JPH07111785A - Wireless actuator - Google Patents

Wireless actuator

Info

Publication number
JPH07111785A
JPH07111785A JP5255576A JP25557693A JPH07111785A JP H07111785 A JPH07111785 A JP H07111785A JP 5255576 A JP5255576 A JP 5255576A JP 25557693 A JP25557693 A JP 25557693A JP H07111785 A JPH07111785 A JP H07111785A
Authority
JP
Japan
Prior art keywords
piezoelectric element
light
piezo
current
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5255576A
Other languages
Japanese (ja)
Inventor
Yukihisa Hasegawa
幸久 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5255576A priority Critical patent/JPH07111785A/en
Publication of JPH07111785A publication Critical patent/JPH07111785A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To provide a wireless actuator without an outer power supply, by using a current or voltage generated from a piezo-electric element that is distorted in a piezo-electric element distortion means. CONSTITUTION:A control unit 3 and a camera 2 is inserted in a pipe 1, and light is cast in the pipe 1 while the quantity of light is changed stronger or weaker by a light-quantity control means 13. The light is condensed by a condenser lens 11 and supplied through an optical fiber 12 to a glass fiber 9, and there heat is generated so that fluorocarbon 8 is vaporized in a moment. Then, the inside pressure of a sealed container 4 increases, and a piezo-electric element 5 expands outward. An electric charge is generated across both electrodes 6 and 7 of the piezo-electric element 5 through a piezo-electric effect and a current is carried at a transformer 16. After the voltage is lowered by the transformer 16, the current is supplied to the camera 2. Since the light is adjusted in quantity by the light-quantity control means 13, the heat can be decreased when the quantity of light is reduced. The temperature in the sealed container 4 is lowered and the fluorocarbon 8 is liquefied. The pressure is lowered and the piezo-electric element 5 returns to an original state. Then, these steps are repeated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アクチュエータ本体を
電源線無しで作動させるワイヤレスアクチュエータに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wireless actuator that operates an actuator body without a power line.

【0002】[0002]

【従来の技術】従来より、人が作業しにくい部分、例え
ば配管の内部とか、機器内部の複雑な微小箇所におい
て、検査あるいは掃除等を行なうことがある。
2. Description of the Related Art Conventionally, inspection or cleaning may be carried out at a portion where it is difficult for a person to work, such as inside a pipe or a complicated minute portion inside a device.

【0003】[0003]

【発明が解決しようとする課題】ところが、上述した配
管の内部とか、機器内部の複雑な微小箇所においては、
電源が取れないような状況もあり得る。この場合、電源
供給ができなくてこれら検査動作あるいは掃除動作がで
きないことがあった。
However, in the inside of the above-mentioned piping or in the complicated minute portion inside the equipment,
There may be situations where the power cannot be removed. In this case, the inspection operation or the cleaning operation may not be performed because the power cannot be supplied.

【0004】本発明は上記事情に鑑みてなされたもので
あり、その目的は、外部からの電源供給を必要としない
ワイヤレスアクチュエータを提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a wireless actuator that does not require power supply from the outside.

【0005】[0005]

【課題を解決するための手段】本発明のワイヤレスアク
チュエータは、歪により電圧が発生する両面に電極が施
された圧電素子と、この圧電素子を歪ませる圧電素子歪
手段と、この圧電素子歪手段にて圧電素子を歪ませるこ
とにより発生する電流あるいは電圧に基づいて動作する
アクチュエータ本体とを含んで構成される(請求項1の
発明)。
SUMMARY OF THE INVENTION A wireless actuator of the present invention comprises a piezoelectric element having electrodes on both sides where a voltage is generated by strain, a piezoelectric element straining means for straining the piezoelectric element, and this piezoelectric element straining means. And an actuator body that operates based on a current or voltage generated by distorting the piezoelectric element (invention of claim 1).

【0006】この場合、圧電素子歪手段は、圧電素子の
電極の両側に圧力差を生じさせる構成としても良い(請
求項2の発明)。
In this case, the piezoelectric element strain means may be configured to generate a pressure difference between both sides of the electrodes of the piezoelectric element (the invention of claim 2).

【0007】さらに、圧電素子歪手段は、少なくとも一
面が圧電素子で構成され内部に熱膨脹・収縮性物質およ
び光・熱変換素子が封入された密閉容器と、この密閉容
器外部から内部へ光を導入させる光導入手段とを備え、
前記密閉容器内への光の導入を制御することにより、圧
電素子の電極の両側に圧力差を生じさせる構成としても
良い(請求項3の発明)。
Further, the piezoelectric element straining means has a sealed container in which at least one surface is formed of a piezoelectric element and which contains a thermal expansion / contraction material and a light / heat conversion element therein, and light is introduced into the inside from the outside of the sealed container. And light introducing means for
The pressure difference may be generated on both sides of the electrode of the piezoelectric element by controlling the introduction of light into the closed container (the invention of claim 3).

【0008】また、圧電素子歪手段は、内部を圧電素子
により二分され各々の内部に熱膨張・収縮性物質および
光・熱変換素子が封入された密閉容器と、この密閉容器
外部から夫々の内部へ光を導入させる光導入手段とを備
え、夫々の内部への光の導入を交互に制御することによ
り、前記圧電素子の電極の両側に圧力差を生じさせる構
成としても良い(請求項4の発明)。
Further, the piezoelectric element straining means is divided into two parts by a piezoelectric element, the inside of which is sealed with a thermally expansive / contractible substance and a light / heat conversion element, and the inside of the sealed container. It is also possible to provide a light introduction means for introducing light into the inside of the piezoelectric element and alternately control the introduction of the light into the inside of each to generate a pressure difference between both sides of the electrode of the piezoelectric element. invention).

【0009】さらにまた、圧電素子歪手段は、圧電素子
の一方の面側と他方の面側とにそれぞれ通風路を形成す
る導風管と、圧電素子の一方の面の風上側部分に設けら
れた風路抵抗部材とを備え、前記導風管内に風を通すこ
とにより圧電素子の電極の両側に圧力差を生じさせる構
成としても良い(請求項5の発明)。
Further, the piezoelectric element straining means is provided on the wind guide tube forming the ventilation passages on one surface side and the other surface side of the piezoelectric element, and on the windward side portion of the one surface of the piezoelectric element. It is also possible to provide an air flow path resistance member, and to generate a pressure difference between both sides of the electrode of the piezoelectric element by passing air through the air guide tube (the invention of claim 5).

【0010】[0010]

【作用】請求項1の発明においては、圧電素子歪手段で
圧電素子を歪ませることで、この圧電素子に電流あるい
は電圧が発生する。この電流あるいは電圧に基づいてア
クチュエータ本体が動作するから、外部電源を要さずに
アクチュエータ本体を動作させることが可能となる。
According to the first aspect of the present invention, the piezoelectric element is distorted by the piezoelectric element straining means to generate a current or voltage in the piezoelectric element. Since the actuator body operates based on this current or voltage, it is possible to operate the actuator body without requiring an external power supply.

【0011】請求項2の発明においては、圧電素子の電
極の両側に圧力差を生じさせるから、圧電素子を効果的
に歪ませることができて、電流あるいは電圧を有効に発
生させることができる。
According to the second aspect of the present invention, a pressure difference is generated on both sides of the electrode of the piezoelectric element, so that the piezoelectric element can be effectively distorted and current or voltage can be effectively generated.

【0012】請求項3の発明においては、密閉容器内へ
の光の導入を制御することで圧電素子の電極の両側に圧
力差を生じさせるから、光の制御によりアクチュエータ
本体の電源を得ることが可能となる。
According to the third aspect of the present invention, since the pressure difference is generated on both sides of the electrode of the piezoelectric element by controlling the introduction of the light into the closed container, it is possible to obtain the power source of the actuator body by controlling the light. It will be possible.

【0013】請求項4の発明においては、圧電素子によ
り二分された密閉容器の内部への光の導入を交互に制御
することにより、前記圧電素子の電極の両側に圧力差を
生じさせるから、交流電流を取り出すことが可能とな
る。
According to another aspect of the present invention, by alternately controlling the introduction of light into the inside of the closed container divided into two by the piezoelectric element, a pressure difference is generated on both sides of the electrode of the piezoelectric element. It becomes possible to take out an electric current.

【0014】請求項5の発明においては、導風管内へ風
を通すことで圧電素子の電極の両側に圧力差を生じさせ
るから、送風よりアクチュエータ本体の電源を得ること
が可能となる。
According to the fifth aspect of the present invention, the pressure difference is generated on both sides of the electrode of the piezoelectric element by passing the air into the air guide tube. Therefore, it is possible to obtain the power source of the actuator main body by blowing air.

【0015】[0015]

【実施例】以下、本発明の第1の実施例につき図1を参
照しながら説明する。この図1においては、微細な配管
1内の検査をするためのアクチュエータを拡大して示し
ている。アクチュエータ本体であるカメラ2は、カメラ
本体2aと回路基板2bと駆動部2cとを有して構成さ
れている。このカメラ2には、制御部3から電源が与え
られるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to FIG. In FIG. 1, an actuator for inspecting the fine inside of the pipe 1 is shown in an enlarged manner. The camera 2, which is the actuator body, includes a camera body 2a, a circuit board 2b, and a drive unit 2c. Power is supplied to the camera 2 from the control unit 3.

【0016】この制御部3は、次のように構成されてい
る。すなわち、ケース3aの内部には、密閉容器4が設
けられており、この密閉容器4の一面は圧電素子(PZ
T)5により構成されている。この密閉容器4において
圧電素子5以外の壁部は該圧電素子5よりも剛性の高い
材料例えばチタンにより構成されている。前記圧電素子
5の内外両面には電極6,7が形成されている。また、
密閉容器4の内部には、熱膨脹・収縮性物質として例え
ばフロン8と、光・熱変換素子としての吸熱性の高いグ
ラスファイバ9とが封入されている。
The control unit 3 is constructed as follows. That is, a closed container 4 is provided inside the case 3a, and one surface of the closed container 4 is a piezoelectric element (PZ).
T) 5. In the closed container 4, the wall portions other than the piezoelectric element 5 are made of a material having higher rigidity than the piezoelectric element 5, such as titanium. Electrodes 6 and 7 are formed on both inner and outer surfaces of the piezoelectric element 5. Also,
The airtight container 4 is filled with, for example, CFC 8 as a thermal expansion / contraction material and glass fiber 9 having a high heat absorption as a light / heat conversion element.

【0017】前記ケース3aの壁部には透光部材10a
が組み込まれた窓部10が形成されており、この窓部1
0の内側には集光レンズ11が取り付けられいる。さら
にこの集光レンズ11と前記密閉容器4内のグラスファ
イバ9とは光導入手段としての光ファイバ12により接
続されている。さらに、上記窓部10への光照射量を制
御する光量制御手段13が設けられている。しかして、
密閉容器4、フロン8、グラスファイバ9、集光レンズ
11、光ファイバ12および光量制御手段13により圧
電素子歪手段14が構成されている。
A transparent member 10a is provided on the wall of the case 3a.
The window portion 10 in which the
A condenser lens 11 is attached inside 0. Further, the condenser lens 11 and the glass fiber 9 in the closed container 4 are connected by an optical fiber 12 as a light introducing means. Further, a light amount control means 13 for controlling the light irradiation amount to the window portion 10 is provided. Then,
The sealed container 4, the Freon 8, the glass fiber 9, the condenser lens 11, the optical fiber 12 and the light quantity control means 13 constitute a piezoelectric element distortion means 14.

【0018】さらに、前記圧電素子5の各電極6,7に
接続された接続線15,15には降圧用の変圧器16の
一次側が接続され、二次側には接続線17,17を介し
てカメラ2の電気回路が接続されている。
Furthermore, the primary side of the step-down transformer 16 is connected to the connection lines 15 and 15 connected to the electrodes 6 and 7 of the piezoelectric element 5, and the secondary side is connected via the connection lines 17 and 17. The electric circuit of the camera 2 is connected.

【0019】さて、上記構成の作用について述べる。
今、配管1の内部に、制御部3とカメラ2とを適宜方法
により挿入し、そして、配管1の内部に光量制御手段1
3により光を強弱変化させながらもしくは断続的に照射
する。この光は集光レンズ11により集められ、光ファ
イバ12を通してグラスファイバ9に供給される。この
グラスファイバ9に光が導入されることによって熱が発
生する。この熱により低沸点流体であるフロン8が瞬時
に沸騰し気化する。
Now, the operation of the above configuration will be described.
Now, the control unit 3 and the camera 2 are inserted into the pipe 1 by an appropriate method, and the light quantity control means 1 is inserted into the pipe 1.
Irradiate light while changing the intensity according to 3 or intermittently. This light is collected by the condenser lens 11 and supplied to the glass fiber 9 through the optical fiber 12. When light is introduced into the glass fiber 9, heat is generated. Due to this heat, Freon 8 which is a low boiling point fluid is instantly boiled and vaporized.

【0020】これにより密閉容器4内の圧力が高まり、
この結果、圧電素子5が外側へ膨らむように歪む。この
ため、圧電効果により圧電素子5の両電極6,7間に電
荷が生じ、変圧器16に電流が流れる。そして、変圧器
16により低圧化される。これによってカメラ2に電流
が供給される。この場合、光量は光量制御手段13によ
り増減されているので、光量の減少により、発生する熱
量が減少し、密閉容器4内は温度低下し、フロン8は液
化状態となり、圧力低下し、圧電素子5が元の状態に復
帰する。そして、光量が増加することにより、上述した
ようにして圧電素子5が再び歪み、電流が発生する。こ
れの繰り返しにより、変圧器16の二次側には交流電流
が取り出され、この交流電力が、カメラ2に電源として
与えられる。
This increases the pressure in the closed container 4,
As a result, the piezoelectric element 5 is distorted so as to bulge outward. For this reason, an electric charge is generated between both electrodes 6 and 7 of the piezoelectric element 5 due to the piezoelectric effect, and a current flows through the transformer 16. Then, the voltage is reduced by the transformer 16. As a result, electric current is supplied to the camera 2. In this case, since the light quantity is increased / decreased by the light quantity control means 13, the quantity of heat generated is decreased due to the decrease of the light quantity, the temperature in the closed container 4 is lowered, the flon 8 is liquefied and the pressure is lowered, and the piezoelectric element is reduced. 5 returns to the original state. Then, as the amount of light increases, the piezoelectric element 5 is distorted again as described above, and a current is generated. By repeating this, an alternating current is taken out to the secondary side of the transformer 16, and this alternating current power is given to the camera 2 as a power source.

【0021】ここで、上記変圧器16により降圧する理
由について述べると、圧電素子5により発生する電圧
は、電位は高いものの電流は小さい。従って、このまま
ではアクチュエータ本体であるカメラ2を駆動するのに
は十分な電流が取り出せない。この対策として、降圧用
の変圧器16により低圧化することで電流を多くとれる
ようにしている。この電流は変圧比によって異なり、例
えば変圧比を100:1とすれば、二次側の電流は一次
側に比して100倍となる。また、この場合、圧電素子
5からの出力電流は直流の脈流であるが、変圧器16を
設けたことで交流として取り出せる利点がある。
The reason why the voltage is reduced by the transformer 16 will be described below. The voltage generated by the piezoelectric element 5 has a high potential but a small current. Therefore, as it is, sufficient current cannot be taken out to drive the camera 2 which is the actuator body. As a countermeasure against this, a large amount of current can be obtained by lowering the voltage by the step-down transformer 16. This current varies depending on the transformation ratio. For example, if the transformation ratio is 100: 1, the current on the secondary side is 100 times that on the primary side. Further, in this case, the output current from the piezoelectric element 5 is a DC pulsating current, but the provision of the transformer 16 has an advantage that it can be taken out as AC.

【0022】このような本実施例においては、圧電素子
歪手段14により圧電素子5を歪ませることで、この圧
電素子5に電流あるいは電圧が発生する。この電流ある
いは電圧に基づいてカメラ2が動作するから、外部電源
を要さずに該カメラ2を動作させることができる。この
結果、ワイヤ(電源線)の重量の影響が大きくなる超小
形アクチュエータにとってきわめて有効である。
In this embodiment, the piezoelectric element strain means 14 distorts the piezoelectric element 5 to generate a current or voltage in the piezoelectric element 5. Since the camera 2 operates based on this current or voltage, the camera 2 can be operated without requiring an external power supply. As a result, it is extremely effective for a microminiature actuator in which the influence of the weight of the wire (power supply line) becomes large.

【0023】特に、圧電素子5の電極6,7の両側に圧
力差を生じさせるから、該圧電素子5を効果的に歪ませ
ることができて、電流あるいは電圧を有効に発生させる
ことができる。さらに本実施例によれば、密閉容器4内
への光の導入を制御することで圧電素子5の電極6,7
の両側に圧力差を生じさせるから、光の調整により比較
的簡単にカメラ2の電源を得ることができる。また光を
エネルギー源とすることによってエネルギーコストがき
わめて低くなる。
In particular, since a pressure difference is generated between the electrodes 6 and 7 of the piezoelectric element 5, the piezoelectric element 5 can be effectively distorted and current or voltage can be effectively generated. Furthermore, according to this embodiment, the electrodes 6, 7 of the piezoelectric element 5 are controlled by controlling the introduction of light into the closed container 4.
Since a pressure difference is generated between the two sides, the power source of the camera 2 can be obtained relatively easily by adjusting the light. Moreover, the energy cost is extremely low by using light as the energy source.

【0024】図2は、本発明の第2の実施例を示してお
り、次の点が上記第1の実施例と異なる。すなわち、密
閉容器21の内部を二分するように圧電素子22を設
け、この圧電素子22により分けられた一方の密閉室2
1aおよび他方の密閉室21bに対応して、それぞれフ
ロン8およびグラスファイバ9が封入されていると共
に、それぞれ光ファイバ12、窓部10、集光レンズ1
1および光量制御手段13が設けられている。
FIG. 2 shows a second embodiment of the present invention, which differs from the first embodiment in the following points. That is, the piezoelectric element 22 is provided so as to divide the inside of the closed container 21 into two, and the one closed chamber 2 divided by the piezoelectric element 22.
Corresponding to 1a and the other closed chamber 21b, a CFC 8 and a glass fiber 9 are respectively enclosed, and an optical fiber 12, a window 10 and a condenser lens 1 are respectively provided.
1 and a light quantity control means 13 are provided.

【0025】この実施例においては、光量制御手段1
3,13による光の強弱変化もしくは断続照射の制御を
逆パターンとして、一方の密閉室21aおよび他方の密
閉室21bの内部圧力を交互に高めることにより、圧電
素子5を両側から歪ませるようにしている。この場合、
圧電素子22から交流電流を取り出すことができる。
In this embodiment, the light quantity control means 1
By changing the intensity change of light by 3 and 13 or the control of intermittent irradiation to the opposite pattern, the internal pressures of the one closed chamber 21a and the other closed chamber 21b are alternately increased so that the piezoelectric element 5 is distorted from both sides. There is. in this case,
An alternating current can be taken out from the piezoelectric element 22.

【0026】図3ないし図6は、本発明の第3の実施例
を示し、圧電素子歪手段31の構成が第1の実施例と異
なる。すなわち、この圧電素子歪手段31は、風を矢印
Aで示す方向へ通す導風管32の内部に、圧電素子33
を風の流れを二分するように配設している。換言すれ
ば、導風管32により圧電素子33の一方の面側と他方
の面側とにそれぞれ通風路を形成するようにしている。
この場合、圧電素子33の一端部を軸34により導風管
32に回動自在に軸支し、また他端部を摺動軸35によ
り導風管32の長孔32aに矢印A方向およびその反対
方向へ移動自在に支持している。
3 to 6 show a third embodiment of the present invention, in which the structure of the piezoelectric element distortion means 31 is different from that of the first embodiment. That is, the piezoelectric element distortion means 31 includes a piezoelectric element 33 inside the air guide tube 32 that allows air to flow in the direction indicated by the arrow A.
Is arranged so as to divide the wind flow into two. In other words, the air guide tubes 32 form ventilation passages on the one surface side and the other surface side of the piezoelectric element 33, respectively.
In this case, one end of the piezoelectric element 33 is rotatably supported by the wind guide tube 32 by the shaft 34, and the other end is slid by the sliding shaft 35 in the elongated hole 32a of the wind guide tube 32 in the direction of arrow A and its direction. It is supported so that it can move in the opposite direction.

【0027】さらにこの圧電素子33の一方の面である
電極6側の面の風上側部分には、この図3の状態で下側
の通風路を閉鎖する風路抵抗部材36が取り付けられて
おり、また、他方の面である電極7側の面の風下側部分
には、通気孔37aを有する通風可能なスペーサー部材
37が取り付けられている。
Further, an air passage resistance member 36 for closing the lower air passage in the state of FIG. 3 is attached to the windward side of the surface of the piezoelectric element 33 on the side of the electrode 6 which is one surface. Further, on the leeward side of the surface on the side of the electrode 7 which is the other surface, a spacer member 37 having a ventilation hole 37a is attached.

【0028】この実施例においては、導風管32に風を
矢印A方向へ示すように供給すると、図3の状態では、
風路抵抗部材36により風の流れが阻止されることによ
り、圧電素子33の上側を風が通り、このためこの上側
部分が低圧力状態となり、図5で示すように圧電素子3
3が上側へ湾曲するように歪む。この歪により、圧電素
子33自身により該圧電素子33の上側の通風路が閉鎖
される。この結果、今度は、風が圧電素子33の下側を
通るようになり、この部分の圧力が低くなる。これによ
って、図6で示すように、圧電素子33が下側へ湾曲す
るように歪む。すると、風は圧電素子33の上側を通る
ようになり、上側が低圧力状態となって、今度は、圧電
素子33が下側へ湾曲するように歪む。これの繰り返し
となり、圧電素子33から交流電流が発生する。
In this embodiment, when air is supplied to the air guide tube 32 as shown in the direction of arrow A, in the state of FIG.
Since the airflow resistance member 36 blocks the flow of the wind, the wind passes over the upper side of the piezoelectric element 33, so that the upper side portion is in a low pressure state, and the piezoelectric element 3 as shown in FIG.
Distort so that 3 bends upwards. Due to this distortion, the piezoelectric element 33 itself closes the ventilation path above the piezoelectric element 33. As a result, this time, the wind comes to pass under the piezoelectric element 33, and the pressure in this portion becomes low. As a result, as shown in FIG. 6, the piezoelectric element 33 is distorted so as to bend downward. Then, the wind passes through the upper side of the piezoelectric element 33, the upper side is in a low pressure state, and the piezoelectric element 33 is distorted so as to bend downward. By repeating this, an alternating current is generated from the piezoelectric element 33.

【0029】この第3の実施例では、導風管32内へ風
を通すことで圧電素子33の電極6,7の両側に圧力差
を生じさせるから、送風よりアクチュエータ本体の電源
を得ることができる。
In the third embodiment, since a pressure difference is generated between the electrodes 6 and 7 of the piezoelectric element 33 by passing air into the air guide tube 32, it is possible to obtain the power source for the actuator body by blowing air. it can.

【0030】[0030]

【発明の効果】本発明は以上の説明から明らかなよう
に、次の効果を得ることができる。請求項1の発明によ
れば、圧電素子歪手段により圧電素子を歪ませ、これに
より発生する電流あるいは電圧に基づいてアクチュエー
タ本体を動作させるから、外部からの電源供給を必要と
しない。この結果、ワイヤ(電源線)の重量の影響が大
きくなる超小形アクチュエータにとってきわめて有効で
ある。
As is apparent from the above description, the present invention can obtain the following effects. According to the first aspect of the invention, the piezoelectric element is distorted by the piezoelectric element straining means, and the actuator body is operated based on the current or voltage generated thereby, so that power supply from the outside is not required. As a result, it is extremely effective for a microminiature actuator in which the influence of the weight of the wire (power supply line) becomes large.

【0031】請求項2の発明によれば、圧電素子の電極
の両側に圧力差を生じさせるから、圧電素子を効果的に
歪ませることができて、電流あるいは電圧を有効に発生
させることができる。
According to the invention of claim 2, since a pressure difference is generated on both sides of the electrode of the piezoelectric element, the piezoelectric element can be effectively distorted, and an electric current or voltage can be effectively generated. .

【0032】請求項3の発明によれば、密閉容器内への
光の導入を制御することで圧電素子の電極の両側に圧力
差を生じさせるから、光の制御によりアクチュエータ本
体の電源を得ることができる。そして、光をエネルギー
源とすることによってエネルギーコストをきわめて低く
できる。
According to the third aspect of the invention, since the pressure difference is generated on both sides of the electrode of the piezoelectric element by controlling the introduction of the light into the closed container, the power supply of the actuator body can be obtained by controlling the light. You can The energy cost can be extremely reduced by using light as the energy source.

【0033】請求項4の発明によれば、圧電素子により
二分された密閉容器の内部への光の導入を交互に制御す
ることにより、前記圧電素子の電極の両側に圧力差を生
じさせるから、交流電流を取り出すことができる。
According to the invention of claim 4, by alternately controlling the introduction of light into the inside of the sealed container divided into two by the piezoelectric element, a pressure difference is generated between both sides of the electrode of the piezoelectric element. AC current can be taken out.

【0034】請求項5の発明によれば、導風管内へ風を
通すことで圧電素子の電極の両側に圧力差を生じさせる
から、送風よりアクチュエータ本体の電源を得ることが
できる。
According to the fifth aspect of the present invention, since a pressure difference is generated on both sides of the electrodes of the piezoelectric element by passing the air into the air guide tube, it is possible to obtain the power source of the actuator body by blowing air.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示す原理的構成図FIG. 1 is a principle configuration diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示す原理的構成図FIG. 2 is a principle configuration diagram showing a second embodiment of the present invention.

【図3】本発明の第3の実施例を示す原理的構成図FIG. 3 is a principle configuration diagram showing a third embodiment of the present invention.

【図4】図3の矢印X−X方向から見た正面図FIG. 4 is a front view seen from the direction of arrow XX in FIG.

【図5】作用説明のための原理的構成図FIG. 5 is a principle configuration diagram for explaining the operation.

【図6】作用説明のための原理的構成図FIG. 6 is a principle configuration diagram for explaining the operation.

【符号の説明】[Explanation of symbols]

1は配管、2はカメラ(アクチュエータ本体)、3は制
御部、4は密閉容器、5は圧電素子、6,7は電極、8
はフロン(熱膨脹・収縮性物質)、9はグラスファイバ
(光・熱変換素子)、12は光ファイバ(光導入手
段)、13は光量制御手段、14は圧電素子歪手段、1
6は変圧器、21は密閉容器、22は圧電素子、31は
圧電素子歪手段、32は導風管、33は圧電素子、36
は風路抵抗部材を示す。
1 is a pipe, 2 is a camera (actuator body), 3 is a control unit, 4 is a closed container, 5 is a piezoelectric element, 6 and 7 are electrodes, 8
Is CFC (thermally expandable / contractible material), 9 is a glass fiber (light / heat conversion element), 12 is an optical fiber (light introducing means), 13 is a light quantity control means, 14 is a piezoelectric element distortion means, 1
6 is a transformer, 21 is a closed container, 22 is a piezoelectric element, 31 is a piezoelectric element distortion means, 32 is a wind guide tube, 33 is a piezoelectric element, 36
Indicates an air passage resistance member.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 歪により電圧が発生する両面に電極が施
された圧電素子と、この圧電素子を歪ませる圧電素子歪
手段と、この圧電素子歪手段にて前記圧電素子を歪ませ
ることにより発生する電流あるいは電圧に基づいて動作
するアクチュエータ本体とを具備してなることを特徴と
するワイヤレスアクチュエータ。
1. A piezoelectric element in which electrodes are provided on both surfaces where a voltage is generated by strain, a piezoelectric element straining means for straining the piezoelectric element, and a piezoelectric element straining means for straining the piezoelectric element. And a main body of an actuator that operates based on a current or a voltage.
【請求項2】 圧電素子歪手段は、圧電素子の電極の両
側に圧力差を生じさせる構成であることを特徴とする請
求項1記載のワイヤレスアクチュエータ。
2. The wireless actuator according to claim 1, wherein the piezoelectric element straining means is configured to generate a pressure difference on both sides of the electrode of the piezoelectric element.
【請求項3】 圧電素子歪手段は、少なくとも一面が圧
電素子で構成され内部に熱膨脹・収縮性物質および光・
熱変換素子が封入された密閉容器と、この密閉容器外部
から内部へ光を導入させる光導入手段とを備え、前記密
閉容器内への光の導入を制御することにより、圧電素子
の電極の両側に圧力差を生じさせる構成となっているこ
とを特徴とする請求項2記載のワイヤレスアクチュエー
タ。
3. The piezoelectric element strain means has at least one surface formed of a piezoelectric element, and internally has a thermal expansion / contraction material and light.
Both sides of the electrodes of the piezoelectric element are controlled by controlling the introduction of light into the closed container, which includes a closed container in which the heat conversion element is enclosed and a light introducing unit for introducing light into the closed container from the outside. The wireless actuator according to claim 2, wherein the wireless actuator is configured to generate a pressure difference between the two.
【請求項4】 圧電素子歪手段は、内部を圧電素子によ
り二分され各々の内部に熱膨張・収縮性物質および光・
熱変換素子が封入された密閉容器と、この密閉容器外部
から夫々の内部へ光を導入させる光導入手段とを備え、
夫々の内部への光の導入を交互に制御することにより、
前記圧電素子の電極の両側に圧力差を生じさせる構成と
なっていることを特徴とする請求項2記載のワイヤレス
アクチュエータ。
4. The piezoelectric element straining means is divided into two parts by a piezoelectric element, and the inside of each is divided by a thermal expansion / contraction material and light.
A heat-sealing element is enclosed in a hermetically sealed container, and light introducing means for introducing light from the outside of the hermetically sealed container into the respective interiors,
By alternately controlling the introduction of light into each interior,
The wireless actuator according to claim 2, wherein the piezoelectric actuator is configured to generate a pressure difference on both sides of the electrode of the piezoelectric element.
【請求項5】 圧電素子歪手段は、圧電素子の一方の面
側と他方の面側とにそれぞれ通風路を形成する導風管
と、圧電素子の一方の面の風上側部分に設けられた風路
抵抗部材とを備え、前記導風管内に風を通すことにより
圧電素子の電極の両側に圧力差を生じさせる構成となっ
ていることを特徴とする請求項2記載のワイヤレスアク
チュエータ。
5. The piezoelectric element straining means is provided on an air guide tube that forms an air passage on each of one surface side and the other surface side of the piezoelectric element, and on the windward side of one surface of the piezoelectric element. The wireless actuator according to claim 2, further comprising: an air passage resistance member, which is configured to generate a pressure difference between both sides of an electrode of the piezoelectric element by passing air through the air guide tube.
JP5255576A 1993-10-13 1993-10-13 Wireless actuator Pending JPH07111785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5255576A JPH07111785A (en) 1993-10-13 1993-10-13 Wireless actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5255576A JPH07111785A (en) 1993-10-13 1993-10-13 Wireless actuator

Publications (1)

Publication Number Publication Date
JPH07111785A true JPH07111785A (en) 1995-04-25

Family

ID=17280642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5255576A Pending JPH07111785A (en) 1993-10-13 1993-10-13 Wireless actuator

Country Status (1)

Country Link
JP (1) JPH07111785A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219329B1 (en) 1990-01-19 2001-04-17 Fujitsu Limited Fluorescent optical disk
WO2001063738A2 (en) * 2000-02-23 2001-08-30 Sri International Electroactive polymer thermal electric generators
US6768246B2 (en) 2000-02-23 2004-07-27 Sri International Biologically powered electroactive polymer generators
US7034432B1 (en) 1997-02-07 2006-04-25 Sri International Electroactive polymer generators
US7064472B2 (en) 1999-07-20 2006-06-20 Sri International Electroactive polymer devices for moving fluid
US7320457B2 (en) 1997-02-07 2008-01-22 Sri International Electroactive polymer devices for controlling fluid flow
US7537197B2 (en) 1999-07-20 2009-05-26 Sri International Electroactive polymer devices for controlling fluid flow
US9195058B2 (en) 2011-03-22 2015-11-24 Parker-Hannifin Corporation Electroactive polymer actuator lenticular system
US9231186B2 (en) 2009-04-11 2016-01-05 Parker-Hannifin Corporation Electro-switchable polymer film assembly and use thereof
US9425383B2 (en) 2007-06-29 2016-08-23 Parker-Hannifin Corporation Method of manufacturing electroactive polymer transducers for sensory feedback applications
US9553254B2 (en) 2011-03-01 2017-01-24 Parker-Hannifin Corporation Automated manufacturing processes for producing deformable polymer devices and films
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
US9876160B2 (en) 2012-03-21 2018-01-23 Parker-Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219329B1 (en) 1990-01-19 2001-04-17 Fujitsu Limited Fluorescent optical disk
US7034432B1 (en) 1997-02-07 2006-04-25 Sri International Electroactive polymer generators
US7320457B2 (en) 1997-02-07 2008-01-22 Sri International Electroactive polymer devices for controlling fluid flow
US7394182B2 (en) 1999-07-20 2008-07-01 Sri International Electroactive polymer devices for moving fluid
US7703742B2 (en) 1999-07-20 2010-04-27 Sri International Electroactive polymer devices for controlling fluid flow
US7971850B2 (en) 1999-07-20 2011-07-05 Sri International Electroactive polymer devices for controlling fluid flow
US7064472B2 (en) 1999-07-20 2006-06-20 Sri International Electroactive polymer devices for moving fluid
US7537197B2 (en) 1999-07-20 2009-05-26 Sri International Electroactive polymer devices for controlling fluid flow
US7362032B2 (en) 1999-07-20 2008-04-22 Sri International Electroactive polymer devices for moving fluid
US7368862B2 (en) 1999-07-20 2008-05-06 Sri International Electroactive polymer generators
WO2001063738A2 (en) * 2000-02-23 2001-08-30 Sri International Electroactive polymer thermal electric generators
WO2001063738A3 (en) * 2000-02-23 2002-02-21 Stanford Res Inst Int Electroactive polymer thermal electric generators
US6768246B2 (en) 2000-02-23 2004-07-27 Sri International Biologically powered electroactive polymer generators
US6628040B2 (en) 2000-02-23 2003-09-30 Sri International Electroactive polymer thermal electric generators
US9425383B2 (en) 2007-06-29 2016-08-23 Parker-Hannifin Corporation Method of manufacturing electroactive polymer transducers for sensory feedback applications
US9231186B2 (en) 2009-04-11 2016-01-05 Parker-Hannifin Corporation Electro-switchable polymer film assembly and use thereof
US9553254B2 (en) 2011-03-01 2017-01-24 Parker-Hannifin Corporation Automated manufacturing processes for producing deformable polymer devices and films
US9195058B2 (en) 2011-03-22 2015-11-24 Parker-Hannifin Corporation Electroactive polymer actuator lenticular system
US9876160B2 (en) 2012-03-21 2018-01-23 Parker-Hannifin Corporation Roll-to-roll manufacturing processes for producing self-healing electroactive polymer devices
US9761790B2 (en) 2012-06-18 2017-09-12 Parker-Hannifin Corporation Stretch frame for stretching process
US9590193B2 (en) 2012-10-24 2017-03-07 Parker-Hannifin Corporation Polymer diode

Similar Documents

Publication Publication Date Title
JPH07111785A (en) Wireless actuator
US20110265505A1 (en) Optimization of a Thermoacoustic Apparatus Based on Operating Conditions and Selected User Input
JPH10125981A (en) Laser
JP3005449B2 (en) Vacuum valve with heating function
CN108886340A (en) Radiant type micron interstitial thermal photovoltaic system with transparent emission body
ITMI20031826A1 (en) HEAT EXCHANGER AND PERFECT STRUCTURE.
WO1997012714A3 (en) Device for the selective, contactless soldering and unsoldering of components
CN208077022U (en) Droplet target generating means and its temperature control system
JPH077421A (en) Frequency reference cell
JPS6146023A (en) Exposure of semiconductor wafer material by superhigh pressure mercury-arc lamp
CN108445927A (en) EUV light source drop generating device and its temperature control system
JPH03165486A (en) Temperature regulating device for treatment
KR970015757A (en) High Vacuum Sintering and Heat Treatment Equipment
JP5048300B2 (en) Evaluation apparatus for substrate mounting apparatus and evaluation method therefor
JP2799812B2 (en) Ozone generator
JPH06326379A (en) Gas laser oscillator
Allam A piezoelectric beam chopper
JPS5821388A (en) Control method for oscillating wavelength of infrared laser element
JPH11209104A (en) Ozonizer
JPH0635482Y2 (en) Metal vapor laser tube
JPH02139082A (en) Apparatus for heating extra-high purity water
JPH11337954A (en) Manufacture of liquid crystal cell and its device
JPH0821744B2 (en) Gas laser oscillator
JPH01294400A (en) Induced plasma producing device
JPS58176989A (en) Stabilized frequency laser