電解槽間を分離して電流が陽極板
から陰極板に直接流れるのを防止するためであり、この
場合上側ローラの1/2を大気中に露出させることが好
ましい。
When electrolytic polishing is performed using the apparatus and the electrolytic solution of the present invention, at least a part of the upper roller is exposed to the air, and the cathode plate and the anode plate disposed between the upper rollers are electrolyzed. Do so as to be immersed in the liquid. The reason that at least a part of the upper roller is projected into the air from the surface of the electrolytic solution is to prevent the current from directly flowing from the anode plate to the cathode plate by separating the unit electrolytic cells as described above. In this case, it is preferable to expose 1/2 of the upper roller to the atmosphere.

【0028】[0028]

【実施例】実施例1 図1に示すように、電解槽として幅23cm、長さ95
cm、深さ15cmの槽1を用意し、この槽1内に、直
径2cm、長さ20cmの上下1対のポリエチレン製の
送りローラ2を、その軸を槽1の長さ方向に直角にして
水平面に沿い等間隔に8対配置した。尚、これらの送り
ローラ2の前後に、送りローラ2と同径の供給ローラ群
及び排出ローラ群(共に図示せず)を設けた。
Example 1 As shown in FIG. 1, the electrolytic cell has a width of 23 cm and a length of 95.
A tank 1 having a height of 15 cm and a depth of 15 cm is prepared, and a pair of upper and lower polyethylene feed rollers 2 having a diameter of 2 cm and a length of 20 cm are formed in the tank 1 with their axes at right angles to the length direction of the tank 1. Eight pairs were arranged at equal intervals along the horizontal plane. A supply roller group and a discharge roller group (both not shown) having the same diameter as the feed roller 2 were provided before and after the feed roller 2.

【0029】更に、槽1内に、幅7.5cm、長さ1.5
cm、厚さ2mmのステンレス製の陰極板5と陽極板8
とを、その長さ方向を槽1の長さ方向に沿わせ、隣接す
る各送りローラ2間に2枚の陰極板5同士又は2枚の陽
極板8同士を上下に対向させて、陰極板5と陽極板8と
を交互に全体で4組の陰極板5と3組の陽極板8を水平
面に沿い配置した。又、陰極板5同士及び陽極板8同士
の上下間隔はいずれも3cmとし、送りローラ2により
リードフレーム7が移動する水平面から等距離に配置し
た。
Further, in the tank 1, a width of 7.5 cm and a length of 1.5
cm, 2 mm thick stainless steel cathode plate 5 and anode plate 8
And their lengthwise directions along the lengthwise direction of the tank 1, and two cathode plates 5 or 2 anode plates 8 are vertically opposed to each other between adjacent feed rollers 2 to form a cathode plate. Alternately, 5 and anode plates 8 were alternately arranged so that 4 sets of cathode plates 5 and 3 sets of anode plates 8 were arranged along a horizontal plane. Further, the vertical intervals between the cathode plates 5 and between the anode plates 8 were both set to 3 cm, and they were arranged equidistant from the horizontal plane on which the lead frame 7 is moved by the feed roller 2.

【0030】槽1には、硫酸20g/l、硫酸ナトリウ
ム10g/l、非イオン性界面活性剤(上村工業株式会
社製の商品名A−150)0.054g/lを含有する水溶
液からなる電解液6を、電解液6の表面が上側送りロー
ラ2の中心よりやや上に位置し且つ上側送りローラ2の
間の陰極板5と陽極板8が電解液6に丁度浸る状態とな
るように入れ、電解液の液温を25℃に保持した。
In the tank 1, electrolysis consisting of an aqueous solution containing 20 g / l of sulfuric acid, 10 g / l of sodium sulfate, and 0.054 g / l of a nonionic surfactant (trade name A-150 manufactured by Uemura Kogyo Co., Ltd.). The liquid 6 is poured so that the surface of the electrolyte 6 is located slightly above the center of the upper feed roller 2 and the cathode plate 5 and the anode plate 8 between the upper feed rollers 2 are just immersed in the electrolyte 6. The liquid temperature of the electrolytic solution was maintained at 25 ° C.

【0031】陰極板5は直流電源の陰極に、陽極板8は
直流電源の陽極に接続されており、陰極電流密度が5A
/dm2で電圧一定となるように通電し、各送りローラ
2は同調して同一回転数で図1の矢印方向に回転させ
た。この状態にて、幅7.0cm、長さ16.5cm、厚
さ100μmの鉄ニッケル合金の圧延材料からなるリー
ドフレーム7を供給ローラ群から最初の上下1対の送り
ローラ2間に挿入して供給した。最初の1対の送りロー
ラ2間にリードフレーム7が挟持されてから最後の1対
の送りローラ2間から排出されるまでの時間(研磨時
間)は17秒であった。
The cathode plate 5 is connected to the cathode of the DC power supply, and the anode plate 8 is connected to the anode of the DC power supply, and the cathode current density is 5 A.
Electricity was applied so that the voltage would be constant at / dm 2 , and each feed roller 2 was synchronized and rotated at the same rotational speed in the direction of the arrow in FIG. In this state, a lead frame 7 made of a rolled material of iron-nickel alloy having a width of 7.0 cm, a length of 16.5 cm and a thickness of 100 μm is inserted from the supply roller group between the first pair of upper and lower feed rollers 2. Supplied. The time (grinding time) from when the lead frame 7 was sandwiched between the first pair of feed rollers 2 to when it was ejected from between the last pair of feed rollers 2 was 17 seconds.

【0032】電解研磨中流れる電流は大きく増加し、最
大増加時の電流量は8.2A(陰極電流密度換算17.0
A/dm2)であった。電解研磨後にリードフレーム7
の重量を測定し、研磨による減量(研磨前後の重量差)
をCADにより求めたリードフレーム7の総面積で除
し、比重を考慮して研磨された厚みを計算したところ、
リードフレーム7は平均0.3μmの厚さに研磨されて
いるものと推定された。
The current flowing during the electropolishing greatly increased, and the current amount at the maximum increase was 8.2 A (cathode current density conversion 17.0).
A / dm 2 ). Lead frame 7 after electrolytic polishing
Weigh the weight and reduce the amount by polishing (weight difference before and after polishing)
Is divided by the total area of the lead frame 7 obtained by CAD to calculate the polished thickness in consideration of the specific gravity,
It was estimated that the lead frame 7 was polished to an average thickness of 0.3 μm.

【0033】次いで、研磨後のリードフレーム7の任意
の部分の断面を顕微鏡で観察し、研磨前の状態と比較し
たところ、研磨前のリードフレーム7の断面は図7に示
すように表面12に存在する凹部13の開口が小さく、
奥に大きな空間を有する状態であったのに対して、研磨
後のリードフレーム7の断面は図6に示すように凹部1
3は何れも十分開口されて表面12は比較的平滑になっ
ており、以後のメッキに全く支障を生じないものであっ
た。
Next, when a cross section of an arbitrary portion of the lead frame 7 after polishing was observed with a microscope and compared with a state before polishing, the cross section of the lead frame 7 before polishing was on the surface 12 as shown in FIG. The opening of the existing recess 13 is small,
In contrast to the state in which there is a large space in the back, the cross section of the lead frame 7 after polishing shows the recess 1 as shown in FIG.
In No. 3, the surface 12 was sufficiently opened and the surface 12 was relatively smooth, and there was no problem in the subsequent plating.

【0034】実施例2 図2に示すように、図1と同じ大きさの槽1内の長さ方
向中央部分に、実施例1と同じ上下一対の送りローラ2
を4対配置し、その各隣接する上下一対の送りローラ2
の間にそれぞれ実施例1で用いたと同じ陽極板8と陰極
板5を各々上下に対向させ実施例1と同様に交互に水平
面に沿い3組配置した。又、入り口側送りローラ2の手
前には下側送りローラ2と同一水平面に並べて2個の供
給ローラ9を、出口側送りローラ2の後方には下側送り
ローラ2と同一水平面に並べて2個の排出ローラ10を
配置した。
Embodiment 2 As shown in FIG. 2, a pair of upper and lower feed rollers 2 as in Embodiment 1 are provided in the central portion in the longitudinal direction in a tank 1 having the same size as that of FIG.
4 pairs are arranged, and a pair of adjacent upper and lower feed rollers 2 are provided.
In the meantime, the same anode plate 8 and cathode plate 5 used in Example 1 were vertically opposed to each other, and three sets were alternately arranged along the horizontal plane as in Example 1. Further, two supply rollers 9 are arranged in front of the inlet side feed roller 2 in the same horizontal plane as the lower side feed roller 2, and two supply rollers 9 are arranged in rear of the outlet side feed roller 2 in the same horizontal plane as the lower side feed roller 2. Of the discharge roller 10 of FIG.

【0035】更に、入り口側の送りローラ2の手前と、
出口側の送りローラ2の後方に、送りローラ2間に配置
した陽極板8及び陰極板5よりも長い陰極板5を、上側
陽極板8及び上側陰極板5と同一水平面に配置して、上
側陽極板8のリードフレームの移動方向合計長さが上側
陰極板5の同合計長さの2倍となるようにした。
Further, in front of the feed roller 2 on the entrance side,
Behind the feed roller 2 on the outlet side, a cathode plate 5 longer than the anode plate 8 and the cathode plate 5 arranged between the feed rollers 2 is arranged on the same horizontal plane as the upper anode plate 8 and the upper cathode plate 5, and The total length of the anode plate 8 in the moving direction of the lead frame was set to be twice the total length of the upper cathode plate 5.

【0036】実施例1と同一の電解液6を槽1内に実施
例1と同様に入れ、実施例1と同一のリードフレーム7
を実施例1と同様にして電解研磨した。最初の陰極板5
にリードフレーム7が差し掛かってから、最後の陰極板
5の下を抜けるまでの研磨時間は17秒であった。研磨
中流れる電流は大きく増加し、最大増加時の電流量は
9.0A(陰極電流密度換算86A/dm2)であった。
The same electrolytic solution 6 as in Example 1 was placed in the bath 1 in the same manner as in Example 1, and the same lead frame 7 as in Example 1 was used.
Was electrolytically polished in the same manner as in Example 1. First cathode plate 5
The polishing time from the time when the lead frame 7 was approached to the time when it was removed under the last cathode plate 5 was 17 seconds. The current flowing during polishing greatly increased, and the current amount at the maximum increase was 9.0 A (cathode current density conversion 86 A / dm 2 ).

【0037】電解研磨後にリードフレーム7の重量を測
定し、研磨による減量をCADにより求めたリードフレ
ーム7の総面積で除し、比重を考慮して研磨された厚さ
を計算したところ、平均0.3μmの厚さで研磨されて
いるものと推定された。次いで、リードフレーム7の任
意の部分の断面を顕微鏡で観察したところ、図6に示す
ように表面12の凹部13は何れも十分開口されてお
り、以後のメッキに全く支障を生じないものであった。
After electrolytic polishing, the weight of the lead frame 7 was measured, and the weight loss due to polishing was divided by the total area of the lead frame 7 obtained by CAD, and the polished thickness was calculated in consideration of specific gravity. It was estimated that it was polished to a thickness of 0.3 μm. Next, when observing a cross section of an arbitrary part of the lead frame 7 with a microscope, all the recesses 13 on the surface 12 are sufficiently opened as shown in FIG. 6, and no problems occur in the subsequent plating. It was

【0038】実施例3〜5 硫酸濃度を10g/l(実施例3)、30g/l(実施
例4)、40g/l(実施例5)とした以外は実施例1
と同じ電解液を用いて、実施例1と同様にして電解研磨
を行った。
Examples 3 to 5 Example 1 except that the sulfuric acid concentrations were 10 g / l (Example 3), 30 g / l (Example 4) and 40 g / l (Example 5).
Electrolytic polishing was performed in the same manner as in Example 1 using the same electrolytic solution as in Example 1.

【0039】電解研磨後にリードフレーム7の重量を測
定し、研磨による減量をCADにより求めたリードフレ
ーム7の総面積で除し、比重を考慮して研磨された厚み
を計算したところ、何れの実施例でも平均0.3μmの
厚さで研磨されているものと推定された。次いで、リー
ドフレーム7の任意の部分の断面を顕微鏡で観察したと
ころ、図6に示すように表面12の凹部13は何れも十
分開口されており、以後のメッキに全く支障を生じない
ものであった。
After the electrolytic polishing, the weight of the lead frame 7 was measured, the weight loss due to polishing was divided by the total area of the lead frame 7 obtained by CAD, and the polished thickness was calculated in consideration of the specific gravity. Even in the example, it was estimated that the average thickness was 0.3 μm. Next, when observing a cross section of an arbitrary part of the lead frame 7 with a microscope, all the recesses 13 on the surface 12 are sufficiently opened as shown in FIG. 6, and no problems occur in the subsequent plating. It was

【0040】実施例6〜9 硫酸ナトリウム濃度を20g/lとした以外は実施例1
と同じ電解液(実施例6)、実施例3〜5と同じ電解液
(実施例7〜9)を用いて、実施例1と同様にして電解
研磨を行った。
Examples 6 to 9 Example 1 except that the sodium sulfate concentration was 20 g / l.
Electrolytic polishing was performed in the same manner as in Example 1 using the same electrolytic solution as in (Example 6) and the same electrolytic solution as in Examples 3 to 5 (Examples 7 to 9).

【0041】電解研磨後にリードフレーム7の重量を測
定し、研磨による減量をCADにより求めたリードフレ
ーム7の総面積で除し、比重を考慮して研磨された厚み
を計算したところ、何れの実施例も平均0.3μmの厚
さで研磨されているものと推定された。次いで、リード
フレーム7の任意の部分の断面を顕微鏡で観察したとこ
ろ、図6に示すように表面12の凹部13は何れも十分
開口されており、以後のメッキに全く支障を生じないも
のであった。
After the electrolytic polishing, the weight of the lead frame 7 was measured, the weight loss due to polishing was divided by the total area of the lead frame 7 obtained by CAD, and the polished thickness was calculated in consideration of specific gravity. It was estimated that the examples were also polished to an average thickness of 0.3 μm. Next, when observing a cross section of an arbitrary part of the lead frame 7 with a microscope, all the recesses 13 on the surface 12 are sufficiently opened as shown in FIG. 6, and no problems occur in the subsequent plating. It was

【0042】比較例1 電解液として従来使用されていたピロリン酸カリウム5
0g/l、クエン酸ナトリウム30g/lを含有する水
溶液からなる電解液を用い、液温40℃とした以外は、
実施例1と同様にして電解研磨を行った。
Comparative Example 1 Potassium Pyrophosphate 5 which was Conventionally Used as Electrolyte
Except that an electrolytic solution consisting of an aqueous solution containing 0 g / l and 30 g / l of sodium citrate was used and the solution temperature was 40 ° C.,
Electrolytic polishing was performed in the same manner as in Example 1.

【0043】電解研磨後にリードフレーム7の重量を測
定し、研磨による減量をCADにより求めたリードフレ
ーム7の総面積で除し、比重を考慮して研磨された厚み
を計算したところ、平均0.1μmの厚さで研磨されて
いるものと推定された。次いで、リードフレーム7の任
意の部分の断面を顕微鏡で観察したところ、図7に示す
ように表面12の凹部13の一部は十分開口されている
ものの一部は開口が不十分であり、このリードフレーム
7にメッキを行えば不良率が高くなるものと推定され
た。
After electrolytic polishing, the weight of the lead frame 7 was measured, and the weight loss due to polishing was divided by the total area of the lead frame 7 obtained by CAD, and the polished thickness was calculated in consideration of specific gravity. It was estimated that it was polished to a thickness of 1 μm. Next, when observing a cross section of an arbitrary part of the lead frame 7 with a microscope, as shown in FIG. 7, a part of the concave portion 13 of the surface 12 is sufficiently opened, but a part thereof is not sufficiently opened. It was estimated that if the lead frame 7 was plated, the defect rate would increase.

【0044】比較例2 実施例1と同じ大きさの電解槽1内に、図4に示すよう
に、幅6.0cm、長さ35cm、厚さ2mmのステン
レス板からなる陰極板5を、長手方向を槽1の長手方向
に平行させて水平に配置し、直流電源の陰極に接続し
た。その上方に実施例1と同じ送りローラ2を陰極板5
に沿い5個配置し、送りローラ2の間の上方に2個の給
電ローラ3を、送りローラ2によって移動されるリード
フレーム7と接するように配置した。各給電ローラ3に
は刷子4を給電ローラ3と接するように配置し、各刷子
4は直流電源の陽極と接続した。
Comparative Example 2 As shown in FIG. 4, a cathode plate 5 made of a stainless steel plate having a width of 6.0 cm, a length of 35 cm and a thickness of 2 mm was longitudinally placed in an electrolytic cell 1 having the same size as in Example 1. It was arranged horizontally with the direction parallel to the longitudinal direction of the tank 1 and connected to the cathode of a DC power supply. The same feed roller 2 as in Example 1 is provided on the cathode plate 5 above the cathode plate 5.
And five feeding rollers 3 above the feeding roller 2 so as to contact the lead frame 7 moved by the feeding roller 2. A brush 4 was disposed on each power feeding roller 3 so as to be in contact with the power feeding roller 3, and each brush 4 was connected to an anode of a DC power source.

【0045】電解液は実施例1と同じ電解液を用い、槽
1内の給電ローラ3の半分が浸るように槽1に入れた。
幅7.0cm、長さ16.5cm、厚さ100μmの鉄ニ
ッケル合金のリードフレーム7を送りローラ2と給電ロ
ーラ3の間に供給し、研磨時間が16秒で、陰極電流密
度が5A/dm2で電圧一定となるように通電し、電解
研磨を行った。
The same electrolytic solution as in Example 1 was used as the electrolytic solution, and the electrolytic solution was placed in the tank 1 so that half of the power feeding roller 3 in the tank 1 was immersed.
A lead frame 7 made of iron-nickel alloy having a width of 7.0 cm, a length of 16.5 cm and a thickness of 100 μm is supplied between the feed roller 2 and the power feeding roller 3, and the polishing time is 16 seconds and the cathode current density is 5 A / dm. An electric current was applied so that the voltage was constant at 2 and electrolytic polishing was performed.

【0046】研磨中に流れる電流は実施例1と同様に増
加し、最大増加時の電流量は5.0A(陰極電流密度換
算24A/dm2)であった。電気研磨後にリードフレ
ーム7の重量を測定し、研磨による減量をCADにより
求めたリードフレーム7の総面積で除し、比重を考慮し
て研磨された厚みを計算したところ、平均0.1μmの
厚さで研磨されているものと推定された。次いで、リー
ドフレーム7の任意の部分の断面を顕微鏡で観察したと
ころ、図7に示すように表面12の凹部13の一部は十
分開口されているものの一部は開口不十分であり、この
リードフレームにメッキを行えば不良率が高くなるもの
と推定される。
The current flowing during polishing increased in the same manner as in Example 1, and the current amount at the maximum increase was 5.0 A (cathode current density conversion 24 A / dm 2 ). After the electropolishing, the weight of the lead frame 7 was measured, the weight loss due to polishing was divided by the total area of the lead frame 7 obtained by CAD, and the polished thickness was calculated in consideration of the specific gravity. The average thickness was 0.1 μm. It was presumed that it was polished. Next, when a cross section of an arbitrary part of the lead frame 7 was observed with a microscope, as shown in FIG. 7, a part of the recess 13 of the surface 12 was sufficiently opened, but a part thereof was not sufficiently opened. It is estimated that if the frame is plated, the defective rate will increase.

【0047】実施例10 図3に示すように、電解槽として幅23cm、長さ95
cm、深さ15cmの槽1を用意した。この槽1内に、
直径3cm、長さ20cmの送りローラ2を、上側に1
段及び下側に2段で上下一対をなすように、その軸を槽
1の長さ方向に直角にして水平面に沿い等間隔に8対配
置した。各上下一対の送りローラ2のうち、上側ローラ
はレストンパイプローラからなり、下側ローラは互いに
接する2段のPVCローラで構成し、最下段の下側ロー
ラは槽1の底面に接するように配置した。尚、これらの
送りローラ2の前後には、送りローラ2と同径の供給ロ
ーラ群及び排出ローラ群(共に図示せず)を設けた。
Example 10 As shown in FIG. 3, the electrolytic cell had a width of 23 cm and a length of 95.
A tank 1 having a depth of 15 cm and a depth of 15 cm was prepared. In this tank 1,
Feed roller 2 with a diameter of 3 cm and a length of 20 cm
Eight pairs of shafts were arranged at equal intervals along a horizontal plane with their axes perpendicular to the length direction of the tank 1 so as to form a pair of upper and lower stages and two stages on the lower side. Of the pair of upper and lower feed rollers 2, the upper roller is a Reston pipe roller, the lower roller is a two-stage PVC roller in contact with each other, and the lower roller in the lowermost stage is arranged so as to contact the bottom surface of the tank 1. did. Before and after these feed rollers 2, a supply roller group and a discharge roller group (both not shown) having the same diameter as the feed roller 2 were provided.

【0048】更に、槽1内に、幅7.5cm、長さ1.5
cm、厚さ2mmの銅製の陰極板5と硬鉛板の陽極板8
とを、その長さ方向を槽1の長さ方向に沿わせ、隣接す
る各送りローラ2間に2枚の陰極板5同士又は2枚の陽
極板8同士を上下に対向させて、陰極板5と陽極板8と
が交互になるように全体で4組の陰極板5及び3組の陽
極板8を水平面に沿い配置した。又、陰極板5同士の上
下間隔は15〜35mm及び陽極板8同士の上下間隔は
10〜15mmとし、送りローラ2によりリードフレー
ム7が移動する水平面から等しい距離に配置した。
Further, in the tank 1, a width of 7.5 cm and a length of 1.5
cm, 2 mm thick copper cathode plate 5 and hard lead plate anode plate 8
And their lengthwise directions along the lengthwise direction of the tank 1, and two cathode plates 5 or 2 anode plates 8 are vertically opposed to each other between adjacent feed rollers 2 to form a cathode plate. As a whole, 4 sets of cathode plates 5 and 3 sets of anode plates 8 were arranged along a horizontal plane so that 5 and anode plates 8 were alternately arranged. Further, the vertical distance between the cathode plates 5 is 15 to 35 mm, and the vertical distance between the anode plates 8 is 10 to 15 mm, and they are arranged at the same distance from the horizontal plane where the lead frame 7 is moved by the feed roller 2.

【0049】槽1には、硫酸20g/l、硫酸ナトリウ
ム10g/l、非イオン性界面活性剤(上村工業株式会
社製の商品名A−150)0.054g/lを含有する水溶
液からなる電解液6を、電解液6の表面が上側送りロー
ラ2の中心よりやや上に位置し且つ上側送りローラ2の
間の陰極板5と陽極板8が電解液6に丁度浸る状態とな
るように入れ、電解液の液温を25℃に保持した。
In tank 1, electrolysis consisting of an aqueous solution containing 20 g / l of sulfuric acid, 10 g / l of sodium sulfate and 0.054 g / l of a nonionic surfactant (trade name A-150 manufactured by Uemura Kogyo Co., Ltd.). The liquid 6 is poured so that the surface of the electrolyte 6 is located slightly above the center of the upper feed roller 2 and the cathode plate 5 and the anode plate 8 between the upper feed rollers 2 are just immersed in the electrolyte 6. The liquid temperature of the electrolytic solution was maintained at 25 ° C.

【0050】陰極板5は直流電源の陰極に、陽極板8は
直流電源の陽極に接続されており、陰極電流密度が5A
/dm2で電圧一定となるように通電し、各送りローラ
2は同調して同一回転数で図3の矢印方向に回転させ
た。この状態にて、幅7.0cm、長さ16.5cm、厚
さ100μmの銅合金の圧延材料からなるリードフレー
ム7を供給ローラ群から最初の上下1対の送りローラ2
間に挿入して供給した。最初の1対の送りローラ2間に
リードフレーム7が挟持されてから最後の1対の送りロ
ーラ2間から排出されるまでの研磨時間は17秒であっ
た。
The cathode plate 5 is connected to the cathode of the DC power supply, and the anode plate 8 is connected to the anode of the DC power supply, and the cathode current density is 5 A.
Electricity was applied so that the voltage was constant at / dm 2 , and each feed roller 2 was synchronized and rotated at the same rotational speed in the arrow direction of FIG. In this state, the lead frame 7 made of a rolled material of copper alloy having a width of 7.0 cm, a length of 16.5 cm, and a thickness of 100 μm is inserted from the supply roller group to the first pair of upper and lower feed rollers 2.
It was inserted in between and supplied. The polishing time from when the lead frame 7 was sandwiched between the first pair of feed rollers 2 to when it was discharged from between the last pair of feed rollers 2 was 17 seconds.

【0051】電解研磨中流れる電流は大きく増加した。
又、4〜6Aの投入電流設定値(最大増加時の電流量)
に対してリードフレームに流れる電流値を測定したとこ
ろ、下記表1に示す結果が得られ、電解における電流効
率が60〜70%に達していることが分かった。
The current flowing during electropolishing increased significantly.
In addition, the set current value of 4 to 6 A (current amount at maximum increase)
When the current value flowing in the lead frame was measured, the results shown in Table 1 below were obtained, and it was found that the current efficiency in electrolysis reached 60 to 70%.

【0052】[0052]

【表1】投入電流値 リート゛フレーム測定値 電流効率 4A 2.4A 60% 6A 4.2A 70% 8A 5.2A 65%[Table 1] Input current value Lead frame measurement value Current efficiency 4A 2.4A 60% 6A 4.2A 70% 8A 5.2A 65%

【0053】電解研磨後にリードフレームの重量を測定
し、研磨による減量(研磨前後の重量差)をCADによ
り求めたリードフレーム7の総面積で除し、比重を考慮
して研磨された厚みを計算したところ、平均0.4μm
の厚さに研磨されているものと推定された。
After the electrolytic polishing, the weight of the lead frame is measured, and the weight loss due to polishing (weight difference before and after polishing) is divided by the total area of the lead frame 7 obtained by CAD, and the polished thickness is calculated in consideration of the specific gravity. The average was 0.4 μm
It was presumed that it was polished to the thickness of.

【0054】次いで、研磨後のリードフレーム7の任意
の部分の断面を顕微鏡で観察したところ、図6に示すよ
うに凹部13は何れも十分開口されて表面12は比較的
平滑になっており、以後のメッキに全く支障を生じない
ものであった。
Next, when observing a cross section of an arbitrary portion of the lead frame 7 after polishing with a microscope, as shown in FIG. 6, all the recesses 13 are sufficiently opened and the surface 12 is relatively smooth. It did not cause any trouble in the subsequent plating.

【0055】[0055]

【発明の効果】本発明によれば、従来よりも被処理物の
表面を確実に平坦にでき、リードフレームなどの金属圧
延材料であっても良好なメッキが可能となるように電解
研磨でき、しかも電流効率が優れている電解研磨装置、
及びその電解研磨に用いる電解液、並びに電解研磨方法
を提供することができる。
According to the present invention, the surface of the object to be treated can be surely flattened as compared with the conventional case, and electrolytic polishing can be performed so that good plating can be performed even with a metal rolling material such as a lead frame, Moreover, electropolishing equipment with excellent current efficiency,
It is possible to provide an electrolytic solution used for the electrolytic polishing, and an electrolytic polishing method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電解研磨装置の1具体例を説明的に示
す概略側面図である。
FIG. 1 is a schematic side view illustratively showing one specific example of an electrolytic polishing apparatus of the present invention.

【図2】本発明の電解研磨装置の他の具体例を説明的に
示す概略側面図である。
FIG. 2 is a schematic side view illustrating another specific example of the electrolytic polishing apparatus of the present invention.

【図3】本発明の電解研磨装置の更に別の具体例を説明
的に示す概略側面図である。
FIG. 3 is a schematic side view illustrating another specific example of the electrolytic polishing apparatus of the present invention.

【図4】従来の電解研磨装置を説明的に示す概略側面図
である。
FIG. 4 is a schematic side view illustrating a conventional electrolytic polishing apparatus.

【図5】金属の圧延材料の表面の一部拡大断面図であ
る。
FIG. 5 is a partially enlarged sectional view of a surface of a rolled metal material.

【図6】本発明による電解研磨方法により電解研磨した
リードフレームの表面の一部拡大断面図である。
FIG. 6 is a partially enlarged cross-sectional view of the surface of a lead frame electrolytically polished by the electrolytic polishing method according to the present invention.

【図7】従来の電解研磨装置又は電解液を用いて電解研
磨したリードフレームの表面の一部拡大断面図である。
FIG. 7 is a partially enlarged cross-sectional view of the surface of a lead frame that has been electrolytically polished using a conventional electrolytic polishing apparatus or an electrolytic solution.

【符号の説明】[Explanation of symbols]

1 槽 2 送りローラ 3 給電ローラ 4 刷子 5 陰極板 6 電解液 7 リードフレーム 8 陽極板 9 供給ローラ 10 排出ローラ 11 圧延材料 12 表面 13 凹部 1 Tank 2 Feeding Roller 3 Feeding Roller 4 Brush 5 Cathode Plate 6 Electrolyte 7 Lead Frame 8 Anode Plate 9 Supply Roller 10 Discharge Roller 11 Rolling Material 12 Surface 13 Recess

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中野 正 東京都羽村市川崎1−10−12 (72)発明者 朽木 純子 東京都青梅市末広町2−8−1 (72)発明者 寺尾 勝 東京都府中市若松町1−21−37 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Tadashi Nakano 1-10-12 Kawasaki, Hamura-shi, Tokyo (72) Inventor Junko Kuchiki 2-8-1, Suehiro-cho, Ome-shi, Tokyo (72) Inventor Masaru Terao Tokyo 1-21-37 Wakamatsu-cho, Fuchu-shi

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水平方向に間隔をおいて交互に水平に配
置された陰極板並びに陽極板と、被処理物が移動する水
平面に沿い被処理物と接して回転するように上下に対を
なし、前記陰極板と陽極板の間に配置された絶縁材料か
らなる被処理物の送りローラとを、槽内に備えたことを
特徴とする電解研磨装置。
1. A pair of a cathode plate and an anode plate, which are alternately arranged horizontally at intervals in the horizontal direction, and are vertically paired so as to rotate in contact with an object to be processed along a horizontal plane on which the object moves. An electropolishing apparatus, comprising: a feed roller for an object to be processed which is made of an insulating material and is arranged between the cathode plate and the anode plate.
【請求項2】 上下に対をなす送りローラ間にそれぞれ
配置された陰極板並びに陽極板が、被処理物が移動する
水平面を挟んでそれぞれ上下に相対して配置されている
ことを特徴とする、請求項1に記載の電解研磨装置。
2. A cathode plate and an anode plate, which are arranged between a pair of upper and lower feed rollers, respectively, are arranged so as to face each other with a horizontal plane on which the object to be processed is sandwiched. The electrolytic polishing apparatus according to claim 1.
【請求項3】 全ての陰極板の被処理物の移動方向長さ
の和が、全ての陽極板の被処理物の移動方向長さの和の
2倍以上となっていることを特徴とする、請求項1又は
2に記載の電解研磨装置。
3. The sum of the moving direction lengths of all the cathode plates to be processed is twice or more the sum of the moving direction lengths of all the anode plates to be processed. The electrolytic polishing apparatus according to claim 1 or 2.
【請求項4】 上下に対をなす送りローラの内の下側ロ
ーラが1個又は複数個からなり、最下段の下側ローラを
槽の底面に接触又は近接させたことを特徴とする、請求
項1〜3のいずれかに記載の電解研磨装置。
4. The lower roller of the pair of upper and lower feed rollers is composed of one or a plurality of rollers, and the lower roller of the lowermost stage is brought into contact with or close to the bottom surface of the tank. Item 4. The electrolytic polishing apparatus according to any one of Items 1 to 3.
【請求項5】 硫酸10〜40g/l、硫酸ナトリウム
10〜20g/l、界面活性剤0.05〜0.25g/l
を含む水溶液からなることを特徴とする電解研磨用の電
解液。
5. Sulfuric acid 10 to 40 g / l, sodium sulfate 10 to 20 g / l, surfactant 0.05 to 0.25 g / l
An electrolytic solution for electropolishing, which comprises an aqueous solution containing
【請求項6】 請求項1〜4のいずれかに記載の電解研
磨装置を用い、その上下に対をなす送りローラの内の上
側ローラの少なくとも一部が空気中に露出し且つ陰極板
及び陽極板が浸るように、槽内に請求項4又は5に記載
の電解液を入れ、電解研磨を行うことを特徴とする電解
研磨方法。
6. The electropolishing device according to claim 1, wherein at least a part of an upper roller of a pair of upper and lower feed rollers is exposed to the air, and a cathode plate and an anode are provided. An electrolytic polishing method, wherein the electrolytic solution according to claim 4 or 5 is placed in a bath so that the plate is immersed, and electrolytic polishing is performed.
JP6197541A 1993-08-26 1994-07-29 Electrolytic polishing apparatus, electrolytic solution thereof, and electrolytic polishing method Expired - Fee Related JP2678346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6197541A JP2678346B2 (en) 1993-08-26 1994-07-29 Electrolytic polishing apparatus, electrolytic solution thereof, and electrolytic polishing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-234170 1993-08-26
JP23417093 1993-08-26
JP6197541A JP2678346B2 (en) 1993-08-26 1994-07-29 Electrolytic polishing apparatus, electrolytic solution thereof, and electrolytic polishing method

Publications (2)

Publication Number Publication Date
JPH07113200A true JPH07113200A (en) 1995-05-02
JP2678346B2 JP2678346B2 (en) 1997-11-17

Family

ID=26510426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6197541A Expired - Fee Related JP2678346B2 (en) 1993-08-26 1994-07-29 Electrolytic polishing apparatus, electrolytic solution thereof, and electrolytic polishing method

Country Status (1)

Country Link
JP (1) JP2678346B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154370A (en) * 2012-01-30 2013-08-15 Disco Corp Machining device and machining method
CN104419974B (en) * 2013-08-19 2017-06-16 柳广德 Electric slurry polishing can be carried out continuously for bundled stainless steel wire and reduce the installation method of surface roughness
CN110129872A (en) * 2019-05-23 2019-08-16 广州市雷傲科技有限公司 Polishing fluid is used in a kind of polishing of cobalt chrome metal electrolyte plasma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115997A (en) * 1979-03-02 1980-09-06 Hitachi Metals Ltd Production of surface clean wire
JPS569400A (en) * 1979-07-04 1981-01-30 Nippon Soda Co Ltd Electrolytic polishing method for stainless steel
JPS56133495A (en) * 1980-03-19 1981-10-19 Toshiba Corp Electrolytic working device
JPS6333600A (en) * 1986-07-29 1988-02-13 Nippon Steel Corp Method for electrolytically pickling steel strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115997A (en) * 1979-03-02 1980-09-06 Hitachi Metals Ltd Production of surface clean wire
JPS569400A (en) * 1979-07-04 1981-01-30 Nippon Soda Co Ltd Electrolytic polishing method for stainless steel
JPS56133495A (en) * 1980-03-19 1981-10-19 Toshiba Corp Electrolytic working device
JPS6333600A (en) * 1986-07-29 1988-02-13 Nippon Steel Corp Method for electrolytically pickling steel strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154370A (en) * 2012-01-30 2013-08-15 Disco Corp Machining device and machining method
CN104419974B (en) * 2013-08-19 2017-06-16 柳广德 Electric slurry polishing can be carried out continuously for bundled stainless steel wire and reduce the installation method of surface roughness
CN110129872A (en) * 2019-05-23 2019-08-16 广州市雷傲科技有限公司 Polishing fluid is used in a kind of polishing of cobalt chrome metal electrolyte plasma
CN110129872B (en) * 2019-05-23 2020-08-21 广州市雷傲科技有限公司 Polishing solution for cobalt-chromium metal electrolyte plasma polishing

Also Published As

Publication number Publication date
JP2678346B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
EP2133448B1 (en) Production method and device for surface roughening of a copper plate
JP5193287B2 (en) Electrode for membrane electrolysis cell
JPS59162298A (en) High current density plating method of metallic strip
JP3179875B2 (en) Surface treatment equipment
EP2781625A1 (en) High speed horizontal electroforming apparatus for manufacturing metal foil and method for manufacturing metal foil
JP2678346B2 (en) Electrolytic polishing apparatus, electrolytic solution thereof, and electrolytic polishing method
CN103290464A (en) Electrochemical deplating method of stainless steel black coating film
JPS6230275B2 (en)
JP2002015752A (en) Manufacturing method and manufacturing device of fuel cell separator
JP2781945B2 (en) Continuous electrolytic polishing method and continuous electrolytic polishing apparatus
CN202610379U (en) Continuous electrolytic polishing device for nickel tungsten alloy strip
JPH08510012A (en) Method and apparatus for pickling stainless steel
CN105483812B (en) A kind of degreasing method in rolled copper foil surface treatment process
US4248674A (en) Anodizing method and apparatus
US3920525A (en) Process for continuously anodizing aluminum
US3884783A (en) Direct current electrolytic etching of aluminum foil without the use of contact rolls
JPH0320494A (en) Plating device and cleaning device
JPH01165800A (en) High-speed electrolytic pickling and polishing method
JP2988567B2 (en) Strip electropolishing equipment
JPS59116398A (en) Horizontal type electroplating cell
CN209989496U (en) Polishing device for squeezing roller
KR20010073546A (en) Cathode plate for electrolytic refining
JP2696197B2 (en) Continuous electrolytic polishing method and continuous electrolytic polishing apparatus
JP2801841B2 (en) Electrode unit for electric treatment tank of metal strip
JPH1053900A (en) Method for removing tin oxide from tin plating liquid

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees