JPH07111319A - Nonvolatile semiconductor storage device and manufacture thereof - Google Patents

Nonvolatile semiconductor storage device and manufacture thereof

Info

Publication number
JPH07111319A
JPH07111319A JP5277855A JP27785593A JPH07111319A JP H07111319 A JPH07111319 A JP H07111319A JP 5277855 A JP5277855 A JP 5277855A JP 27785593 A JP27785593 A JP 27785593A JP H07111319 A JPH07111319 A JP H07111319A
Authority
JP
Japan
Prior art keywords
film
insulating film
word line
polycrystalline
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5277855A
Other languages
Japanese (ja)
Other versions
JP3330700B2 (en
Inventor
Shoichi Iwasa
昇一 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27785593A priority Critical patent/JP3330700B2/en
Publication of JPH07111319A publication Critical patent/JPH07111319A/en
Application granted granted Critical
Publication of JP3330700B2 publication Critical patent/JP3330700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To provide an element isolation structure corresponded to microscopical formation of the memory cell such as EEPROM and the like which can be electrically re-written. CONSTITUTION:By fixing the polycrystalline Si film 22, formed on the surface of the Si substrate 11 of an element isolation region through the intermediary of a SiO2 film 21, to earth potential, the formation of a parasitic channel on the surface of the Si substrate 11 of the element isolation region can be prevented even when high potential re-writing voltage is applied to a word line 16. The polycrystalline Si film 22 is formed in the direction orthogonally intersecting with the word line 16, and its upper surface is covered with a SiO2 film 23 and its side face is covered with a side wall spacer 24 consisting of SiO2 respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、電気的に書き
換えが可能な不揮発性半導体記憶装置及びその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, an electrically rewritable nonvolatile semiconductor memory device and a manufacturing method thereof.

【0002】[0002]

【従来の技術】EEPROM等の不揮発性半導体記憶装
置を含む半導体装置の一般的な素子分離方法としてLO
COS法がある。図9に、LOCOS法を用いて素子分
離を行ったEEPROMメモリセルの部分の概略断面図
を示す。図示の如く、Si基板111の表面にLOCO
S法で素子分離用のSiO2 膜112が選択的に形成さ
れており、このSiO2 膜112に囲まれた素子領域の
表面にトンネル酸化膜としてのSiO2 膜113が形成
されている。Si基板111上には浮遊ゲートとしての
多結晶Si層114がメモリセル毎に形成されており、
この多結晶Si層114はSiO2 膜115に覆われて
いる。そして、多結晶Si層114の上には、素子分離
用のSiO2 膜112の延びる方向(紙面に垂直な方
向)に直交する方向の制御ゲート、即ち、ワード線とし
ての多結晶Si層116が形成されている。
2. Description of the Related Art LO is used as a general element isolation method for a semiconductor device including a nonvolatile semiconductor memory device such as an EEPROM.
There is the COS method. FIG. 9 shows a schematic cross-sectional view of a portion of an EEPROM memory cell in which element isolation has been performed using the LOCOS method. As shown in the figure, the LOCO is formed on the surface of the Si substrate 111.
The SiO 2 film 112 for element isolation is selectively formed by the S method, and the SiO 2 film 113 as a tunnel oxide film is formed on the surface of the element region surrounded by the SiO 2 film 112. A polycrystalline Si layer 114 as a floating gate is formed on the Si substrate 111 for each memory cell.
The polycrystalline Si layer 114 is covered with the SiO 2 film 115. On the polycrystalline Si layer 114, a control gate in a direction orthogonal to the extending direction of the element isolation SiO 2 film 112 (direction perpendicular to the paper surface), that is, the polycrystalline Si layer 116 as a word line is formed. Has been formed.

【0003】ところが、このLOCOS法には、素子分
離用のSiO2 膜112に生じるバーズビークによって
素子領域の幅が狭められるという寸法シフトの問題があ
った。また、SiO2 膜112を選択熱酸化により形成
する時の熱処理によってSi基板111中の不純物が横
方向に拡散し、素子領域での基板濃度プロファイルを変
化させて、トランジスタにおける狭チャネル効果を発生
させるという問題もあった。これらの問題は、近年の微
細化の要求により、深刻化してきている。特に、EEP
ROM等の電気的に書き換えが可能な不揮発性半導体記
憶装置の場合には、書き込み又は消去の際に一般に5V
以上の高電圧がワード線である多結晶Si層116に印
加され、このために、素子分離領域に寄生チャネルが形
成され易いので、素子分離構造に特別の配慮が必要とな
る。
However, the LOCOS method has a problem of dimensional shift that the width of the element region is narrowed by the bird's beak generated in the SiO 2 film 112 for element isolation. Further, the impurities in the Si substrate 111 are laterally diffused by the heat treatment when the SiO 2 film 112 is formed by selective thermal oxidation, and the substrate concentration profile in the element region is changed to generate the narrow channel effect in the transistor. There was also a problem. These problems have become serious due to the recent demand for miniaturization. Especially EEP
In the case of an electrically rewritable non-volatile semiconductor memory device such as a ROM, it is generally 5 V when writing or erasing.
The above high voltage is applied to the polycrystalline Si layer 116 which is a word line, and a parasitic channel is easily formed in the element isolation region for this reason, so that special consideration needs to be given to the element isolation structure.

【0004】そこで、図10に示すようなトレンチ構造
による素子分離方法が提案されている。このトレンチ分
離法では、Si基板211の素子分離領域にトレンチ2
17が形成されており、トレンチ217が、その内面を
SiO2 膜212で覆われるとともに、ホウ素をドープ
したPSG膜、即ち、BPSG膜218で埋め込まれて
いる。そして、この素子分離構造により、浮遊ゲートで
ある多結晶Si層214及び制御ゲートである多結晶S
i層216もメモリセル毎に分離されている。そして、
互いに分離された多結晶Si層216がワード線である
WSi配線219で接続されている。この構造により、
LOCOS法を用いた場合よりも微細なセル面積を実現
することができる。
Therefore, an element isolation method using a trench structure as shown in FIG. 10 has been proposed. In this trench isolation method, the trench 2 is formed in the element isolation region of the Si substrate 211.
17 are formed, and the trench 217 is covered with the SiO 2 film 212 on its inner surface and is filled with a boron-doped PSG film, that is, a BPSG film 218. With this element isolation structure, the polycrystalline Si layer 214 which is a floating gate and the polycrystalline S layer which is a control gate.
The i layer 216 is also separated for each memory cell. And
The polycrystalline Si layers 216 separated from each other are connected by a WSi wiring 219 which is a word line. This structure allows
A finer cell area can be realized than in the case of using the LOCOS method.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、図10
に示したようなトレンチ分離法は、実際には、トレンチ
217の形成が難しく、また、製造工程も複雑となるの
で、未だ実用化には到っていない。
However, as shown in FIG.
Actually, the trench isolation method as shown in FIG. 3 has not been put to practical use because it is difficult to form the trench 217 and the manufacturing process is complicated.

【0006】そこで、本発明の目的は、従来のLOCO
S法とほぼ同等の簡易な製造方法で実現でき、且つ、L
OCOS法のようなバーズビークによる寸法シフトや狭
チャネル効果を発生させず、更に、例えば、ワード線に
高電圧を印加しても寄生チャネルが形成されない素子分
離構造を持った不揮発性半導体記憶装置及びその製造方
法を提供することである。
Therefore, an object of the present invention is to improve the conventional LOCO.
It can be realized by a simple manufacturing method almost equivalent to the S method, and L
A non-volatile semiconductor memory device having an element isolation structure that does not cause a dimensional shift or a narrow channel effect due to bird's beak as in the OCOS method, and further does not form a parasitic channel even when a high voltage is applied to a word line, and the same. It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】上述した課題を解決する
ために、本発明では、各メモリセルが半導体基板とワー
ド線との間に電荷蓄積層を有する不揮発性半導体記憶装
置において、ワード線方向に隣接するメモリセル間を互
いに分離するための素子分離領域における前記半導体基
板の上に、前記ワード線の下で且つ前記ワード線と実質
的に直交する方向に延びる導電膜がシールド絶縁膜を介
して形成され、この導電膜の電位を固定することによ
り、その電界によって前記素子分離領域における前記半
導体基板の表面の電位を固定するように構成されてい
る。
In order to solve the above-mentioned problems, according to the present invention, in a nonvolatile semiconductor memory device in which each memory cell has a charge storage layer between a semiconductor substrate and a word line, the word line direction A conductive film extending below the word line and in a direction substantially orthogonal to the word line on the semiconductor substrate in the element isolation region for separating the memory cells adjacent to each other via the shield insulating film. By fixing the electric potential of the conductive film, the electric potential of the conductive film fixes the electric potential of the surface of the semiconductor substrate in the element isolation region.

【0008】本発明の一態様においては、前記電荷蓄積
層が浮遊ゲートである。
In one aspect of the present invention, the charge storage layer is a floating gate.

【0009】本発明の別の一態様においては、前記電荷
蓄積層が、シリコン酸化膜の上に形成されたシリコン窒
化膜である。
In another aspect of the present invention, the charge storage layer is a silicon nitride film formed on a silicon oxide film.

【0010】本発明の不揮発性半導体記憶装置の製造方
法は、半導体基板の表面に第1の絶縁膜、導電膜及び第
2の絶縁膜を順次積層形成する工程と、前記導電膜及び
前記第2の絶縁膜をパターニングして、素子分離領域に
のみこれらの膜を残す工程と、全面に第3の絶縁膜を形
成した後、これを異方性エッチングして、パターニング
された前記導電膜及び前記第2の絶縁膜の側部にサイド
ウォールスペーサーを形成する工程と、前記導電膜、前
記第2の絶縁膜及び前記サイドウォールスペーサーによ
り分離された素子領域の前記半導体基板の上に第4の絶
縁膜であるトンネル絶縁膜を形成する工程と、前記トン
ネル絶縁膜の上に、浮遊ゲートとなる第1の多結晶シリ
コン膜を前記素子領域にそって延びるパターンに形成す
る工程と、前記第1の多結晶シリコン膜の上に第5の絶
縁膜を形成する工程と、全面に第2の多結晶シリコン膜
を形成した後、この第2の多結晶シリコン膜並びに前記
第5の絶縁膜及び前記第1の多結晶シリコン膜をパター
ニングして、前記素子領域において前記第1の多結晶シ
リコン膜にオーバーラップし、且つ、前記導電膜と実質
的に直交する方向に延びるワード線を形成する工程とを
有する。
A method of manufacturing a nonvolatile semiconductor memory device according to the present invention comprises a step of sequentially laminating a first insulating film, a conductive film and a second insulating film on a surface of a semiconductor substrate, the conductive film and the second insulating film. Patterning the insulating film to leave these films only in the element isolation regions, and forming a third insulating film on the entire surface, and then anisotropically etching this to form the patterned conductive film and the patterned conductive film. Forming a sidewall spacer on a side portion of the second insulating film, and forming a fourth insulating film on the semiconductor substrate in an element region separated by the conductive film, the second insulating film, and the sidewall spacer. Forming a tunnel insulating film that is a film, forming a first polycrystalline silicon film that serves as a floating gate on the tunnel insulating film in a pattern extending along the element region, and Forming the fifth insulating film on the polycrystalline silicon film, and after forming the second polycrystalline silicon film on the entire surface, the second polycrystalline silicon film, the fifth insulating film, and the Patterning the first polycrystalline silicon film to form a word line that overlaps the first polycrystalline silicon film in the device region and extends in a direction substantially orthogonal to the conductive film. Have.

【0011】[0011]

【作用】本発明においては、素子分離領域の導電膜と第
2の絶縁膜とは、例えばリソグラフィ及びエッチングに
よりパターン形成することができるので、バーズビーク
による寸法シフトが生じず、且つ、熱処理による狭チャ
ネル効果は殆ど生じない。また、動作時に電位が固定さ
れるように構成された導電膜が電界をシールドするの
で、ワード線に高電圧が印加されても素子分離領域に寄
生チャネルが形成されることがない。
In the present invention, since the conductive film in the element isolation region and the second insulating film can be patterned by, for example, lithography and etching, dimensional shift due to bird's beak does not occur and a narrow channel due to heat treatment is obtained. There is almost no effect. In addition, since the conductive film configured so that the potential is fixed during operation shields the electric field, a parasitic channel is not formed in the element isolation region even when a high voltage is applied to the word line.

【0012】[0012]

【実施例】以下、本発明を浮遊ゲート型EEPROMに
適用した実施例を図1〜図8を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the present invention is applied to a floating gate type EEPROM will be described below with reference to FIGS.

【0013】図1は、本実施例のEEPROMメモリセ
ル部分の製造過程における概略斜視図であり、図2
(a)〜(d)は、夫々、図1のA−A線、B−B線、
C−C線及びD−D線に沿った縦断面図である。
FIG. 1 is a schematic perspective view in the manufacturing process of the EEPROM memory cell portion of this embodiment.
(A)-(d) are respectively AA line, BB line of FIG.
It is a longitudinal cross-sectional view along the CC line and the DD line.

【0014】まず、その製造方法について、図3〜図8
を参照して説明する。なお、図3〜図8の各図におい
て、(a)〜(c)は、夫々、各製造工程における平面
図並びに図1のA−A線に沿った縦断面図及びD−D線
に沿った縦断面図である。
First, the manufacturing method will be described with reference to FIGS.
Will be described with reference to. In each of FIGS. 3 to 8, (a) to (c) are plan views in each manufacturing process, a vertical sectional view taken along the line AA of FIG. 1 and a line D-D, respectively. FIG.

【0015】まず、図3に示すように、P型のSi基板
11の表面に熱酸化法でSiO2 膜21を形成する。そ
して、このSiO2 膜21の上に、膜厚が300nm程
度でP型又はN型の不純物をドープした多結晶Si膜2
2と膜厚が500nm程度のSiO2 膜等の絶縁膜23
とをCVD法により順次堆積させる。しかる後、フォト
リソグラフィ及び異方性ドライエッチングにより、素子
分離領域において絶縁膜23と多結晶Si膜22とを帯
状のパターンに残す。
First, as shown in FIG. 3, a SiO 2 film 21 is formed on the surface of a P-type Si substrate 11 by a thermal oxidation method. Then, on the SiO 2 film 21, a polycrystalline Si film 2 having a film thickness of about 300 nm and doped with P-type or N-type impurities is formed.
2 and an insulating film 23 such as a SiO 2 film having a thickness of about 500 nm
And are sequentially deposited by the CVD method. Then, by photolithography and anisotropic dry etching, the insulating film 23 and the polycrystalline Si film 22 are left in a strip-shaped pattern in the element isolation region.

【0016】次に、図4に示すように、CVD法でSi
2 膜等の絶縁膜24を全面に堆積させた後、この絶縁
膜24を異方性ドライエッチングして、多結晶Si膜2
2及び絶縁膜23の側面に絶縁膜24からなるサイドウ
ォールスペーサーを形成する。なお、この絶縁膜24に
対する異方性ドライエッチングによって、基板表面に露
出した部分のSiO2 膜21も除去される。
Next, as shown in FIG. 4, Si is formed by the CVD method.
After depositing an insulating film 24 such as an O 2 film on the entire surface, the insulating film 24 is anisotropically dry-etched to obtain a polycrystalline Si film 2
2 and side walls of the insulating film 23 are formed with sidewall spacers made of the insulating film 24. By anisotropic dry etching of the insulating film 24, the portion of the SiO 2 film 21 exposed on the substrate surface is also removed.

【0017】次に、図5に示すように、Si基板11の
素子領域の表面にトンネル酸化膜としてのSiO2 膜1
3を熱酸化法で形成してから、膜厚が150nm程度で
N型の不純物をドープした多結晶Si膜14をCVD法
で堆積させる。そして、フォトリソグラフィ及び異方性
ドライエッチングにより、素子領域を被覆する帯状のパ
ターンに多結晶Si膜14を加工する。更に、多結晶S
i膜14の表面に熱酸化法によりSiO2 膜15を形成
する。
Next, as shown in FIG. 5, a SiO 2 film 1 as a tunnel oxide film is formed on the surface of the element region of the Si substrate 11.
3 is formed by a thermal oxidation method, and then a polycrystalline Si film 14 having a film thickness of about 150 nm and doped with N-type impurities is deposited by a CVD method. Then, the polycrystalline Si film 14 is processed into a band-shaped pattern that covers the element region by photolithography and anisotropic dry etching. Furthermore, polycrystalline S
A SiO 2 film 15 is formed on the surface of the i film 14 by a thermal oxidation method.

【0018】次に、図6に示すように、膜厚が300n
m程度でN型の不純物をドープした多結晶Si膜16と
SiO2 膜25をCVD法で順次に全面に堆積させる。
そして、フォトリソグラフィ及び異方性ドライエッチン
グにより、SiO2 膜25、多結晶Si膜16、SiO
2 膜15、多結晶Si膜14及びSiO2 膜13を、多
結晶Si膜22及び絶縁膜23、24の延びる方向に直
交するパターンにエッチングする。
Next, as shown in FIG. 6, the film thickness is 300 n.
A polycrystalline Si film 16 doped with N-type impurities and a SiO 2 film 25 of about m are sequentially deposited on the entire surface by a CVD method.
Then, by photolithography and anisotropic dry etching, the SiO 2 film 25, the polycrystalline Si film 16, the SiO
The 2 film 15, the polycrystalline Si film 14 and the SiO 2 film 13 are etched in a pattern orthogonal to the extending direction of the polycrystalline Si film 22 and the insulating films 23 and 24.

【0019】これにより、多結晶Si膜16で制御ゲー
ト、即ち、ワード線が形成されるとともに、多結晶Si
膜14で、メモリセル毎に分離された浮遊ゲートがワー
ド線に対して自己整合的に形成される。一方、ワード線
が形成されなかった領域では、素子分離領域を構成する
多結晶Si膜22及び絶縁膜23、24とこれらの下の
SiO2 膜21とが残されるのみで、素子領域が露出す
る。そこで、SiO2膜25や絶縁膜23、24等をマ
スクにしてSi基板11にN型の不純物を導入し、ソー
ス拡散層26及びドレイン拡散層27を形成する。この
状態が、図1及び図2に示す状態である。
As a result, a control gate, that is, a word line is formed by the polycrystalline Si film 16, and the polycrystalline Si film 16 is formed.
In the film 14, floating gates separated for each memory cell are formed in self alignment with the word lines. On the other hand, in the region where the word line is not formed, only the polycrystalline Si film 22 and the insulating films 23 and 24 forming the element isolation region and the SiO 2 film 21 thereunder are left, and the element region is exposed. . Therefore, N-type impurities are introduced into the Si substrate 11 using the SiO 2 film 25, the insulating films 23, 24, etc. as a mask to form the source diffusion layer 26 and the drain diffusion layer 27. This state is the state shown in FIGS. 1 and 2.

【0020】次に、図7に示すように、SiO2 膜等の
絶縁膜28をCVD法により全面に堆積させた後、この
絶縁膜28を異方性ドライエッチングして、SiO2
25及びその下の多結晶Si膜16の側面に絶縁膜28
からなるサイドウォールスペーサーを形成する。しかる
後、スパッタ法でWSi膜を全面に堆積させ、このWS
i膜をフォトリソグラフィ及び異方性ドライエッチング
でパターニングして、ワード線の方向に並んでいるソー
ス拡散層26を結ぶソース線としてのWSi配線31を
形成するとともに、各メモリセルのドレイン拡散層27
にコンタクトするドレインパッドとしてのWSi膜32
を形成する。その後、SiO2 膜等の層間絶縁膜33を
CVD法により全面に堆積させる(但し、図7(a)で
は、層間絶縁膜33を図示省略した。)。
Next, as shown in FIG. 7, after an insulating film 28 such as a SiO 2 film is deposited on the entire surface by a CVD method, this insulating film 28 is anisotropically dry-etched to form the SiO 2 film 25 and The insulating film 28 is formed on the side surface of the polycrystalline Si film 16 under the insulating film 28.
To form a sidewall spacer. After that, a WSi film is deposited on the entire surface by a sputtering method, and this WS
The i film is patterned by photolithography and anisotropic dry etching to form a WSi wiring 31 as a source line connecting the source diffusion layers 26 arranged in the direction of the word line and a drain diffusion layer 27 of each memory cell.
Film 32 as a drain pad that contacts the
To form. After that, an interlayer insulating film 33 such as a SiO 2 film is deposited on the entire surface by the CVD method (however, the interlayer insulating film 33 is not shown in FIG. 7A).

【0021】次に、図8に示すように、フォトリソグラ
フィ及び異方性ドライエッチングにより、ドレインパッ
ドであるWSi膜32に達するコンタクト孔34を層間
絶縁膜33に開口する(但し、図8(a)では、便宜
上、層間絶縁膜33を図示省略し、コンタクト孔34の
位置のみを破線で示す。)。そして、スパッタ法でAl
膜を全面に堆積させ、このAl膜をフォトリソグラフィ
及び異方性ドライエッチングでパターニングして、ワー
ド線の方向とは直交する方向に並んでいるWSi膜32
を結ぶビット線としてのAl配線35を形成する。
Next, as shown in FIG. 8, by photolithography and anisotropic dry etching, a contact hole 34 reaching the WSi film 32 which is a drain pad is opened in the interlayer insulating film 33 (however, in FIG. ), For convenience, the interlayer insulating film 33 is omitted in the drawing, and only the positions of the contact holes 34 are shown by broken lines. Then, Al is sputtered.
A film is deposited on the entire surface, the Al film is patterned by photolithography and anisotropic dry etching, and the WSi film 32 is lined up in the direction orthogonal to the word line direction.
An Al wiring 35 is formed as a bit line connecting the two.

【0022】以上のようにして形成したEEPROMメ
モリセルでは、その動作時、素子分離領域にある多結晶
Si膜22を接地電位に固定することにより、その上を
通るワード線に高電圧が印加された場合でも、それによ
り素子分離領域のSi基板11の表面の電位が変動し
て、そこに寄生チャネルが形成されることが防止され
る。
In the EEPROM memory cell formed as described above, a high voltage is applied to the word line passing therethrough by fixing the polycrystalline Si film 22 in the element isolation region to the ground potential during its operation. Even in such a case, the potential of the surface of the Si substrate 11 in the element isolation region fluctuates and a parasitic channel is prevented from being formed there.

【0023】以上に説明した実施例の製造方法では、L
OCOS法のように熱酸化によって膜厚の大きな酸化膜
を作る必要がないので、素子領域のSi基板11中の不
純物の横方向拡散に起因する狭チャネル効果を殆ど無視
することができる。
In the manufacturing method of the embodiment described above, L
Since it is not necessary to form an oxide film having a large film thickness by thermal oxidation as in the OCOS method, the narrow channel effect caused by the lateral diffusion of impurities in the Si substrate 11 in the element region can be almost ignored.

【0024】以上、本発明を浮遊ゲート型のEEPRO
Mに適用した実施例を説明したが、本発明は、Si基板
の素子領域にSiO2 膜とSiN膜とを順次形成し、S
iO2 膜との界面部分のSiN膜に電荷を蓄積するMN
OS型の不揮発性半導体記憶装置にもほぼ同様にして適
用することができる。
As described above, the present invention is applied to the floating gate type EEPRO.
Although the embodiment applied to M has been described, in the present invention, the SiO 2 film and the SiN film are sequentially formed in the element region of the Si substrate, and S
MN that accumulates charges in the SiN film at the interface with the iO 2 film
It can be applied to the OS type nonvolatile semiconductor memory device in almost the same manner.

【0025】[0025]

【発明の効果】本発明による不揮発性半導体記憶装置
は、LOCOS法のような寸法シフトや狭チャネル効果
を無視できるので、メモリセルをより微細化できるとと
もに、ワード線に高電圧が印加された場合でも素子分離
領域に寄生チャネルが形成されることを防止することが
できるので、その信頼性が高い。
Since the nonvolatile semiconductor memory device according to the present invention can ignore the size shift and the narrow channel effect as in the LOCOS method, the memory cell can be further miniaturized and a high voltage is applied to the word line. However, since it is possible to prevent the formation of a parasitic channel in the element isolation region, its reliability is high.

【0026】また、本発明による不揮発性半導体記憶装
置の製造方法は、素子分離構造を、トレンチを形成する
ことなく、例えばリソグラフィ及び薄膜のエッチングに
より形成することができるので、LOCOS法とほぼ同
程度の簡易な工程で実施可能である。
Further, in the method for manufacturing a nonvolatile semiconductor memory device according to the present invention, the element isolation structure can be formed by, for example, lithography and etching of a thin film without forming a trench, and therefore, it is substantially the same as the LOCOS method. Can be implemented in a simple process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による浮遊ゲート型EEPR
OMメモリセル部分の製造過程における概略斜視図であ
る。
FIG. 1 is a floating gate type EEPR according to an embodiment of the present invention.
It is a schematic perspective view in the manufacturing process of an OM memory cell part.

【図2】図1のA−A線、B−B線、C−C線及びD−
D線に沿った縦断面図である。
2 is a line AA, a line BB, a line C-C and a line D- in FIG.
It is a longitudinal cross-sectional view along the D line.

【図3】本発明の一実施例による浮遊ゲート型EEPR
OMメモリセル部分の一製造工程を示す平面図並びに図
1のA−A線及びD−D線に沿った縦断面図である。
FIG. 3 is a floating gate type EEPR according to an embodiment of the present invention.
FIG. 3 is a plan view showing one manufacturing process of the OM memory cell portion and a vertical cross-sectional view taken along the lines AA and DD of FIG. 1.

【図4】本発明の一実施例による浮遊ゲート型EEPR
OMメモリセル部分の一製造工程を示す平面図並びに図
1のA−A線及びD−D線に沿った縦断面図である。
FIG. 4 is a floating gate type EEPR according to an embodiment of the present invention.
FIG. 3 is a plan view showing one manufacturing process of the OM memory cell portion and a vertical cross-sectional view taken along the lines AA and DD of FIG. 1.

【図5】本発明の一実施例による浮遊ゲート型EEPR
OMメモリセル部分の一製造工程を示す平面図並びに図
1のA−A線及びD−D線に沿った縦断面図である。
FIG. 5 is a floating gate type EEPR according to an embodiment of the present invention.
FIG. 3 is a plan view showing one manufacturing process of the OM memory cell portion and a vertical cross-sectional view taken along the lines AA and DD of FIG. 1.

【図6】本発明の一実施例による浮遊ゲート型EEPR
OMメモリセル部分の一製造工程を示す平面図並びに図
1のA−A線及びD−D線に沿った縦断面図である。
FIG. 6 is a floating gate type EEPR according to an embodiment of the present invention.
FIG. 3 is a plan view showing one manufacturing process of the OM memory cell portion and a vertical cross-sectional view taken along the lines AA and DD of FIG. 1.

【図7】本発明の一実施例による浮遊ゲート型EEPR
OMメモリセル部分の一製造工程を示す平面図並びに図
1のA−A線及びD−D線に沿った縦断面図である。
FIG. 7 is a floating gate type EEPR according to an embodiment of the present invention.
FIG. 3 is a plan view showing one manufacturing process of the OM memory cell portion and a vertical cross-sectional view taken along the lines AA and DD of FIG. 1.

【図8】本発明の一実施例による浮遊ゲート型EEPR
OMメモリセル部分の一製造工程を示す平面図並びに図
1のA−A線及びD−D線に沿った縦断面図である。
FIG. 8 is a floating gate type EEPR according to an embodiment of the present invention.
FIG. 3 is a plan view showing one manufacturing process of the OM memory cell portion and a vertical cross-sectional view taken along the lines AA and DD of FIG. 1.

【図9】従来のEEPROMメモリセル部分の縦断面図
である。
FIG. 9 is a vertical sectional view of a conventional EEPROM memory cell portion.

【図10】従来の別のEEPROMメモリセル部分の縦
断面図である。
FIG. 10 is a vertical cross-sectional view of another conventional EEPROM memory cell portion.

【符号の説明】[Explanation of symbols]

11 Si基板 13、15、21、25 SiO2 膜 14、16、22 多結晶Si膜 23、24、28 絶縁膜 26 ソース拡散層 27 ドレイン拡散層 31 WSi配線 32 WSi膜 33 層間絶縁膜 34 コンタクト孔 35 Al配線11 Si substrate 13, 15, 21, 25 SiO 2 film 14, 16, 22 Polycrystalline Si film 23, 24, 28 Insulating film 26 Source diffusion layer 27 Drain diffusion layer 31 WSi wiring 32 WSi film 33 Interlayer insulating film 34 Contact hole 35 Al wiring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 各メモリセルが半導体基板とワード線と
の間に電荷蓄積層を有する不揮発性半導体記憶装置にお
いて、 ワード線方向に隣接するメモリセル間を互いに分離する
ための素子分離領域における前記半導体基板の上に、前
記ワード線の下で且つ前記ワード線と実質的に直交する
方向に延びる導電膜がシールド絶縁膜を介して形成さ
れ、この導電膜の電位を固定することにより、その電界
によって前記素子分離領域における前記半導体基板の表
面の電位を固定するように構成されていることを特徴と
する不揮発性半導体記憶装置。
1. A non-volatile semiconductor memory device in which each memory cell has a charge storage layer between a semiconductor substrate and a word line, and in the element isolation region for separating memory cells adjacent to each other in the word line direction from each other. A conductive film extending below the word line and in a direction substantially orthogonal to the word line is formed on the semiconductor substrate via a shield insulating film, and the electric field of the conductive film is fixed by fixing the potential of the conductive film. The non-volatile semiconductor memory device is configured to fix the potential of the surface of the semiconductor substrate in the element isolation region.
【請求項2】 前記電荷蓄積層が浮遊ゲートであること
を特徴とする請求項1に記載の不揮発性半導体記憶装
置。
2. The non-volatile semiconductor memory device according to claim 1, wherein the charge storage layer is a floating gate.
【請求項3】 前記電荷蓄積層が、シリコン酸化膜の上
に形成されたシリコン窒化膜であることを特徴とする請
求項1に記載の不揮発性半導体記憶装置。
3. The nonvolatile semiconductor memory device according to claim 1, wherein the charge storage layer is a silicon nitride film formed on a silicon oxide film.
【請求項4】 半導体基板の表面に第1の絶縁膜、導電
膜及び第2の絶縁膜を順次積層形成する工程と、 前記導電膜及び前記第2の絶縁膜をパターニングして、
素子分離領域にのみこれらの膜を残す工程と、 全面に第3の絶縁膜を形成した後、これを異方性エッチ
ングして、パターニングされた前記導電膜及び前記第2
の絶縁膜の側部にサイドウォールスペーサーを形成する
工程と、 前記導電膜、前記第2の絶縁膜及び前記サイドウォール
スペーサーにより分離された素子領域の前記半導体基板
の上に第4の絶縁膜であるトンネル絶縁膜を形成する工
程と、 前記トンネル絶縁膜の上に、浮遊ゲートとなる第1の多
結晶シリコン膜を前記素子領域にそって延びるパターン
に形成する工程と、 前記第1の多結晶シリコン膜の上に第5の絶縁膜を形成
する工程と、 全面に第2の多結晶シリコン膜を形成した後、この第2
の多結晶シリコン膜並びに前記第5の絶縁膜及び前記第
1の多結晶シリコン膜をパターニングして、前記素子領
域において前記第1の多結晶シリコン膜にオーバーラッ
プし、且つ、前記導電膜と実質的に直交する方向に延び
るワード線を形成する工程とを有することを特徴とする
不揮発性半導体記憶装置の製造方法。
4. A step of sequentially stacking a first insulating film, a conductive film and a second insulating film on a surface of a semiconductor substrate, and patterning the conductive film and the second insulating film,
A step of leaving these films only in the element isolation region, and a third insulating film is formed on the entire surface and then anisotropically etched to form the patterned conductive film and the second conductive film.
A side wall spacer is formed on a side portion of the insulating film, and a fourth insulating film is formed on the semiconductor substrate in the element region separated by the conductive film, the second insulating film and the sidewall spacer. Forming a tunnel insulating film, forming a first polycrystalline silicon film to be a floating gate on the tunnel insulating film in a pattern extending along the element region, and forming the first polycrystalline film A step of forming a fifth insulating film on the silicon film, and a step of forming a second polycrystalline silicon film on the entire surface,
Patterning the polycrystalline silicon film, the fifth insulating film, and the first polycrystalline silicon film so as to overlap the first polycrystalline silicon film in the element region and substantially to the conductive film. Forming a word line extending in a direction orthogonal to each other, the method for manufacturing a non-volatile semiconductor memory device.
JP27785593A 1993-10-08 1993-10-08 Nonvolatile semiconductor memory device and method of manufacturing the same Expired - Fee Related JP3330700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27785593A JP3330700B2 (en) 1993-10-08 1993-10-08 Nonvolatile semiconductor memory device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27785593A JP3330700B2 (en) 1993-10-08 1993-10-08 Nonvolatile semiconductor memory device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07111319A true JPH07111319A (en) 1995-04-25
JP3330700B2 JP3330700B2 (en) 2002-09-30

Family

ID=17589223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27785593A Expired - Fee Related JP3330700B2 (en) 1993-10-08 1993-10-08 Nonvolatile semiconductor memory device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3330700B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011018941A (en) * 2010-10-12 2011-01-27 Renesas Electronics Corp Method of manufacturing semiconductor device
KR101016335B1 (en) * 2003-10-24 2011-02-22 매그나칩 반도체 유한회사 Method of manufacturing a nonvolatile memory device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016335B1 (en) * 2003-10-24 2011-02-22 매그나칩 반도체 유한회사 Method of manufacturing a nonvolatile memory device
JP2011018941A (en) * 2010-10-12 2011-01-27 Renesas Electronics Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP3330700B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
US7449745B2 (en) Nonvolatile semiconductor memory device having element isolating region of trench type
US5786612A (en) Semiconductor device comprising trench EEPROM
US6570215B2 (en) Nonvolatile memories with floating gate spacers, and methods of fabrication
EP0503205B1 (en) EPROM and method of producing same
EP0780902A1 (en) Nonvolatile semiconductor memory and method for fabricating the same
JPH05218358A (en) Semiconductor non-volatile storage device and manufacture of the same
KR100210552B1 (en) A non-volatile semiconductor memory device and a method of manufacturing the same
US6656781B2 (en) Method of manufacturing a semiconductor device, having first and second semiconductor regions with field shield isolation structures and a field oxide film covering a junction between semiconductor regions
JP3114229B2 (en) Non-volatile storage device
JP2000077633A (en) Manufacture of nonvolatile storage device
KR100348834B1 (en) Method for manufacturing a semiconductor memory device
JPH0817948A (en) Semiconductor device and its manufacture
US6188115B1 (en) Semiconductor device with a conductive layer of small conductive resistance
US20120168846A1 (en) Nonvolatile semiconductor memory device having element isolating region of trench type
JPH09213911A (en) Semiconductor device and manufacturing method thereof
KR20030006997A (en) Non-volatile semiconductor memory device and manufacturing method thereof
JPH10256399A (en) Semiconductor storage device and manufacture thereof
JPH10289990A (en) Manufacture of semiconductor device
JPH0334578A (en) Nonvolatile semiconductor storage device and manufacture thereof
JPH1012750A (en) Manufacturing nonvolatile semiconductor memory device
JP3381863B2 (en) NOR flash memory
JPH07111319A (en) Nonvolatile semiconductor storage device and manufacture thereof
JP3400231B2 (en) Semiconductor storage device and manufacturing method
JPH02262376A (en) Non-volatile semiconductor memory and manufacture thereof
JPH0744274B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020611

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees