JPH07111922B2 - Voltage nonlinear resistor and manufacturing method thereof - Google Patents

Voltage nonlinear resistor and manufacturing method thereof

Info

Publication number
JPH07111922B2
JPH07111922B2 JP1002421A JP242189A JPH07111922B2 JP H07111922 B2 JPH07111922 B2 JP H07111922B2 JP 1002421 A JP1002421 A JP 1002421A JP 242189 A JP242189 A JP 242189A JP H07111922 B2 JPH07111922 B2 JP H07111922B2
Authority
JP
Japan
Prior art keywords
voltage
zno
oxide
alkaline earth
resistor according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1002421A
Other languages
Japanese (ja)
Other versions
JPH02181903A (en
Inventor
和生 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1002421A priority Critical patent/JPH07111922B2/en
Publication of JPH02181903A publication Critical patent/JPH02181903A/en
Publication of JPH07111922B2 publication Critical patent/JPH07111922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は制限電圧特性およびサージ吸収時の続流遮断特
性に優れ、かつ溶融短絡破壊しにくい電圧非直線抵抗器
とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage non-linear resistor which is excellent in limiting voltage characteristics and continuous current interruption characteristics during surge absorption, and which is resistant to melt short circuit breakdown, and a method for manufacturing the same.

従来の技術 従来、サージ電圧吸収素子として、特公昭59−10042号
公報、特公昭59−12002号公報にみられるように、酸化
亜鉛(ZnO)と酸化ビスマス(Bi2O3)を主成分とする領
域の接合部の非オーム性を利用した電圧非直線抵抗器と
その製造方法が知られている。
2. Description of the Related Art Conventionally, as a surge voltage absorption element, zinc oxide (ZnO) and bismuth oxide (Bi 2 O 3 ) have been used as main components as disclosed in Japanese Patent Publication Nos. 59-10042 and 59-12002. There is known a voltage non-linear resistor utilizing the non-ohmic property of the junction in the region to be formed and a manufacturing method thereof.

発明が解決しようとする課題 従来の電圧非直線抵抗器には以下のような問題がある。
すなわち従来の電圧非直線抵抗器においては、制限電圧
特性、すなわちサージ吸収時の素子両端の電圧、例えば
10Aの電流が流れている時の素子両端の電圧(V10A)と
立ち上り電圧、例えば1mAの電流を流した時の素子両端
の電圧(V1mA)との比が用途によってはまだ十分でな
く、さらにこの比の良いものが望まれている。
Problems to be Solved by the Invention The conventional voltage nonlinear resistor has the following problems.
That is, in the conventional voltage non-linear resistor, the limiting voltage characteristic, that is, the voltage across the element during surge absorption, for example,
Depending on the application, the ratio between the voltage across the element (V 10 A) when a current of 10 A is flowing and the rising voltage, for example, the voltage across the element (V 1 mA) when a current of 1 mA is applied is not sufficient for some applications. None, and one with a better ratio is desired.

またサージ吸収時に流れる電流に基づく発熱で、素子の
抵抗が減少し、その時素子両端に加わっている電源電圧
による漏れ電流が増加する現象、いわゆる続流現象があ
り、電源電圧に対して立ち上り電圧をあまり低くとれな
いという問題があった。回路中の機器やデバイスをサー
ジ電圧から保護するためには、できるだけ立ち上り電圧
の低い電圧非直線抵抗器が望ましい。
In addition, there is a phenomenon in which the resistance of the element decreases due to the heat generated when the surge is absorbed, and the leakage current due to the power supply voltage applied to both ends of the element increases at that time, the so-called follow current phenomenon. There was a problem that it could not be taken too low. In order to protect the devices and devices in the circuit from surge voltage, it is desirable to use a voltage non-linear resistor having a rising voltage as low as possible.

また過大な電流が流れると、素子が発熱して抵抗が下が
りさらに電流が増加して、素子の一部が溶融短絡破壊す
るという問題があった。
Further, when an excessive current flows, the element heats up, the resistance decreases, and the current further increases, causing a problem that a part of the element is melted and short-circuited.

課題を解決するための手段 上記課題を解決するために、本発明では、ZnOを主成分
とする領域と、少なくともビスマス(Bi)−アルカリ土
類−銅(Cu)酸化物を含む領域との接合部を有するよう
にし、接合部に形成されたエネルギー障壁に基づく非オ
ーム性と、Bi−アルカリ土類−Cu酸化物の超電導性を利
用して、制限電圧特性に悪影響を及ぼす直列抵抗分を減
らすとともに、過大なサージ電流が流れた場合には、Bi
−アルカリ土類−Cu酸化物の超電導性の消失を利用して
電流を制限することにより、続流遮断特性を向上させる
とともに、素子の溶融破壊といった問題をも解決するよ
うにしたものである。
Means for Solving the Problems In order to solve the above problems, in the present invention, a region containing ZnO as a main component and a region containing at least bismuth (Bi) -alkaline earth-copper (Cu) oxide are bonded. And has a non-ohmic property based on the energy barrier formed at the junction and the superconductivity of Bi-alkaline earth-Cu oxide to reduce the series resistance that adversely affects the limiting voltage characteristics. At the same time, if an excessive surge current flows, Bi
-Alkaline earth-Cu oxide is used to limit the current by utilizing the loss of superconductivity, thereby improving the follow-current blocking characteristic and solving the problem of melt fracture of the device.

作用 上記のように構成することにより、制限電圧特性に優れ
かつ続流遮断性能が高く、溶融短絡破壊しにくい電圧非
直線抵抗器が得られる。
Operation With the above-mentioned configuration, a voltage non-linear resistor having excellent limiting voltage characteristics, high continuous-current breaking performance, and less likely to cause melt short-circuit breakdown can be obtained.

実施例 以下本発明の一実施例の電圧非直線抵抗器とその製造方
法について、図面を参照しながら説明する。
EXAMPLE A voltage non-linear resistor and a method of manufacturing the same according to one example of the present invention will be described below with reference to the drawings.

本実施例の電圧非直線抵抗器の構造の一例を第1図に示
す。図において、1はZnO層(またはZnOを主成分とする
層)、2はBi−アルカリ土類−Cu酸化物を含む層、3,4
はオーム性電極である。このような構成とすることによ
り、ZnO層1とBi−アルカリ土類−Cu酸化物層2の界面
にエネルギー障壁5が形成される。通常ZnOはn型半導
体であるため、電極3を陽極として電圧を加えた場合に
はエネルギー障壁5が順バイアスされることになり、容
易に電流が流れ、反対に電流4を陽極として電圧を加え
た場合には、エネルギー障壁5が逆バイアスされるた
め、ある一定電圧までは電流が流れず、その電圧以上で
急激に電流の流れだす非対称な電圧非直線性を示す素子
が得られる。
An example of the structure of the voltage non-linear resistor of this embodiment is shown in FIG. In the figure, 1 is a ZnO layer (or a layer containing ZnO as a main component), 2 is a layer containing Bi-alkaline earth-Cu oxide, 3,4
Is an ohmic electrode. With such a structure, the energy barrier 5 is formed at the interface between the ZnO layer 1 and the Bi-alkaline earth-Cu oxide layer 2. Since ZnO is usually an n-type semiconductor, when a voltage is applied with the electrode 3 as an anode, the energy barrier 5 is forward-biased, and a current easily flows, while a current 4 is applied as an anode and a voltage is applied. In this case, since the energy barrier 5 is reverse biased, a current does not flow up to a certain voltage, and an element having an asymmetrical voltage non-linearity in which the current suddenly starts to flow above that voltage can be obtained.

本実施例の電圧非直線抵抗器の構造の他の例を第2図に
示す。図において、1はZnO層(またはZnOを主成分とす
る層)、2はBi−アルカリ土類−Cu酸化物を含む層、3,
4はオーム性電極である。6は基板である。このような
構成においては、ZnO層1とBi−アルカリ土類−Cu酸化
物層2の界面に沿って形成されるエネルギー障壁5が、
Bi−アルカリ土類−Cu酸化物層2の両側に形成される。
したがってこの場合には、いずれの電極を正にしても、
一方の障壁は順バイアスに地方の障壁は逆バイアスとな
り、実質的には逆バイアスされた障壁が支配的となり、
正負対称の非オーム性が得られる。
Another example of the structure of the voltage non-linear resistor of this embodiment is shown in FIG. In the figure, 1 is a ZnO layer (or a layer containing ZnO as a main component), 2 is a layer containing Bi-alkaline earth-Cu oxide, 3,
4 is an ohmic electrode. 6 is a substrate. In such a configuration, the energy barrier 5 formed along the interface between the ZnO layer 1 and the Bi-alkaline earth-Cu oxide layer 2 is
It is formed on both sides of the Bi-alkaline earth-Cu oxide layer 2.
Therefore, in this case, whichever electrode is positive,
One barrier becomes a forward bias, the local barrier becomes a reverse bias, and the reverse-biased barrier becomes dominant in effect.
Positive / negative symmetry non-ohmicity is obtained.

次に、具体的製造方法について説明する。Next, a specific manufacturing method will be described.

(実施例1) ZnO粉体を通常の成型方法によって直径12mm、厚さ1.5m
に成型し、空気中いのいて1250℃で2時間焼成した。し
かる後、焼結体の両主面を研磨し、とくにその一方の面
についてはアルミナ微粉を用いて鏡面研磨を行った。そ
の後有機溶剤で十分洗浄した後、高周波スパッタリング
装置を用いて、ZnO焼結体の鏡面研磨した面上にBi−ア
ルカリ土類−Cu酸化物のスパッタリング膜を形成した。
この時アルカリ土類としてストロンチウム(Sr)とカル
シウム(Ca)の混合物とし、その組成としてBi2Sr2Ca2C
u3酸化物が形成されるようにした。次に870℃の酸素雰
囲気中で24時間の熱処理を行った。さらに得られた素子
の両面にAlを蒸着電極を設け、液体窒素温度(77K)で
電気特性を測定した。その結果、第3図に示すような非
対称な非オーム性が得られ、バリスタ特性を示す方の立
ち上り電圧(1mAの電流を流した時の端子電圧、V1 mA)
は約6V、0.1〜1mAにおける電圧非直線指数として約8、
制限電圧比(V10 A/V1 mA)として約1.7のものが得られ
た。さらにこの素子に立ち上り電圧以上の電流電圧を加
え約10mAの電流を連続通電したところ、数秒で抵抗が上
昇し、電流が遮断され素子に破損は見られなかった。同
時に作成した同一構造の別の試料でBi2Sr2Ca2Cu3酸化物
膜に表面に4つの電極を設け、4端子法にて、77Kにお
けるこの膜の抵抗を測定したところ、超電導状態であっ
た。このことからBi2Sr2Ca2Cu3酸化物膜には液体窒素温
度以下では、超電導状態の部分があったものが、電流に
よる発熱により、素子部温度が超電導臨界温度を超えた
ため、超電導部が常電導状態に移行し、抵抗が急激に増
大し、そのため続流遮断性能が向上し、また素子の溶融
短絡破壊といったことがなくなったものと思われる。
(Example 1) A ZnO powder was prepared by a usual molding method to have a diameter of 12 mm and a thickness of 1.5 m.
Then, the mixture was molded into, and baked in air at 1250 ° C. for 2 hours. After that, both main surfaces of the sintered body were polished, and particularly one surface thereof was mirror-polished using fine alumina powder. Then, after thoroughly washing with an organic solvent, a sputtering film of Bi-alkaline earth-Cu oxide was formed on the mirror-polished surface of the ZnO sintered body using a high frequency sputtering device.
At this time, a mixture of strontium (Sr) and calcium (Ca) was used as the alkaline earth and its composition was Bi 2 Sr 2 Ca 2 C.
u 3 oxide was formed. Next, heat treatment was performed for 24 hours in an oxygen atmosphere at 870 ° C. Further, vapor deposition electrodes of Al were provided on both sides of the obtained device, and the electrical characteristics were measured at liquid nitrogen temperature (77K). As a result, an asymmetrical non-ohmic property as shown in Fig. 3 was obtained, and the rising voltage of the one showing varistor characteristics (terminal voltage when a current of 1 mA was applied, V 1 mA)
Is about 6V, about 8 as a voltage nonlinearity index at 0.1-1mA,
A limiting voltage ratio (V 10 A / V 1 mA) of about 1.7 was obtained. When a current voltage higher than the rising voltage was applied to this device and a current of about 10 mA was continuously applied, the resistance increased in a few seconds, the current was cut off, and the device was not damaged. When 4 electrodes were provided on the surface of Bi 2 Sr 2 Ca 2 Cu 3 oxide film with another sample of the same structure that was made at the same time, the resistance of this film at 77K was measured by the 4-terminal method. there were. From this fact, the Bi 2 Sr 2 Ca 2 Cu 3 oxide film had a superconducting portion below the liquid nitrogen temperature, but the element temperature exceeded the superconducting critical temperature due to the heat generated by the current, so the superconducting portion It is considered that the element went into the normal conduction state and the resistance rapidly increased, which resulted in the improvement of the follow current cutoff performance and the melting short circuit breakdown of the element.

(実施例2) サファイア基板上に、白金(Pt)膜をスパッタリングに
より形成し下電流を形成した。次にZnO膜をやはりスパ
ッタリングにより形成し、続いて実施例1と同様の方法
により、Bi2Sr2Ca2Cu3酸化物膜を形成、さらにひき続き
ZnO膜を再度スパッタリングによりその上に形成した。
次に実施例1と同様の方法により、870℃の酸素雰囲気
中で24時間の熱処理を行い、上電極を形成し、77Kで特
性を測定した。その結果、第4図に示すような対称な非
オーム性が得られ、バリスタ特性を示す方の立ち上り電
圧は約7V、0.1〜1mAにおける電圧非直線指数として約
8、制限電圧比(V10 A/V1 mA)として約1.7のものが得
られた。さらにこの素子に立ち上り電圧以上の電流電圧
を加え約10mAの電流を連続通電したところ、数秒で抵抗
が上昇し、電流が遮断され素子に破損は見られず、実施
例1と同様の効果が得られた。この理由は実施例1の場
合と同様で、Bi2Sr2Ca2Cu3酸化物膜には液体窒素温度以
下では、超電導状態の部分があることによると思われ
る。
Example 2 A platinum (Pt) film was formed on a sapphire substrate by sputtering to form a lower current. Next, a ZnO film is also formed by sputtering, and then a Bi 2 Sr 2 Ca 2 Cu 3 oxide film is formed by the same method as in Example 1, and then continued.
The ZnO film was formed again thereon by sputtering.
Then, in the same manner as in Example 1, heat treatment was performed at 870 ° C. in an oxygen atmosphere for 24 hours to form an upper electrode, and the characteristics were measured at 77K. As a result, a symmetrical non-ohmic property as shown in Fig. 4 is obtained, the rising voltage of the one exhibiting the varistor characteristic is about 7 V, the voltage nonlinearity index at 0.1 to 1 mA is about 8, and the limiting voltage ratio (V 10 A / V 1 mA) of about 1.7 was obtained. Furthermore, when a current voltage higher than the rising voltage was applied to this element and a current of about 10 mA was continuously applied, the resistance increased in a few seconds, the current was cut off, and the element was not damaged, and the same effect as in Example 1 was obtained. Was given. The reason for this is the same as in the case of Example 1, and it is considered that the Bi 2 Sr 2 Ca 2 Cu 3 oxide film has a portion in the superconducting state below the liquid nitrogen temperature.

(実施例3) 実施例1の方法において、多結晶焼結体の代りに、多結
晶焼結体とほぼ同じ比抵抗の単結晶ZnOを基板として用
い、試料を作成、特性の測定した。その結果、実施例1
とほぼ同様の特性が得られた。試料間のバラツキは、実
施例1の場合よりも改善されていた。
(Example 3) In the method of Example 1, instead of the polycrystalline sintered body, a single crystal ZnO having substantially the same specific resistance as the polycrystalline sintered body was used as a substrate to prepare a sample and measure its characteristics. As a result, Example 1
Almost the same characteristics were obtained. The variation between the samples was improved as compared with the case of Example 1.

(実施例4) 実施例1および2の製造方法においてBiSrCaCu酸化物膜
の組成を変えた試料を作成し、その特性を実施例1およ
び実施例2の場合と同様にして測定した。まずBiの一部
を鉛(Pb)と置換し、Pb組成量を0から30%まで増して
いった。その結果は、実施例1および実施例2の結果と
ほとんど同様であった。またBiの一部をイットリウム
(Y)に置換し、やはりY組成量を0から30%まで増し
ていった。その結果は、実施例1および実施例2の結果
とほとんど同様であった。またストロンチウム(Sr)の
一部をSr、カルシウム(Ca)と同じアルカリ土類の仲間
であるバリウム(Ba)に置換し、Ba組成量を0から10%
まで増していった。その結果は、実施例1および施例2
の結果とほとんど同様であった。またZnOの一部を酸化
マグネシウム(MgO)に置換し、MgO組成量を0から5%
まで増していった。その結果は、実施例1および施例2
の結果とほとんど同様であった。
(Example 4) Samples having different compositions of the BiSrCaCu oxide film in the manufacturing methods of Examples 1 and 2 were prepared, and their characteristics were measured in the same manner as in Examples 1 and 2. First, part of Bi was replaced with lead (Pb), and the Pb composition amount was increased from 0 to 30%. The results were almost the same as the results of Example 1 and Example 2. Further, a part of Bi was replaced with yttrium (Y), and the Y composition was also increased from 0 to 30%. The results were almost the same as the results of Example 1 and Example 2. Also, part of strontium (Sr) was replaced with barium (Ba), which is a member of the same alkaline earth as Sr and calcium (Ca), and the Ba composition amount was 0 to 10%.
Increased. The results are shown in Example 1 and Example 2.
The result was almost the same. Also, part of ZnO is replaced with magnesium oxide (MgO), and the MgO composition amount is 0 to 5%.
Increased. The results are shown in Example 1 and Example 2.
The result was almost the same.

熱処理の温度については、400℃から900℃の範囲で、熱
処理時間を適当に変えることにより、本発明の効果が得
られた。870℃では24時間であったが、それより高温で
はもっと短い時間で、またそれより低温では、もっと長
い時間が必要であった。例えば900℃では3時間程度
で、400℃では100時間程度必要であった。900℃より高
いとBi−アルカリ土類−Cu酸化物膜が溶融する場合があ
り好ましくなかった。また400℃より低いと時間が長く
かかりすぎるなどの問題があった。
Regarding the temperature of the heat treatment, the effect of the present invention was obtained by appropriately changing the heat treatment time in the range of 400 ° C to 900 ° C. At 870 ° C it took 24 hours, but at higher temperatures shorter times were required and at lower temperatures longer times were required. For example, it took about 3 hours at 900 ° C and about 100 hours at 400 ° C. If the temperature is higher than 900 ° C, the Bi-alkaline earth-Cu oxide film may melt, which is not preferable. If it is lower than 400 ° C, there is a problem that it takes too long.

以上の結果から、Bi−アルカリ土類−Cu酸化物膜の組成
については、適当な製造方法により超電導体部ができる
組成であれば、本発明の効果の得られることがわかる。
本素子の構造において、Bi−アルカリ土類−Cu酸化物膜
がすべて超電導化する必要はなく、一部が超電導化すれ
ば、それが超電導を保つ臨界電流の範囲内では、電流は
すべてそこを流れるため、同様の効果が得られるものと
考えられる。したがってZnOとの界面までBi−アルカリ
土類−Cu酸化物膜が超電導化する必要はない。また臨界
温度が材料組成によって多少変っても、臨界温度以下の
状態では、本発明と同様の効果が得られる。
From the above results, it is understood that the effect of the present invention can be obtained as far as the composition of the Bi-alkaline earth-Cu oxide film is such that the superconductor portion can be formed by an appropriate manufacturing method.
In the structure of this device, it is not necessary that all the Bi-alkaline earth-Cu oxide film be made superconducting, and if a part becomes superconducting, within the range of the critical current where it keeps superconducting current, Since it flows, it is considered that the same effect can be obtained. Therefore, it is not necessary for the Bi-alkaline earth-Cu oxide film to be superconducting up to the interface with ZnO. Further, even if the critical temperature changes to some extent depending on the material composition, the same effect as that of the present invention can be obtained in the state below the critical temperature.

またZnO側については、そのエネルギーバンド構造が基
本的に変らなければ多少不純物をいれても本発明の効果
が得られる。
On the ZnO side, the effect of the present invention can be obtained even if some impurities are added unless the energy band structure of the ZnO side is basically changed.

実施例2においては、基板としてサファイアを用いた
が、熱処理に耐えられるものであれば良く、これに限ら
れるものではない。また実施例2においては、全部で3
層構造となっているが、この層数を増せば、さらに立ち
上り電圧の高い素子の得られることは明らかである。
In Example 2, sapphire was used as the substrate, but it is not limited to this as long as it can withstand the heat treatment. In addition, in the second embodiment, a total of 3
Although it has a layered structure, it is clear that an element having a higher rising voltage can be obtained by increasing the number of layers.

発明の効果 本発明は、以上説明したような製造方法と構成から成る
ので、以下に記載されるような効果を示す。
EFFECTS OF THE INVENTION Since the present invention comprises the manufacturing method and the structure as described above, the following effects are exhibited.

Bi−アルカリ土類−Cu酸化物膜の部分に超電導体がある
ため、この部分の抵抗が実質的に0であり、そのため直
接抵抗分に基づく電圧上昇が少なく、その結果制限電圧
特性が改善される。
Since there is a superconductor in the portion of the Bi-alkaline earth-Cu oxide film, the resistance in this portion is substantially 0, and therefore the voltage rise due to the direct resistance component is small, and as a result, the limiting voltage characteristic is improved. It

更に大きな電流が流れた場合には、この電流に基づい
て、素子内部で生じた熱により、超電導体部の温度が臨
界温度以上にあがり、常電導体に移行して直列抵抗が急
激に上昇するため、電流が遮断される。すなわちサージ
電圧吸収時のいわゆる続流遮断性能が著しく向上する。
When an even larger current flows, the temperature of the superconductor part rises above the critical temperature due to the heat generated inside the element based on this current, and it shifts to the normal conductor and the series resistance rises sharply. Therefore, the current is cut off. That is, the so-called follow-current interruption performance at the time of absorbing surge voltage is significantly improved.

また同じ理由から過大な電流が流れないため、素子が溶
融短絡破壊しにくくなる。
Further, for the same reason, an excessive current does not flow, so that the element is less likely to be melted and short circuited.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の電圧非直線抵抗器の一実施例の構造
図、第2図は本発明の電圧非直線抵抗器の他の実施例の
構造図、第3図は本発明の一実施例の電流−電圧特性例
を示す特性図、第4図は本発明の他の実施例の電流−電
流特性例を示す特性図である。 1……ZnO層、2……Bi−アルカリ土類−Cu酸化物層、
3……オーム性電極、4……オーム性電極、5……エネ
ルギー障壁、6……基板。
FIG. 1 is a structural diagram of one embodiment of the voltage nonlinear resistor of the present invention, FIG. 2 is a structural diagram of another embodiment of the voltage nonlinear resistor of the present invention, and FIG. 3 is one embodiment of the present invention. FIG. 4 is a characteristic diagram showing an example of current-voltage characteristics, and FIG. 4 is a characteristic diagram showing an example of current-current characteristics of another embodiment of the present invention. 1 ... ZnO layer, 2 ... Bi-alkaline earth-Cu oxide layer,
3 ... Ohmic electrode, 4 ... Ohmic electrode, 5 ... Energy barrier, 6 ... Substrate.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】ZnOもしくはZnOを主成分とする領域と、少
なくともBi−アルカリ土類−Cu酸化物を含む領域との接
合部を有する電圧非直線抵抗器。
1. A voltage non-linear resistor having a junction between ZnO or a region containing ZnO as a main component and a region containing at least Bi-alkaline earth-Cu oxide.
【請求項2】接合部が一つである請求項(1)記載の電
圧非直線抵抗器。
2. The voltage nonlinear resistor according to claim 1, wherein the number of junctions is one.
【請求項3】接合部が二つ以上である請求項(1)記載
の電圧非直線抵抗器。
3. The voltage nonlinear resistor according to claim 1, wherein there are two or more junctions.
【請求項4】アルカリ土類として、SrとCaを含む請求項
(1)記載の電圧非直線抵抗器。
4. The voltage nonlinear resistor according to claim 1, wherein the alkaline earth contains Sr and Ca.
【請求項5】Bi−アルカリ土類−Cu酸化物として、Bi2S
r2Ca2Cu3酸化物を含む請求項(1)記載の電圧非直線抵
抗器。
5. Bi 2 S as a Bi-alkaline earth-Cu oxide
The voltage nonlinear resistor according to claim 1, which contains an r 2 Ca 2 Cu 3 oxide.
【請求項6】ZnOもしくはZnOを主成分とする領域が単結
晶である請求項(1)記載の電圧非直線抵抗器。
6. The voltage nonlinear resistor according to claim 1, wherein ZnO or a region containing ZnO as a main component is a single crystal.
【請求項7】ZnOもしくはZnOを主成分とする領域が多結
晶焼結体である請求項(1)記載の電圧非直線抵抗器。
7. The voltage nonlinear resistor according to claim 1, wherein ZnO or a region containing ZnO as a main component is a polycrystalline sintered body.
【請求項8】ZnOもしくはZnOを主成分とする領域がスパ
ッタリング膜である請求項(1)記載の電圧非直接抵抗
器。
8. The voltage indirect resistor according to claim 1, wherein ZnO or a region containing ZnO as a main component is a sputtering film.
【請求項9】少なくともBi−アルカリ土類−Cu酸化物を
含む領域がスパッタリング膜である請求項(1)記載の
電圧非直線抵抗器。
9. The voltage nonlinear resistor according to claim 1, wherein at least the region containing Bi-alkaline earth-Cu oxide is a sputtering film.
【請求項10】ZnOもしくはZnOを主成分とする基板の上
にスパッタリング法により、少なくともBi−アルカリ土
類−Cu酸化物を含む膜を形成した後、400〜900℃の酸素
を含む雰囲気中で熱処理を行う電圧非直線抵抗器の製造
方法。
10. A film containing at least Bi-alkaline earth-Cu oxide is formed on a substrate containing ZnO or ZnO as a main component by a sputtering method, and then in an atmosphere containing oxygen at 400 to 900 ° C. A method of manufacturing a voltage non-linear resistor for performing heat treatment.
【請求項11】アルカリ土類として、Sr,Caを含む請求
項(10)記載の電圧非直線抵抗器の製造方法。
11. The method for manufacturing a voltage nonlinear resistor according to claim 10, wherein the alkaline earth contains Sr and Ca.
【請求項12】Bi−アルカリ土類−Cu酸化物として、Bi
2Sr2Ca2Cu3酸化物を含む請求項(10)記載の電圧非直線
抵抗器の製造方法。
12. Bi-alkaline earth-Cu oxide as Bi-
The method for producing a voltage non-linear resistor according to claim 10, comprising a 2 Sr 2 Ca 2 Cu 3 oxide.
【請求項13】耐熱性基板の上に、スパッタリング法に
よりZnOもしくはZnOを主成分とする領域と、少なくとも
Bi−アルカリ土類−Cu酸化物を含む領域を交互に少なく
とも3層以上積層した後、400〜900℃の酸素を含む雰囲
気中で熱処理を行う電圧非直線抵抗器の製造方法。
13. A ZnO or a region containing ZnO as a main component by a sputtering method on a heat-resistant substrate, and at least
A method for producing a voltage non-linear resistor, wherein alternating regions containing Bi-alkaline earth-Cu oxide are alternately laminated in at least three layers or more, and then heat treatment is performed in an atmosphere containing oxygen at 400 to 900 ° C.
【請求項14】アルカリ土類として、Sr,Caを含む請求
項(13)記載の電圧非直線抵抗器の製造方法。
14. The method for manufacturing a voltage nonlinear resistor according to claim 13, wherein the alkaline earth contains Sr and Ca.
【請求項15】Bi−アルカリ土類−Cu酸化物として、Bi
2Sr2Ca2Cu3酸化物を含む請求項(13)記載の電圧非直線
抵抗器の製造方法。
15. As a Bi-alkaline earth-Cu oxide, Bi
The method for manufacturing a voltage nonlinear resistor according to claim 13, which contains 2 Sr 2 Ca 2 Cu 3 oxide.
JP1002421A 1989-01-09 1989-01-09 Voltage nonlinear resistor and manufacturing method thereof Expired - Fee Related JPH07111922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002421A JPH07111922B2 (en) 1989-01-09 1989-01-09 Voltage nonlinear resistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002421A JPH07111922B2 (en) 1989-01-09 1989-01-09 Voltage nonlinear resistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02181903A JPH02181903A (en) 1990-07-16
JPH07111922B2 true JPH07111922B2 (en) 1995-11-29

Family

ID=11528786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002421A Expired - Fee Related JPH07111922B2 (en) 1989-01-09 1989-01-09 Voltage nonlinear resistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH07111922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226261A1 (en) 2016-03-28 2017-10-04 NGK Insulators, Ltd. Voltage-nonlinear resistor element and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3226261A1 (en) 2016-03-28 2017-10-04 NGK Insulators, Ltd. Voltage-nonlinear resistor element and method for producing the same

Also Published As

Publication number Publication date
JPH02181903A (en) 1990-07-16

Similar Documents

Publication Publication Date Title
CA1153828A (en) Thin film varistor
US4495482A (en) Metal oxide varistor with controllable breakdown voltage and capacitance and method of making
Nahm Electrical properties and stability of praseodymium oxide-based ZnO varistor ceramics doped with Er2O3
JP2005268578A (en) Thermistor element
JPH07111922B2 (en) Voltage nonlinear resistor and manufacturing method thereof
US3936790A (en) Temperature sensitive resistor having a critical transition temperature of about 140°C
JP2563557B2 (en) Voltage nonlinear resistor and manufacturing method thereof
Schwing et al. ZnO single crystals with an intermediate layer of metal oxides—A macroscopic varistor model
JP2789714B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPS6253923B2 (en)
JP2830322B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JPS63312616A (en) Semiconductor porcelain composition
JP2705221B2 (en) Ceramic capacitor and method of manufacturing the same
JPS5912002B2 (en) Voltage nonlinear resistor and its manufacturing method
JP2822612B2 (en) Varistor manufacturing method
JP2727693B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2707706B2 (en) Grain boundary insulating semiconductor ceramic capacitor and method of manufacturing the same
JP2825485B2 (en) Method of manufacturing voltage non-linear resistor
JP2808777B2 (en) Varistor manufacturing method
JP2830321B2 (en) Voltage-dependent nonlinear resistor porcelain composition and method for manufacturing varistor
JP2737280B2 (en) Ceramic capacitor and method of manufacturing the same
JP2646734B2 (en) Ceramic capacitor and method of manufacturing the same
JP2715529B2 (en) Ceramic capacitor and method of manufacturing the same
JPS623962B2 (en)
JPS6236607B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071129

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees