JPS58176989A - Stabilized frequency laser - Google Patents

Stabilized frequency laser

Info

Publication number
JPS58176989A
JPS58176989A JP5959882A JP5959882A JPS58176989A JP S58176989 A JPS58176989 A JP S58176989A JP 5959882 A JP5959882 A JP 5959882A JP 5959882 A JP5959882 A JP 5959882A JP S58176989 A JPS58176989 A JP S58176989A
Authority
JP
Japan
Prior art keywords
laser
heater
temperature
frequency
supporting rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5959882A
Other languages
Japanese (ja)
Inventor
Shinichi Ito
進一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5959882A priority Critical patent/JPS58176989A/en
Publication of JPS58176989A publication Critical patent/JPS58176989A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To set operable condition within a short period with a heat generated from a laser tube without generation of mode hopping by sufficient forced expansion of supporting means through a heater. CONSTITUTION:A supporting rod 5 used as a supporting means is set in the forced heating condition with a heater 6 in the preceding stage where the feedback mechnism is operated for laser oscillation or stabilization. At this time, a heating temperature is set to a temperature which is further higher than the temperature to which the supporting rod 5, expanded up to a degree not allowing skip of vertical mode, reaches. Thereby, heat is not led to the supporting rod 5 from the laser tube 2 dueing laser oscillation and a thermal influence is hardly generated from the laser tube 2. Accordingly, the time required by the supporting rod 5 to be heated up to the specified temperature with a heater 6 is becomes the stand-by time required for obtaining stabilized frequency as the laser. Such time differs in accordance with a room temperature but it is very short period and the stand-by time required by a laser apparatus can be drasticaly curtailed.

Description

【発明の詳細な説明】 本発明は1周波数安定化レーザーに関するものであって
、使用開始時に短時間で周波数を安定するようにすると
共に、1文月時に於けるモードホッピング(次数の飛畑
)を極力抑えるようにすることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a single frequency stabilized laser, which stabilizes the frequency in a short time at the beginning of use, and prevents mode hopping (order skipping) in one cycle. The aim is to minimize the

周知のように例えばカスレーザーは、ドツプラー幅のな
かで、光共振器によって選択される尚波数の発振線が一
本或いは複数不存し、複数本の場合には光共振器内にエ
タロンを配置づることにょつてそのうちの一本だけ全発
振させることが可能である(単−周波数化)。
As is well known, for example, in a cass laser, there is one or more oscillation lines of the same wave number selected by the optical resonator within the Doppler width, and in the case of multiple oscillation lines, an etalon is placed inside the optical resonator. It is possible to make only one of them fully oscillate (single frequency).

そしてこの周波数νは、共振器長しとの間に。And this frequency ν is between the resonator length and the length.

−ニー L なる関係式が成り立つ。ここでCは光の速度2mは縦モ
ードの次数イ°′合る。
- Knee L The relational expression holds true. Here, C corresponds to the speed of light, 2 m, and the order of the longitudinal mode.

ところカニ共振器長しは一般に環境温度、外力等の外的
条件によって変化するので、この変化に伴ない発振周波
数も変化してしまい、従ってこの周波数全安定させる為
には共振器長りを一定値に維持しておく必畏がある。
However, since the length of the crab resonator generally changes depending on external conditions such as environmental temperature and external force, the oscillation frequency also changes with this change. Therefore, in order to stabilize this frequency completely, the length of the resonator must be kept constant. It is necessary to maintain the value.

共振器の代表的な構造は、レーザーチューブの両端に一
対の共振器用反射ミラ一体全配置し、該反射ミラ一体を
支持体を介して連結したものであり、前記共振器長しは
この支持体の外的条件の変化に伴う伸縮によって左右さ
れることになる。
A typical structure of a resonator is that a pair of resonator reflecting mirrors are integrally arranged at both ends of a laser tube, and the reflecting mirrors are connected via a support, and the length of the resonator is connected to the support. It is influenced by the expansion and contraction caused by changes in external conditions.

従って従来は、支持体と反射ミラ一体との連結部分に、
ピエゾ素子、電歪素子等を配し周波数変化を検出して変
化に応じた電圧を前記素子に印加することにより、共振
器長しを一定に保つようにしていた。
Therefore, conventionally, at the connection part between the support and the reflection mirror,
The length of the resonator was kept constant by arranging a piezo element, an electrostrictive element, etc., detecting a change in frequency, and applying a voltage corresponding to the change to the element.

1だ支持体近傍に高い精度で温度制御をした水を循環さ
せるパイプを配する構成も考えられてい雑であり且つ従
来の装置に追加付設することが容易にはできない等の欠
点、不満点が存した。
1) A structure in which a pipe for circulating water whose temperature is controlled with high precision is arranged near the support is considered to be complicated, and there are drawbacks and dissatisfaction such as the fact that it cannot be easily added to a conventional device. It existed.

また従来の構成にあって、レーザーを発振させ始めると
、レーザーチューブの発する熱が支持体に流入して、支
持体の温度が次第に上昇し、これに伴なう支持体の膨張
によって縦モードは次々とより大きな次数へと飛躍する
(モードホッピングχこの縦モードの飛躍は、支持体が
一定の温度に達するまで当初の極めて短かいピッチから
徐々にピッチを長くしながら長時間にわたって継続的に
生ずるので、使用に耐えられるだけの周波数の安定を得
るのに要する特徴時間が長くならざるを得なかった。そ
して仮に前述の如くピエゾ素子等を配することによって
周波数の安定を図る処置をとつたとしても、電圧印加に
よって生ずるピエゾ素子の伸長が十分でないときにはこ
の発熱による支持体の伸長を素子の収縮によって吸収し
きれないのでモードホッピングが生じなくなるまでには
成る程度の待機が必要でろり、この現象は特に共振器長
りが長尺な場合に顕著である。
Furthermore, in the conventional configuration, when the laser starts to oscillate, the heat generated by the laser tube flows into the support, the temperature of the support gradually rises, and the accompanying expansion of the support causes the longitudinal mode to disappear. jumps to larger orders one after another (mode hopping χ This jump in longitudinal modes occurs continuously over a long period of time, gradually increasing the pitch from an initially very short pitch until the support reaches a certain temperature) Therefore, the characteristic time required to obtain frequency stability sufficient to withstand use was unavoidable.And even if measures were taken to stabilize the frequency by arranging piezo elements as described above, However, if the elongation of the piezo element caused by the voltage application is not sufficient, the elongation of the support due to this heat generation cannot be absorbed by the contraction of the element, so it is necessary to wait for a long time until mode hopping does not occur. This is particularly noticeable when the resonator length is long.

因みに例えばある種のレーサーでは上記待機時間が数時
間にも及ぶことがあり、また使用に耐えられる程度の縦
モードの飛躍ピッチとは、30分位である。
Incidentally, for example, in some racers, the above-mentioned waiting time may extend to several hours, and the jump pitch in the longitudinal mode that is acceptable for use is about 30 minutes.

本発明は、上述した従来技術の欠点、不都合に鑑みて案
出されたものであって、支持体に加熱ヒーターを配し、
所定条件のもとにこの加熱ヒーター全作動させるように
したものであジ、以下にその一実施例を図面に従って説
明する。
The present invention was devised in view of the above-mentioned drawbacks and inconveniences of the prior art, and includes a heater arranged on a support,
This heater is designed to be fully operated under predetermined conditions, and one embodiment thereof will be described below with reference to the drawings.

第1図は本発明の原理図を示すものにして、符号1は外
部鏡型ガスレーザー共振器であ、って、レーザーチュー
ブ2両端に所定間隔をおいて一対の共振器m反射ミラー
3,3が対向配置されるが。
FIG. 1 shows a principle diagram of the present invention, in which reference numeral 1 denotes an external mirror type gas laser resonator, in which a pair of resonator m reflecting mirrors 3, spaced apart at a predetermined interval at both ends of a laser tube 2, 3 are placed opposite each other.

各反射ミラー3,3は夫々保持板4,4に装着されて反
射ミラ一体を構成しており1両保持板4゜4は支持体で
ある三本の支持ロッド5・・・全弁して連結されている
Each of the reflecting mirrors 3, 3 is attached to a holding plate 4, 4, respectively, to form a single reflecting mirror, and one holding plate 4.4 is supported by three supporting rods 5...all valves. connected.

そして前記各支持ロッド5・・・には、夫々加熱ヒータ
ー6が1巻装され【図示例)、或いは近傍に接触させる
等して配置されてお凱 この加熱ヒーター6は夫々コン
トローラー7と結線されている。
Each of the support rods 5 is equipped with one heating heater 6 (as shown in the figure), or is placed in close contact with the heating heater 6. The heating heater 6 is connected to a controller 7, respectively. ing.

尚、上記加熱ヒーター6は図示例の如くニクロム線のよ
うなものであっても、或いは赤外線ヒーター等でもよく
、後者の場合にはロッド5近傍に配置して照射すればよ
い。
The heater 6 may be a nichrome wire as shown in the figure, or an infrared heater, etc. In the latter case, it may be placed near the rod 5 for irradiation.

従って共振器1にあって9反射ミラー3を保持する一対
の保持板4にロッド5により連結されているので、共振
器長りである両保持板40間隔長は、支持ロッド5に加
えられる外的条件によるイ申縮によって左右されるが、
支持ロッド5にに力目熱ヒーター6が配されているので
、コントローラー7を介しての電力調整によって支持ロ
ッド5の膨長収縮をコントロールすることができる。故
に発振すれるレーザービームBの周波数が、支持ロッド
5の伸縮によって僅かに変化した際、その変化を検出し
て例えば支持ロッド5が伸長した場合には所定値まで収
縮させるように加熱ヒーター6の電力を調整すればよい
Therefore, since the resonator 1 is connected to a pair of holding plates 4 holding the nine reflecting mirrors 3 by the rod 5, the distance between the holding plates 40, which is the length of the resonator, is the external force applied to the supporting rod 5. Although it depends on the conditions of interest,
Since the support rod 5 is provided with a power heater 6, the expansion and contraction of the support rod 5 can be controlled by adjusting the power via the controller 7. Therefore, when the frequency of the oscillated laser beam B slightly changes due to the expansion and contraction of the support rod 5, the heating heater 6 is activated to detect the change and, for example, when the support rod 5 is expanded, to contract it to a predetermined value. Just adjust the power.

尚、前記外部鏡型に於ける反射ミラ一体を取ジ付ける前
記支持体としては、光学べ/チでもよく。
Incidentally, the support body to which the reflection mirror unit in the external mirror type is screwed may be an optical bench.

また反射ミラ一体はレーザーチューブ2両端に保持板4
に代るチューブホルダー1所して直接反射ミラー3を取
り付けた内部鏡型でもよい。この内部鏡型でにレーザ−
チューブ2自体が前記支持体ともなり、場合によっては
二重管構造として、内部管をレーザーチューブ2とする
と共に、外部管を支持体とすることもある。
In addition, the reflection mirror is integrated with a holding plate 4 on both ends of the laser tube 2.
Alternatively, an internal mirror type in which a tube holder is provided and a direct reflection mirror 3 is attached may be used. With this internal mirror type, the laser
The tube 2 itself also serves as the support, and in some cases it may have a double tube structure, with the inner tube serving as the laser tube 2 and the outer tube serving as the support.

勿論支持体が光学ペンチである場合には、この光学ベン
チに前記加熱ヒーター6を配することになり、或いに内
部鏡型の場合にはレーザ−チューブ2自体に直接加熱ヒ
ーター6を巻装させる等にすることになろう。
Of course, if the support is an optical pliers, the heater 6 will be placed on this optical bench, or if it is an internal mirror type, the heater 6 will be wrapped directly around the laser tube 2 itself. I think I'll have to do something like that.

上述した周波数の変化を検出する手段は種々考えられる
ところであるが1図示本発明では、得られたレーザービ
ームBの一部を例えばハーフミラ−8を介して分割し、
該分割ビームIllヨウ度セル、ファプリペロー等の周
波数変化検出器9とフォトトランジスタ、フォトダイオ
ード等の光検出器10とを通過させるようにし、更に尊
光検出器10を前記コントローラー7と結線する。
Various means for detecting the above-mentioned frequency change can be considered, but in the present invention, a part of the obtained laser beam B is divided, for example, through a half mirror 8,
The beam is made to pass through a frequency change detector 9 such as a split beam Ill iodine cell or a Fapry-Perot, and a photodetector 10 such as a phototransistor or photodiode, and the photodetector 10 is further connected to the controller 7.

従って得られる所望のレーザービームBの周波数が前記
外的条件に伴なう支持ロッド5の伸縮によって僅かに変
化すると1周波数変化検出器9を通過する分割ビームB
′の光強度が変化し、この強度変化を光検出器10が検
知してその信号をコントローラー7に送り、加熱ヒータ
ー6への電力制御を行うのである。
Therefore, when the frequency of the desired laser beam B slightly changes due to the expansion and contraction of the support rod 5 due to the external conditions, the divided beam B passes through the frequency change detector 9.
The light intensity of ' changes, and the photodetector 10 detects this change in intensity and sends the signal to the controller 7 to control the power to the heater 6.

この周波数変化の検出方法を更に詳述するべく。The method for detecting this frequency change will now be described in more detail.

アルゴンレーザーの5145大 ラインに9いて考蜜し
てみよう。
Let's take a look at the 5145 large line of the argon laser.

例えばヨウ度ガスは1丁度5145λに吸収ス6クトル
を有しており、透過強度を縦軸1周波数νを横軸にとっ
た関係図では第2図の如き凹線となる、そして共振器1
内に配されたエタロン(図示せず)を調整して仁の曲線
の肩部分であるA点に発振線がくるように設定しておく
と2周波数の僅かな変化により周波数変化検出器9であ
るヨウ度セルを透過する光強度も僅かに変化する。
For example, iodine gas has an absorption spectrum at exactly 5145λ, and in a relationship diagram with the vertical axis of transmission intensity and one frequency ν on the horizontal axis, it becomes a concave line as shown in Figure 2, and the resonator 1
By adjusting the etalon (not shown) placed inside the center so that the oscillation line is at point A, which is the shoulder of the curve, the frequency change detector 9 detects a slight change in the two frequencies. The intensity of light transmitted through a given iodine cell also varies slightly.

そこでコントローラー7では、光検出器1o−y’))
測したA点の透過量の値をセットしておき、仁の値を越
えたならば加熱ヒーター6の電力の増減或イハon、o
ffの作動をさせるようにしておけば、レーザービーム
Bの僅かな周波数の変動に対応して支持ロッド5を伸縮
させることができ、もって周波数の安定化を図ることが
できる。
Therefore, in the controller 7, the photodetector 1o-y'))
Set the value of the measured transmission amount at point A, and if it exceeds the value, increase or decrease the power of the heating heater 6 or turn on or off.
If ff is activated, the support rod 5 can be expanded and contracted in response to slight frequency fluctuations of the laser beam B, thereby stabilizing the frequency.

上述した装置の使用形態を詳述するならば、先ずレーザ
ー発振或いは安定化の為のフィードバック機構を働かせ
る前の段階で、支持体たる支持ロンド5を加熱ヒーター
6により強制的に加熱しておく。この加熱温度は、縦モ
ードの飛躍が濫りに生じない程度にまで支持ロッド5が
膨張したその時点での到達温度とりも更に数度乃至士数
度高い温度であり、このようにしておけば1発振時に於
けるレーザーチューブ2から支持ロッド5への熱の流入
は生じ得す、よってレーザーチューブ2からの熱的影響
が生じる仁とに殆どないことになる。
To explain in detail how the above-mentioned device is used, first, before the feedback mechanism for laser oscillation or stabilization is activated, the support iron 5, which is a support body, is forcibly heated by the heating heater 6. This heating temperature is several to several degrees higher than the temperature reached at the time when the support rod 5 expands to the extent that a jump in the longitudinal mode does not occur unduly. Heat can flow from the laser tube 2 to the support rod 5 during one oscillation, so there is almost no thermal influence from the laser tube 2.

それ故に、支持ロッド5が加熱ヒーター6によって所定
温度に1で達する所用時間が、レーザーとして使用し得
る安定した周波数となる待機時間となり、それは室温等
の環境にもよるが15分程度の極めて短時間であり、従
来のレーザー装置が必要とした待機時間を大幅に短縮す
ることt′:なる。
Therefore, the time required for the support rod 5 to reach a predetermined temperature by the heating heater 6 is the waiting time for a stable frequency that can be used as a laser, and it is extremely short, about 15 minutes, although it depends on the environment such as room temperature. This significantly reduces the waiting time required by conventional laser devices.

そして上述した状態で使用を継続させている間に、他の
外的条件によって支持ロッド5に熱的変動が生じた際に
は、前記周波数変化検知器9と光検出器10によって設
定周波数から微小な変化を検知し、コントローラー7を
介して加熱ヒーター6の電力が増減し、支持ロッド5の
膨張状態を望ましいものにして周波数の安定化を得るの
である。
When the support rod 5 undergoes thermal fluctuations due to other external conditions while the use is continued in the above-mentioned state, the frequency change detector 9 and the photodetector 10 detect a slight change in frequency from the set frequency. The electric power of the heater 6 is increased/decreased via the controller 7, and the expansion state of the support rod 5 is adjusted to a desired value, thereby stabilizing the frequency.

本発明は1以上説明したような構成をと9作用を営む。The present invention employs one or more of the configurations and functions described above.

従って支持体を加熱ヒーターを介して予め十分に強制的
に膨張させておくので、レーザーチューブか9発せられ
る熱によって短時間にモードホラピンクの生じない使用
可能な状態に達することができる。
Therefore, since the support is forcibly expanded sufficiently in advance via a heating heater, the heat emitted from the laser tube can reach a usable state in a short period of time without causing mode-hora pink.

そしてその後にはコントローラーによる加熱ヒーターの
作動によって、共振器長を常に一定に保っておくことが
でき、所望の極めて安定した周波数のレーザービームを
得ることができる。
Then, by operating the heater using the controller, the resonator length can be kept constant at all times, and a laser beam with a desired extremely stable frequency can be obtained.

しかも構成が簡単であって廉価に製作でき、従来存する
装置に加熱ヒーターを配する手を加えるだけで実施が可
能である等1本発明は優れて有効な作用効果を奏するも
のである。
In addition, the present invention has a simple structure, can be manufactured at low cost, and can be implemented by simply adding a heater to a conventional device.The present invention exhibits excellent and effective effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す原理図、第2図に透過
強度と周波数との関連の一例を示す説明図である。 符号の説明 1・・・共振器、2・・・レーザーチューブ、3・・・
反射ミラー、4・・・保持板、5・・・支持ロッド、6
・・・加熱ヒーター、7・・・コントローラー、8・・
・ハーフミラ−,9・・・周波数変化検出器、10・・
・光検出器、B・・・レーザービーム。
FIG. 1 is a principle diagram showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing an example of the relationship between transmission intensity and frequency. Explanation of symbols 1...Resonator, 2...Laser tube, 3...
Reflection mirror, 4... Holding plate, 5... Support rod, 6
... Heater, 7... Controller, 8...
・Half mirror, 9...Frequency change detector, 10...
・Photodetector, B...laser beam.

Claims (1)

【特許請求の範囲】[Claims] レーザーチューブの両端に対向配置される一対の共振器
用反射ミラ一体を、支持体を介して連結し、当該支持体
に、ファブリベロー等の周波数変化検出器によって検知
される光出力の変化に応じて電力のコントロールがなさ
れる加熱ヒーターを配して成る周波数安だ化レーザー。
A pair of resonator reflecting mirrors placed opposite each other at both ends of the laser tube are connected via a support, and a mirror is connected to the support in response to changes in optical output detected by a frequency change detector such as a Fabry Bellow. A frequency-lowering laser equipped with a heater whose power is controlled.
JP5959882A 1982-04-12 1982-04-12 Stabilized frequency laser Pending JPS58176989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5959882A JPS58176989A (en) 1982-04-12 1982-04-12 Stabilized frequency laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5959882A JPS58176989A (en) 1982-04-12 1982-04-12 Stabilized frequency laser

Publications (1)

Publication Number Publication Date
JPS58176989A true JPS58176989A (en) 1983-10-17

Family

ID=13117837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5959882A Pending JPS58176989A (en) 1982-04-12 1982-04-12 Stabilized frequency laser

Country Status (1)

Country Link
JP (1) JPS58176989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214784A (en) * 1990-01-19 1991-09-19 Nec Corp Laser resonator
WO2007015073A3 (en) * 2005-08-02 2007-08-23 Geola Technologies Ltd A laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03214784A (en) * 1990-01-19 1991-09-19 Nec Corp Laser resonator
WO2007015073A3 (en) * 2005-08-02 2007-08-23 Geola Technologies Ltd A laser
US7852887B2 (en) 2005-08-02 2010-12-14 View Holographics Ltd. Laser

Similar Documents

Publication Publication Date Title
US4848881A (en) Variable lens and birefringence compensator
JPH10313143A (en) Narrow-band laser device
JP2006210581A5 (en)
KR19990072839A (en) Measuring apparatus for laser output
US3987373A (en) Laser having etalon assembly
US5495489A (en) Second harmonic generating method and apparatus
JP2644315B2 (en) High frequency discharge pumped laser device
JPS6482527A (en) Exposure device
JPS58176989A (en) Stabilized frequency laser
US4987574A (en) Helium-neon lasers
JPH02299277A (en) Method and apparatus for stabilizing optical component temperature
JP3049469B2 (en) Laser output detector
JP5153115B2 (en) Frequency stabilized gas laser
JPH0122997B2 (en)
JP2003075877A (en) Laser light source and temperature control method for nonlinear optical element
JPS566491A (en) Oscillating method of carbon dioxide gas laser in multi-line
JPS6171689A (en) Semiconductor laser device
US10170885B2 (en) Current control device and laser device
JPH10163549A (en) Laser light source device and support structure thereof
JP2584209B2 (en) Laser output control device
JPH0346288A (en) Stabilized light source
JPH11145544A (en) Wavelength-stabilizing device of laser device
KR101976130B1 (en) Apparatus and method of control for repetition rate frequency of fibeer laser
JPS62226684A (en) Controller for laser output
JPH0376185A (en) Semiconductor laser device