JPS6171689A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6171689A
JPS6171689A JP19250984A JP19250984A JPS6171689A JP S6171689 A JPS6171689 A JP S6171689A JP 19250984 A JP19250984 A JP 19250984A JP 19250984 A JP19250984 A JP 19250984A JP S6171689 A JPS6171689 A JP S6171689A
Authority
JP
Japan
Prior art keywords
semiconductor laser
temperature
stem
detection element
temperature detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19250984A
Other languages
Japanese (ja)
Inventor
Satoshi Aoki
青木 聰
Tsutomu Yoshiya
吉屋 勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19250984A priority Critical patent/JPS6171689A/en
Publication of JPS6171689A publication Critical patent/JPS6171689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable the temperature of a semiconductor laser to be kept constant even when the ambient temperature varies largely, by a method wherein the current and polarity supplied to an electronic cooling element are controlled by the output of a temperature detection element led out of a hermetic sealed terminal. CONSTITUTION:A semiconductor laser 1 is mounted on a stem 2 made of a substance of high thermal conductivity, together with a thermistor 3 which is a kind of temperature detection element, and the stem 2 is fixed in low terminal resistance on a Peltier effect element 6 which has been fixed to a stem 5 in low thermal resistance. A cap 8 having a hermetic window 7 through which the radiated light of the semiconductor laser 1 is led out is welded to the stem 5, and the container is sealed in the state of dry nitrogen atmosphere. In this device, the variation in resistance value caused by temperature changes is grasped as the variation in voltage by impressing constant current on the thermistor 3, and the polarity of the current supplied to the Peltier effect element 6 is inverted so that this variation may reduce to zero, i.e. temperature may become constant; thereby, the temperature of the semiconductor laser 1 is controlled constant.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、発振波長の安定化を向上した、光通借用の半
導体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optically available semiconductor laser device with improved stabilization of an oscillation wavelength.

〔発明の背景〕[Background of the invention]

一般にへき開面を共振器とするファブリペロ共振器形半
導体レーザの発振波長は、温度によって変化することが
知られている。
It is known that the oscillation wavelength of a Fabry-Perot cavity type semiconductor laser, which generally uses a cleavage plane as a resonator, changes depending on the temperature.

例えばIrbGcLAsPレーザの場合は0.4〜0.
5rLm10Cの波長変化を生ずる。
For example, in the case of IrbGcLAsP laser, 0.4 to 0.
This results in a wavelength change of 5rLm10C.

この温度による波長の変化け、伝送損失、ファイバの分
散の変化によるパルス広が9や伝送帯域の変化、或は、
波長多重伝送の場合には、漏話量の増加など、伝道特性
に重大な影響を与える。
Changes in wavelength due to temperature, transmission loss, changes in pulse spread9 and transmission band due to changes in fiber dispersion, or
In the case of wavelength division multiplexing transmission, transmission characteristics are seriously affected, such as an increase in the amount of crosstalk.

このため、発振波長の変動の影響が大きい単一モードフ
ァイバ高速伝送や、高密度波長多重伝送では、特に発振
波長の安定化を講する必要がある。
Therefore, in single-mode fiber high-speed transmission and dense wavelength multiplexing transmission, which are greatly affected by fluctuations in the oscillation wavelength, it is necessary to take particular measures to stabilize the oscillation wavelength.

この発振波長の安定化の一方策として従来は、半導体レ
ーザの共振器に、波長の選択性を有した回折格子を用い
た分布帰還形レーザや、分布反射形レーザが開発され、
温度による波長の変化も0.O5nm100g度と小さ
くすることができた。
As a way to stabilize the oscillation wavelength, distributed feedback lasers and distributed reflection lasers have been developed that use a wavelength-selective diffraction grating in the resonator of a semiconductor laser.
The wavelength change due to temperature is also 0. It was possible to reduce the amount of O5nm to 100g.

然しなから、上記分布帰還形レーザや分布反射形レーザ
では、回折格子によりて発振波長が固定されているため
に、温度変化によって半導体のエネルギーギャップが変
化し、利得スペクトルが回折格子の共振スペクトルの範
囲をこえると発振しなくなる。
However, in the above-mentioned distributed feedback lasers and distributed reflection lasers, the oscillation wavelength is fixed by the diffraction grating, so the energy gap of the semiconductor changes with temperature changes, and the gain spectrum changes from the resonance spectrum of the diffraction grating. If it exceeds this range, it will no longer oscillate.

そのために、発掘可能な温度範囲は、通常のファブリペ
ロ共振話形レーザと比べてはる79)に狭く、実用上温
度変化に対する発振波長の安定化対策とはならず、これ
の311発が急がれているのが実情である。
For this reason, the temperature range that can be excavated is much narrower than that of ordinary Fabry-Perot resonant talking lasers79), and it is not practical to stabilize the oscillation wavelength against temperature changes, and the 311 laser beams are The reality is that

〔発明の目的〕[Purpose of the invention]

本発明は、上記実情に鑑みなされたものであり、発振波
長の安定化を向上した半導体レーザ装置を提供せんとす
るものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a semiconductor laser device with improved stabilization of the oscillation wavelength.

〔発明の概要〕[Summary of the invention]

即ち本発明は、発振成長の変化の直接の原因である半導
体レーザの温度変化をなくすことにより解決したもので
あり、具体的には、を予冷却素子の低温部に7アプリベ
ロ共振器形半導体レーザ又は分布帰還形成は分布反射形
の半導体レーザを温度検出素子と共に搭載し、電子冷却
素子の高温部には放熱器を設け、この電子冷却素子と上
記半導体レーザ素子及び温度検出素子を半導体レーザ光
を取シ出す気密窓を有する容器内に密閉封止し、この容
器内を乾燥窒素を充填した雰囲気とし、上記電子冷却素
子の高温側で容器の壁に設けられた気密封止端子によシ
、上記温度検出素子の出力によって電子冷却素子に供給
する電流及び極性を制御して、半導体レーザの温度を一
定にしたことを特徴とする。
That is, the present invention solves the problem by eliminating the temperature change of the semiconductor laser, which is the direct cause of the change in oscillation growth. Alternatively, in distributed feedback formation, a distributed reflection type semiconductor laser is mounted together with a temperature detection element, a radiator is provided in the high temperature part of the electronic cooling element, and this electronic cooling element, the semiconductor laser element, and the temperature sensing element are connected to the semiconductor laser beam. Hermetically sealed in a container with an airtight window for taking out the air, the inside of this container is filled with dry nitrogen, and the airtight terminal provided on the wall of the container is connected to the high temperature side of the electronic cooling element. The present invention is characterized in that the temperature of the semiconductor laser is kept constant by controlling the current and polarity supplied to the electronic cooling element based on the output of the temperature detection element.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例について詳細に説明する・ 発明者らは、半導体レーザの温度を一定に制御すること
によシ、半導体レーザの利得スペクトルの変化を抑制し
、ファブリペロ共振器形レーザの場合は、直接発振波長
の安定化を行ない、分布帰還形及び分布反射形レーザで
は共振スペクトルの外へ利得スペクトルが出ないように
することで、発振波長の安定化を試みる実験を行なった
An embodiment of the present invention will be described in detail below. The inventors suppressed changes in the gain spectrum of the semiconductor laser by controlling the temperature of the semiconductor laser to a constant value, and in the case of a Fabry-Perot cavity laser. conducted an experiment to try to stabilize the oscillation wavelength by directly stabilizing the oscillation wavelength and preventing the gain spectrum from going outside the resonance spectrum in distributed feedback and distributed reflection lasers.

半導体レーザの温度を一定に制御するだめの装置を第1
図に示し説明する。
The first device is a device that controls the temperature of the semiconductor laser at a constant level.
It is shown and explained in the figure.

図において、半導体レーザ(この場合は、ファブリペロ
共振器形レーザを使用)1は、熱伝導率の高い材質(本
実験では、無酸素鋼を使用)から成るステム2に、温度
検出素子の一つであるサーミスタ3と共に搭載されてい
る。
In the figure, a semiconductor laser (in this case, a Fabry-Perot cavity laser is used) 1 has a stem 2 made of a material with high thermal conductivity (in this experiment, oxygen-free steel is used), and one temperature detection element is attached to the stem 2. It is installed together with the thermistor 3.

一方このステム2は、放熱フィン4が設けられたステム
5に、低熱抵抗で固定されたベルチェ効果素子6の上に
低熱抵抗で固定されている。
On the other hand, this stem 2 is fixed with low thermal resistance on a Bertier effect element 6 fixed with low thermal resistance to a stem 5 provided with radiation fins 4.

8は、半導体レーザ1の放射光を外部へ取シ出す気密窓
7を有すキャップであり、このキャップ8け、ステム5
に乾燥窒素雰囲気中で溶接されて密閉された容器となし
、従ってこの容器内は、乾燥窒素雰囲気の状態に封止さ
れている。
8 is a cap having an airtight window 7 for taking out the emitted light from the semiconductor laser 1 to the outside;
are welded in a dry nitrogen atmosphere to form a sealed container, and therefore the inside of this container is sealed in a dry nitrogen atmosphere.

9は、ステム5を気密にして貫通して設けられた気密封
止端子であり、この貫通部は、ベルチェ効果素子6の高
温側に相当する。この気密封止端子9によって、半導体
レーザ1とベルチェ効果素子6に給電し、又サーミスタ
3の出力を導出する。又この気密封止端子9と、半導体
レーザ1.サーミスタ3とは、熱抵抗の高いワイヤ10
で結線されておシ、気密封止端子9よシ伝導する外部か
らの熱の流人を低減している。
Reference numeral 9 denotes a hermetically sealed terminal that is provided by penetrating the stem 5 in a hermetically sealed manner, and this penetrating portion corresponds to the high temperature side of the Beltier effect element 6. Through this hermetically sealed terminal 9, power is supplied to the semiconductor laser 1 and the Bertier effect element 6, and the output of the thermistor 3 is derived. Moreover, this hermetically sealed terminal 9 and the semiconductor laser 1. The thermistor 3 is a wire 10 with high thermal resistance.
This reduces the flow of heat from the outside conducted through the hermetically sealed terminal 9.

この装置において、半導体レーザ1の温度制御は、サー
ミスタ5によってステム2を介して検出される半導体レ
ーザ1の温度に合せて、ベルチェ効果素子6の電流と極
性を変え、冷却又は加熱することにより行なわれる。
In this device, temperature control of the semiconductor laser 1 is performed by changing the current and polarity of the Beltier effect element 6 and cooling or heating it in accordance with the temperature of the semiconductor laser 1 detected by the thermistor 5 via the stem 2. It will be done.

更に詳しく説明すると、第2図(α)は、サーミスタ3
の特性を示す線図であり、温度変化によってその抵抗値
が変化する この性質を利用して、サーミスタ3に自己発熱量が十分
に小さく押えられる範囲の定電流を印加し、温度変化に
起因するサーミスタ抵抗値の変化を電圧変化としてとら
え、温度を検出する。この電圧の変化がゼロとなるよう
に、即ち、温度が一足となるように、ベルチェ効果素子
6ヘ供給する電流を制御することで温度制御を行なう。
To explain in more detail, FIG. 2 (α) shows the thermistor 3
This is a diagram showing the characteristics of the thermistor 3. Taking advantage of this property that the resistance value changes with temperature change, a constant current is applied to the thermistor 3 in a range that keeps the amount of self-heating sufficiently small. Temperature is detected by capturing changes in thermistor resistance as voltage changes. Temperature control is performed by controlling the current supplied to the Beltier effect element 6 so that this change in voltage becomes zero, that is, so that the temperature remains constant.

ベルチェ効果素子6は、第2図但)に示すように電流の
極性を反転することにより、ステム2の固定された側が
低温側から高温側へ(冷却から加熱動作へ)反転できる
ため、第3図に示すように、設定温度よシ周囲温度が低
くなった場合は、ベルチェ効果素子に供給する電流の極
性を反転し、冷却動作より加熱動作に反転させることで
、半導体レーザ1の湿質を一定に制御する・ 以上のように構成した本実施例の装置を用いて、実験し
た結果を第4図に示し説明する。
The Beltier effect element 6 can reverse the fixed side of the stem 2 from the low temperature side to the high temperature side (from cooling to heating operation) by reversing the polarity of the current as shown in Figure 2. As shown in the figure, when the ambient temperature becomes lower than the set temperature, the polarity of the current supplied to the Beltier effect element is reversed, and the cooling operation is reversed to the heating operation, thereby reducing the humidity of the semiconductor laser 1. Constant control - Using the apparatus of this embodiment configured as described above, the results of an experiment are shown in FIG. 4 and will be explained.

図において、半導体レーザ装置の周囲温度を一40°O
〜+70°Cの範囲で変化させ、半導体レーザ1の温度
を+25’Oに制御した場合のサーミスタ抵抗値(半導
体レーザ1の温度)発振波長の実測値を示す。
In the figure, the ambient temperature of the semiconductor laser device is -40°C.
The actual measured values of the thermistor resistance value (temperature of the semiconductor laser 1) and oscillation wavelength when the temperature of the semiconductor laser 1 is controlled to +25'O by changing the temperature in the range of ~+70°C are shown.

この図よ)判る週9、周囲温度を一40°C〜+70°
Cで、サーミスタ3の抵抗値は温度25°0に対応した
5、0KO、及び温度25℃に対応した波長1302n
mが安定して保たれている。
(This figure) Week 9, the ambient temperature is -40°C to +70°
At C, the resistance value of thermistor 3 is 5,0KO corresponding to the temperature 25°0, and the wavelength 1302n corresponding to the temperature 25°C.
m is kept stable.

図より、周囲温度が+65℃以上では、ナミスタ3の抵
抗値と発振波長く多少の変化が観測されるが、これは、
ベリチェ効果素子の発生するジュール熱と、冷却による
吸熱量とを放熱する放熱フィン4の放熱特性が飽和した
ためであり、放熱フィン4の放熱面積の増加又は強制冷
却により改善することができる。
From the figure, when the ambient temperature is above +65℃, some changes in the resistance value and oscillation wave length of Namister 3 are observed, but this is due to
This is because the heat dissipation characteristics of the heat dissipation fins 4, which dissipate the Joule heat generated by the Beriche effect element and the amount of heat absorbed by cooling, have become saturated, and can be improved by increasing the heat dissipation area of the heat dissipation fins 4 or by forced cooling.

本冥験の場合、ベルチェ効果素子6は単体で、ベルチェ
′Itdを1人とした場合、低温側と高温側の温度差4
6℃が再られる性能を有しており、実装後では、放熱面
積500dの放熱フィンを使用した場合、自然対fil
cで40℃の温度差が得られ、周囲温度65℃まで、半
導体レーザ1の温度を+25℃に制御が可能であった。
In the case of this experiment, the Beltier effect element 6 is a single unit, and when there is one Beltier 'Itd, the temperature difference between the low temperature side and the high temperature side is 4.
6℃, and after mounting, when using heat radiation fins with a heat radiation area of 500 d, natural resistance fil
A temperature difference of 40° C. was obtained at c, and it was possible to control the temperature of the semiconductor laser 1 to +25° C. up to an ambient temperature of 65° C.

この実験は、半導体レーザの温度を一定にして、発振波
長の不安定原因を根本的に記したものであるから、半導
体レーザ1と元ファイバとを光結合したモジ為−ル構造
としても同様の効果が得られる。
In this experiment, the temperature of the semiconductor laser was kept constant and the cause of the instability of the oscillation wavelength was fundamentally described, so a similar module structure in which the semiconductor laser 1 and the original fiber were optically coupled was Effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述した通り、本発明の半導体レーザ装置によれば
、冷却素子の低温部に半導体レーザと温度検出素子を共
に搭載し、乾燥窒素を充填した密閉容器内に収納し、冷
却素子の高温部には放熱器を設け、気密封止端子より導
出した温度検出素子の出力により、電子冷却素子に供給
する電流及び極性を制御して半導体レーザの温度をIl
l Nするようにしたので、周囲温【が大幅に変化して
も、半導体レーザの温度を一定に保つことができ、発振
波長の安定性が確実に保たれ、伝送特性を著しるしく向
−ヒすることができた。
As detailed above, according to the semiconductor laser device of the present invention, the semiconductor laser and the temperature detection element are both mounted in the low temperature part of the cooling element, housed in a sealed container filled with dry nitrogen, and the high temperature part of the cooling element is mounted. A radiator is installed in the radiator, and the temperature of the semiconductor laser is controlled by controlling the current and polarity supplied to the electronic cooling element using the output of the temperature detection element derived from the hermetically sealed terminal.
1N, the temperature of the semiconductor laser can be kept constant even if the ambient temperature changes significantly, the stability of the oscillation wavelength is reliably maintained, and the transmission characteristics are significantly improved. I was able to hit it.

又半導体レーザは、動作温度が低いほど寿命が長いとい
う性質を有することから、高温下においても、半導体レ
ーザ温肛の上昇を抑制する本発明においては・半Q8体
1/−サの長寿命化をもたらすことができる等の効果も
)する。
In addition, since semiconductor lasers have a property that the lower the operating temperature, the longer the lifespan, the present invention suppresses the increase in semiconductor laser temperature even under high temperatures. (It can also bring about effects such as).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例であシ、半導体レーザ装置
の縦断面図である。第2図(α)は、サーミスタの温度
特性を又、第2因中)はベルチェ効果素子の特性を示す
線図である。第3図は、本発明の温度制御の原理を示す
説明用線図である。第4図は、周囲温度、サーミスタ抵
抗値及び発振波長の実験実測値を示す線図である。 1・・・・・・半導体Lフープ 2・・・・・・ステム 3・・・・・・サーミスタ(温度検出素子)4・・・・
・・放熱フィン(放熱器) 5・・・・・・ステム 6・・・・・・ベルチェ効果素子(冷却素子)7・・・
・・・気密窓 9・・・・・・気密封止端子
FIG. 1 is a longitudinal sectional view of a semiconductor laser device, which is an embodiment of the present invention. FIG. 2 (α) is a diagram showing the temperature characteristics of the thermistor, and the second factor) is a diagram showing the characteristics of the Beltier effect element. FIG. 3 is an explanatory diagram showing the principle of temperature control of the present invention. FIG. 4 is a diagram showing experimentally measured values of ambient temperature, thermistor resistance value, and oscillation wavelength. 1... Semiconductor L hoop 2... Stem 3... Thermistor (temperature detection element) 4...
...Radiation fin (radiator) 5 ... Stem 6 ... Bertier effect element (cooling element) 7 ...
...Airtight window 9...Hermetically sealed terminal

Claims (1)

【特許請求の範囲】[Claims] 電子冷却素子の低温部にファブリベロ共振器形半導体レ
ーザ又は分布帰還形成は分布反射形の半導体レーザを温
度検出素子と共に搭載し、電子冷却素子の高温部に放熱
器を設け、該電子冷却素子と上記半導体レーザ素子及び
温度検出素子を半導体レーザ光を取り出す気密窓を有す
る容器内に密閉封止し、該容器内を乾燥窒素を充填した
雰囲気とし、上記電子冷却素子の高温側の容器壁に設け
られ上記温度検出素子の出力によって電子冷却素子に供
給する電流及び極性を制御して半導体レーザの温度を一
定にするための気密封止端子を設けた半導体レーザ装置
A Fabry-Bello resonator type semiconductor laser or a distributed reflection type semiconductor laser with distributed feedback formation is mounted together with a temperature detection element in the low temperature part of the thermoelectric cooling element, and a radiator is provided in the high temperature part of the thermoelectric cooling element to connect the thermoelectric cooling element and the above. The semiconductor laser element and the temperature detection element are hermetically sealed in a container having an airtight window for taking out the semiconductor laser light, the inside of the container is filled with dry nitrogen, and the temperature detection element is provided on the wall of the container on the high temperature side of the electronic cooling element. A semiconductor laser device provided with a hermetically sealed terminal for controlling the current and polarity supplied to the electronic cooling element based on the output of the temperature detection element to keep the temperature of the semiconductor laser constant.
JP19250984A 1984-09-17 1984-09-17 Semiconductor laser device Pending JPS6171689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19250984A JPS6171689A (en) 1984-09-17 1984-09-17 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19250984A JPS6171689A (en) 1984-09-17 1984-09-17 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6171689A true JPS6171689A (en) 1986-04-12

Family

ID=16292468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19250984A Pending JPS6171689A (en) 1984-09-17 1984-09-17 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6171689A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212699A (en) * 1990-07-18 1993-05-18 Fujitsu Limited Temperature-controlling laser diode assembly
JP2002329819A (en) * 2001-05-07 2002-11-15 Nec Corp Electronic component heating/cooling device
JP2003142766A (en) * 2001-09-06 2003-05-16 Finisar Corp Compact laser package with integrated temperature control
JP2006005347A (en) * 2004-06-16 2006-01-05 Sumitomo Electric Ind Ltd Optical subassembly provided with heat dissipation fin
US7425135B2 (en) 2004-04-30 2008-09-16 Finisar Corporation Flex circuit assembly
US7856038B2 (en) * 2006-03-27 2010-12-21 Sumitomo Electric Industries, Ltd. Light-emitting module installing thermo-electric controller
WO2011154405A1 (en) * 2010-06-07 2011-12-15 The University Of Sussex A tunable laser system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414180A (en) * 1977-07-05 1979-02-02 Canon Inc Semiconductor laser unit
JPS5923583A (en) * 1982-07-30 1984-02-07 Canon Inc Laser unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414180A (en) * 1977-07-05 1979-02-02 Canon Inc Semiconductor laser unit
JPS5923583A (en) * 1982-07-30 1984-02-07 Canon Inc Laser unit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212699A (en) * 1990-07-18 1993-05-18 Fujitsu Limited Temperature-controlling laser diode assembly
JP2002329819A (en) * 2001-05-07 2002-11-15 Nec Corp Electronic component heating/cooling device
JP2003142766A (en) * 2001-09-06 2003-05-16 Finisar Corp Compact laser package with integrated temperature control
JP4566506B2 (en) * 2001-09-06 2010-10-20 フィニサー コーポレイション Compact laser package with built-in temperature controller and optoelectronic module
US7425135B2 (en) 2004-04-30 2008-09-16 Finisar Corporation Flex circuit assembly
JP2006005347A (en) * 2004-06-16 2006-01-05 Sumitomo Electric Ind Ltd Optical subassembly provided with heat dissipation fin
JP4525478B2 (en) * 2004-06-16 2010-08-18 住友電気工業株式会社 Optical subassembly with radiating fins
US7856038B2 (en) * 2006-03-27 2010-12-21 Sumitomo Electric Industries, Ltd. Light-emitting module installing thermo-electric controller
WO2011154405A1 (en) * 2010-06-07 2011-12-15 The University Of Sussex A tunable laser system

Similar Documents

Publication Publication Date Title
US9806491B2 (en) Thermo-electric cooling system and method for cooling electronic devices
US4949346A (en) Conductively cooled, diode-pumped solid-state slab laser
JPS6171689A (en) Semiconductor laser device
JP2004521500A5 (en)
JPH088388B2 (en) Method and apparatus for stabilizing temperature of optical component
JP3968868B2 (en) Solid state laser equipment
JP4548649B2 (en) Laser wavelength conversion unit
JP5858879B2 (en) Semiconductor laser module
JPH0376185A (en) Semiconductor laser device
JP3196300B2 (en) Semiconductor laser device
JPH02161786A (en) Semiconductor laser excitation solid laser device
JPH07273393A (en) Wavelength stabilizer
JPS62293792A (en) Semiconductor laser and semiconductor laser light source device
JPS59197186A (en) Semiconductor device
JP2536438B2 (en) Semiconductor laser equipment
JP2003188456A (en) Photoelectronic device
JPH0529695A (en) Laser apparatus
SU1165210A1 (en) Stabilized laser
JPH0263182A (en) Semiconductor laser device
JP2008145896A (en) Laser pointer using semiconductor laser excitation solid laser
JPH0341787A (en) Solid-state laser
JP2000252553A (en) Semiconductor laser-stimulated solid state laser apparatus
JPH0964447A (en) Variable wavelength light source
JPH045547A (en) Carbon dioxide gas sensor
JPH08316575A (en) Variable wavelength optical source