JPH07113158B2 - 溶鋼の清浄化方法 - Google Patents

溶鋼の清浄化方法

Info

Publication number
JPH07113158B2
JPH07113158B2 JP59073923A JP7392384A JPH07113158B2 JP H07113158 B2 JPH07113158 B2 JP H07113158B2 JP 59073923 A JP59073923 A JP 59073923A JP 7392384 A JP7392384 A JP 7392384A JP H07113158 B2 JPH07113158 B2 JP H07113158B2
Authority
JP
Japan
Prior art keywords
oxygen
molten steel
refractory material
zirconia
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073923A
Other languages
English (en)
Other versions
JPS60218491A (ja
Inventor
輝行 西谷
幸弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59073923A priority Critical patent/JPH07113158B2/ja
Publication of JPS60218491A publication Critical patent/JPS60218491A/ja
Publication of JPH07113158B2 publication Critical patent/JPH07113158B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶鋼中酸素をジルコニア系等の酸素イオン導電
性耐火物質層を介して電気化学的に溶鋼の清浄化を図る
方法に関するものである。
(従来技術) 溶鋼中酸素は溶鋼中に溶存している自由酸素および酸化
物である非金属介在物に大別されるが、両者ともに品質
上問題とされている。特に、連続鋳造法の普及拡大とと
もに、リムド鋼のキルド鋼による代替等が進行するにつ
れ、微小な具体的に例えば直径100ミクロン以下の介在
物除去が課題となつている。上記した介在物は、その大
部分が脱酸生成物であり、具体的に例えば、Al2O3、SiO
2、MnO等およびその複合体である。
従来、介在物の溶鋼からの除去は、取鍋、タンデイツシ
ユ、連続鋳造用鋳造内における比重差による浮上分離に
よつて行なわれ、Arガス吹込による浮上促進も広く行な
われている。(例えば、実公昭56−53966)しかし、直
径100ミクロン以下のような微小介在物は原理上、浮上
分離に時間を要すること、低水準の溶存酸素は炭素含有
量が低い溶鋼では除去し難いことから品質面からの要求
が高いものの鉄鋼製造上の課題として残されていた。本
発明者等は上記課題に応えるべく、従来の浮上分離とは
原理的に異なる新方法を探索した結果以下に示す方法に
至つた。
(発明の構成) ジルコニア系耐火物質は酸素センサーとして工業製品化
されているように、イオン導電体として知られている。
第1図にジルコニア耐火物質3の両側に電極1、2を取
り付け電圧を印加した場合の酸素の移動を示す。
図において、カソード側では、 アノード側では という反応が生じ、ジルコニア耐火物質中を酸素イオン
が移動する。
したがつて溶鋼側をカソードとしてジルコニア耐火物質
を介して電圧を印加すれば溶鋼中の酸素は原理的に除去
できることが判明した。
しかしながら、アード側に発生する酸素ガスはアノード
に付着したままであると分極現象を起し反応が急速に低
下する。また、発生期の酸素は反応性が激しく、アノー
ドとして使用される金属を腐食するという問題点のある
ことが、実験検討の結果判明した。
本発明者等は、原理的には従来の浮上分離とは全く異な
る新方法ではあるが、上記した分極現象およびアノード
の腐食という問題点から工業的なプロセス中に取り入れ
が困難であつた本法を種々実験検討の結果、実現化に成
功した。
即ち、溶鋼側をカソードとして、酸素イオン導電耐火物
質を外表面に有するアノードを溶鋼中に浸漬して電圧を
印加し、溶鋼中の酸素を上記酸素イオン導電耐火物質を
通過させ、電気化学的にその内側に存在させた酸素との
反応性に富む物質へ移行させることを特徴とする溶鋼の
清浄化方法である。
この酸素との反応性に富む物質としては、酸素イオンま
たは酸素ガスと容易に反応する溶融金属あるいは還元ガ
スが考えられる。
(発明の作用、効果) 本発明法について以下説明を行なう。
第2図は本発明法の一例を示す連続鋳造用タンデイツシ
ユ中に浸漬された装置の断面図である。図においてアノ
ードは電極棒5および溶融金属6から成りジルコニア耐
火物質層7を介して溶鋼12中に設置されている。一方、
カソードは電極棒4を通じて溶鋼12自体により形成され
ている。即ち、ジルコニア層7の両側にアノード、カソ
ードが耐面して設置されている。スイツチ11を入れ、可
変抵抗器10によりジルコニア層7の間の電圧を調整し、
溶鋼12より溶融金属6へ酸素イオンを移動させる。移動
量は簡単のため、イオン輸率を1とするとフアラデーの
法則に従つて計算できる。
印加電圧は、ジルコニア層7の抵抗等を勘案して決定す
るが、シルコニア耐火物質自体の電解を生じない範囲と
することが望ましい。ジルコニア層7の厚みは比抵抗値
および耐用性の観点から決定する。溶融金属12は、高温
下で安定で移動して来る酸素イオンまたは酸素ガスと容
易に反応し、分極しないことが必要条件である。具体的
に例えば、炭素含有量の高い鉄、即ち溶銑やAl等の脱酸
剤およびこれらの脱酸剤を加えた溶鋼が好ましい。連続
的に長時間使用する場合には、これらの溶融金属が酸素
で飽和されると、分極することが考えられるため、炭素
あるいはAl等の脱酸剤を必要に応じ添加する必要があ
る。
絶縁用高耐食性耐火層8は、スラグ層13やスラグ層と接
する溶鋼表面は酸素含有レベルが高く、しかも大気から
の供給があるためこれを絶縁し、スラグに対して高耐食
性の耐火層を設けることが望ましい。直流電源9は大電
流低電圧を旨とし単位時間当りの脱酸量によつて容量を
決定する。
本装置は取鍋、タンデイツシユ、鋳型のいずれに設置し
ても効果が上げられるが、第3図にタンデイツシユ14内
に設置した場合の例を上方より見た断面で示す。ジルコ
ニア系耐火物質層7と一体化した多数のアノードが溶鋼
12中に設置され、図においては4段の配列となつて効率
的に脱酸操作が行なわれている。ジルコニア層7の接触
面積が小さい場合にはArの吸込による撹拌が望ましい。
第4図は、第2図とは別の態様を示すアノードの部分的
の一例である。図において、アノードは黒鉛電極15およ
び多孔質炭素層17より形成され、還元性ガスが酸素イオ
ン導電耐火物質層18の内表面にラセン状態16を通して均
一に分散され、分極現象が生じない構造となつている。
また、還元性ガスは、ガス導入孔19から連続的に供給さ
れ、ガス導出孔20から排出され、溶鋼中より除去された
酸素ガスが連続的に系外へ出されるようになつている。
(実施例) 次に本発明の実施例について示す。
実施例−1 容量5T、溶鋼通過速度2T/分のタンデイツシユに延溶鋼
接触面積1m2のジルコニア系耐火物質層を有する装置を
用いて溶鋼の脱酸を行なつた。ジルコニア系耐火物質層
の内側には溶銑を入れ、また脱酸剤のAlを添加した。そ
の結果は以下のようであつた。
上記実験は、未脱酸鋼(自由酸素50ppm)を用いて実施
したが、電流量の増加とともに脱酸素も増加し、微小介
在物も大巾に低減した。また実験中もほとんど分極現象
は見られなかつた。実験後、ジルコニア系耐火物質層の
周囲には、非金属介在物の集積が見られ、脱酸のみなら
ず集積効果もあることが判明した。
実施例−2 実施例−1と同様な条件で、アノード側の酸素との反応
性に富む溶融金属の代わりに、第4図に示したような還
元ガスを連続的に供給、排出できる装置を用いて溶鋼の
脱酸を行なつた。実験結果は、実施例−1の結果とほぼ
同様であり、実験中の分極現象もほとんどなかつた。実
験後多孔質炭素層の酸化もほとんどなかつた。
【図面の簡単な説明】
第1図はジルコニア耐火物質のイオン導電性についての
原理図、第2図は本発明の一例で、連続鋳造用タンデイ
ツシユ中に浸漬された装置の断面図、第3図はタンデイ
ツシユ内に設置された場合の平面図、第4図は第2図と
異なるアノードの部分図の一例である。 1……カソード、2……アノード、3……ジルコニア耐
火物質、4……電極棒(カソード用)、5……電極棒
(アノード用)、6……溶融金属、7……ジルコニア耐
火物質層、8……絶縁用高耐食性材料、9……直流電
源、10……可変抵抗、11……スイツチ、12……溶鋼、13
……スラグ、14……タンデイツシユ、15……黒鉛電極、
16……ラセン状溝、17……多孔質炭素層、18……酸素イ
オン導電耐火物質層、19……ガス導入孔、20……ガス導
出孔

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】溶鋼側をカソードとして、酸素イオン導電
    耐火物質を外表面に有するアノードを溶鋼中に浸漬して
    電圧を印加し、溶鋼中の酸素を上記酸素イオン導電耐火
    物質を通過させ、電気化学的にその内側に存在させた酸
    素との反応性に富む物質へ移行させることを特徴とする
    溶鋼の清浄化方法。
  2. 【請求項2】上記の酸素との反応性に富む物質が、酸素
    イオンまたは酸素ガスと容易に反応する溶融金属である
    特許請求の範囲第1項記載の溶鋼の清浄化方法。
  3. 【請求項3】上記の酸素との反応性に富む物質が、酸素
    ガスの還元ガスである特許請求の範囲第1項記載の溶鋼
    の清浄化方法。
JP59073923A 1984-04-14 1984-04-14 溶鋼の清浄化方法 Expired - Lifetime JPH07113158B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073923A JPH07113158B2 (ja) 1984-04-14 1984-04-14 溶鋼の清浄化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073923A JPH07113158B2 (ja) 1984-04-14 1984-04-14 溶鋼の清浄化方法

Publications (2)

Publication Number Publication Date
JPS60218491A JPS60218491A (ja) 1985-11-01
JPH07113158B2 true JPH07113158B2 (ja) 1995-12-06

Family

ID=13532152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073923A Expired - Lifetime JPH07113158B2 (ja) 1984-04-14 1984-04-14 溶鋼の清浄化方法

Country Status (1)

Country Link
JP (1) JPH07113158B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909101A (en) * 1988-05-18 1990-03-20 Terry Sr Maurice C Continuously variable transmission
US5007992A (en) * 1989-05-15 1991-04-16 Weber Daniel K Method and apparatus for removing oxygen from a semiconductor processing reactor
GB9812169D0 (en) * 1998-06-05 1998-08-05 Univ Cambridge Tech Purification method
AUPS117002A0 (en) * 2002-03-13 2002-04-18 Bhp Billiton Innovation Pty Ltd Minimising carbon transfer in an electrolytic cell
KR101129320B1 (ko) 2009-12-24 2012-03-27 연세대학교 산학협력단 전기화학적 정련 기법을 이용한 비금속 개재물 분해방법

Also Published As

Publication number Publication date
JPS60218491A (ja) 1985-11-01

Similar Documents

Publication Publication Date Title
US4277281A (en) Continuous filter for molten copper
CA1213849A (en) Method and device for treating and refining liquid metal alloys by direct current electric arc heating
EP0188643B1 (en) Method of reducing the loss of carbon from anodes when producing aluminium by electrolytic smelting, and an inert anode top for performing the method
CN115945679A (zh) 一种材料与电场耦合防止浸入式水口堵塞的方法
JPH07113158B2 (ja) 溶鋼の清浄化方法
EP1348503B1 (en) Continuous casting method using a molten steel feeder
JP4231176B2 (ja) 治金容器のストッパー及び/又は上ノズル
JP2003126945A (ja) 連続鋳造用の溶鋼供給装置およびこれを用いた連続鋳造方法
JP2020011261A (ja) 微細酸化物分散金属塊の製造装置及び製造方法
JP4150142B2 (ja) 冶金容器のスライディングノズル
EP0698133B1 (en) A method and a device for pickling of stainless steel
Zhuzian et al. Studies on anode effect in molten salts electrolysis
JP2568076B2 (ja) 冶金容器の壁上への付着物の形成を防止する方法及びこの方法を実施するのに適した冶金容器
US4744875A (en) Steel refining with an electrochemical cell
GB1413508A (en) Secondary refining process
JP2003200242A (ja) 連続鋳造用浸漬ノズルおよび溶鋼の連続鋳造方法
JPH01162798A (ja) 電気めっき用コンダクターロールの付着金属除去装置
JP2001158988A (ja) 陰極板
JP3633514B2 (ja) 連続鋳造用浸漬ノズルおよび金属の連続鋳造方法
JPH06182513A (ja) 連続鋳造用浸漬ノズルからのガス吹き込み方法
US4687564A (en) Refractory lining for electrochemical cell
JPH07238327A (ja) 真空エレクトロスラグ再溶解炉
TAKENAKA et al. Direct electrowinning of liquid titanium metal by using direct current electro slag remelting apparatus
JP2004243385A (ja) 連続鋳造方法
RU2089674C1 (ru) Электролизер для получения металлов в жидком виде