JPH07111283A - Apparatus for measuring temperature coefficient of semiconductor - Google Patents

Apparatus for measuring temperature coefficient of semiconductor

Info

Publication number
JPH07111283A
JPH07111283A JP25681793A JP25681793A JPH07111283A JP H07111283 A JPH07111283 A JP H07111283A JP 25681793 A JP25681793 A JP 25681793A JP 25681793 A JP25681793 A JP 25681793A JP H07111283 A JPH07111283 A JP H07111283A
Authority
JP
Japan
Prior art keywords
semiconductor
probe needle
measuring device
heat medium
needle bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25681793A
Other languages
Japanese (ja)
Inventor
Masanori Toyokawa
正規 豊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP25681793A priority Critical patent/JPH07111283A/en
Publication of JPH07111283A publication Critical patent/JPH07111283A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To decrease the breakage of nits and shorten the time required for temperature adjustment when measuring the temperature coefficient of a semiconductor circuit unit formed on a wafer. CONSTITUTION:A stress absorbing heat medium 10 is provided on part of the top surface of a heating stage 6 in an apparatus for measuring the temperature coefficient of a semiconductor device comprising a heating stage 6 for setting the semiconductor wafer 3 to a predetermined measuring temperature, a bundle of probe needles 4 for taking out signals by electrically connecting it to a pad portion of each semiconductor circuit unit formed on the wafer, a positioning operation mechanism for moving and actuating the bundle of probe needles while observing the position on the pad portion with a microscope (not shown in the Figure) and a semiconductor characteristics measuring device for processing the signals from the bundle of probe needles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体ウエハ上に多数
形成された半導体回路ユニット等の温度特性を測定する
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring temperature characteristics of semiconductor circuit units or the like formed in large numbers on a semiconductor wafer.

【0002】[0002]

【従来の技術】半導体製造工程においては、ウエハ上に
多数の半導体回路ユニット等を形成した後各回路ユニッ
トを切断分離する前に、ウエハの状態で当該各回路ユニ
ットの温度特性を測定し事前に良否判定を行っている。
図3は上記の半導体ウエハ3の上に形成された半導体回
路ユニット1の温度特性を測定する従来装置を示す概略
図である。即ち、半導体ウエハを所期の測定温度に設定
するための加熱ステージ6と、ウエハ3上に形成した各
半導体回路ユニット1のパッド部分と電気的に接続して
信号等を取り出すためのプローブ針束4と、該パッド部
分の位置を図示していない顕微鏡下で観察しながらプロ
ーブ針束との相対位置を操作調整するための位置決め操
作機構7と、該プローブ針束からの信号を処理する半導
体特性測定器8とを有する半導体温度特性測定装置であ
る。図4は、図3に示す半導体回路ユニットの一つにプ
ローブ針束を接触させた状態を拡大して示した図であ
る。半導体ウエハ3を所定の温度にした後、プローブ針
束4を介して電気信号を入力し、対応する電気信号を出
力してこれを半導体特性測定器8によって解析し、特定
の温度でのウエハ状態の各半導体回路ユニットの温度特
性をチェックしている。
2. Description of the Related Art In a semiconductor manufacturing process, after forming a large number of semiconductor circuit units, etc. on a wafer and before cutting and separating each circuit unit, the temperature characteristics of each circuit unit are measured in a wafer state in advance. Pass / fail judgment is performed.
FIG. 3 is a schematic view showing a conventional apparatus for measuring the temperature characteristic of the semiconductor circuit unit 1 formed on the semiconductor wafer 3 described above. That is, a heating stage 6 for setting a semiconductor wafer at a desired measurement temperature and a probe needle bundle for electrically connecting to a pad portion of each semiconductor circuit unit 1 formed on the wafer 3 to take out a signal or the like. 4, a positioning operation mechanism 7 for operating and adjusting the relative position with respect to the probe needle bundle while observing the position of the pad portion under a microscope (not shown), and semiconductor characteristics for processing signals from the probe needle bundle. It is a semiconductor temperature characteristic measuring device having a measuring device 8. FIG. 4 is an enlarged view showing a state where the probe needle bundle is brought into contact with one of the semiconductor circuit units shown in FIG. After the semiconductor wafer 3 is heated to a predetermined temperature, an electric signal is input through the probe needle bundle 4, a corresponding electric signal is output, and this is analyzed by the semiconductor characteristic measuring instrument 8 to determine the wafer state at a specific temperature. The temperature characteristics of each semiconductor circuit unit are checked.

【0003】[0003]

【発明が解決しようとする課題】このような従来の方法
では、図5(a)に示するように常温時にはプローブ針
束4の各針の先端がパッド2の中心で接触するように加
圧して取り付けられる。この状態のウエハを高温にする
と、プローブ針束4は矢印41の方向に膨張するので図
5(b)に示すようにプローブ針束4とパッド2との接
触位置が変化し、パッドの周辺上を覆っていたパッシベ
ーシヨン膜5の一部を破壊し、後のワイヤボンデイング
工程において不良が頻発するという問題があった。ま
た、プローブ針束が破損するという問題があった。ま
た、このような問題を避けるため、プローブ針束を当該
ウエハにできるだけ近接させて非接触の状態で、ウエハ
温度と同じ測定温度に昇温してから測定する場合には、
一つの測定温度について1時間程度放置して待つ必要が
有り、測定に多くの待時間を要していた。本発明は、測
定温度を変更する場合に生ずる、かかる問題点を解決し
た半導体温度特性測定装置を提供することを目的とす
る。
In such a conventional method, as shown in FIG. 5 (a), pressure is applied so that the tips of the needles of the probe needle bundle 4 contact at the center of the pad 2 at room temperature. Can be installed. When the wafer in this state is heated to a high temperature, the probe needle bundle 4 expands in the direction of arrow 41, so that the contact position between the probe needle bundle 4 and the pad 2 changes as shown in FIG. There is a problem that a part of the passivation film 5 covering the above is destroyed, and defects frequently occur in the subsequent wire bonding process. Further, there is a problem that the probe needle bundle is damaged. Further, in order to avoid such a problem, when the probe needle bundle is brought as close as possible to the wafer in a non-contact state and the temperature is raised to the same measurement temperature as the wafer temperature before measurement,
It was necessary to wait for one measurement temperature for about 1 hour, and a long waiting time was required for measurement. SUMMARY OF THE INVENTION It is an object of the present invention to provide a semiconductor temperature characteristic measuring device that solves such a problem that occurs when changing a measured temperature.

【0004】[0004]

【課題を解決するための手段】本発明は、半導体ウエハ
を所期の測定温度に設定するための加熱ステージと、ウ
エハ上の各半導体回路ユニットのパッド部分と電気的に
接続して信号を入出力するためのプローブ針束と、該パ
ッド部分の位置を顕微鏡下で観察しながらプローブ針束
又は加熱ステージを移動操作するための位置決め操作機
構と、該プローブ針束からの信号を処理する半導体特性
測定器とを有する半導体温度特性測定装置において、プ
ローブ針束の先端を該温度に速やかに移行させるため
の、該加熱ステージの上に設けた応力吸収熱媒体を有す
るものである。即ち、本発明は、加熱ステージの上に応
力吸収熱媒体を設けこれにプローブ針束の先端を接触さ
せることにより、従来の半導体回路ユニットのパッドに
接触させて温度を変更する方法に比較してパッドの損傷
を回避できかつ、速やかに所期の測定温度に到達するこ
とが出来る手段を提供するものである。
SUMMARY OF THE INVENTION According to the present invention, a heating stage for setting a semiconductor wafer to a desired measurement temperature and a pad portion of each semiconductor circuit unit on the wafer are electrically connected to input a signal. A probe needle bundle for outputting, a positioning operation mechanism for moving and operating the probe needle bundle or the heating stage while observing the position of the pad portion under a microscope, and semiconductor characteristics for processing signals from the probe needle bundle In a semiconductor temperature characteristic measuring device having a measuring instrument, a stress absorbing heat medium provided on the heating stage for promptly moving the tip of the probe needle bundle to the temperature is provided. That is, according to the present invention, a stress absorbing heat medium is provided on the heating stage, and the tip of the probe needle bundle is brought into contact with the heat absorbing medium, so that the temperature is changed by contacting with the pad of the conventional semiconductor circuit unit. It is intended to provide a means capable of avoiding damage to a pad and quickly reaching a desired measured temperature.

【0005】また、本応力吸収熱媒体は、図1(a)に
一例を示すように、例えば2枚の板とその間をスプリン
グで結合した熱伝導性に優れた構造体から成るので、加
熱ステージからの熱をプローブ針束に極く短時間に伝え
るとともに、プローブ針の温度変化にともなう膨張収縮
により生ずる応力を吸収してプローブ針の破損を回避す
ることができる。
Further, as shown in FIG. 1 (a), the present stress absorbing heat medium is composed of, for example, two plates and a structure excellent in heat conductivity in which a spring is coupled between the two plates. It is possible to avoid the damage of the probe needle by transmitting the heat from the probe needle bundle to the probe needle bundle in an extremely short time and absorbing the stress generated by the expansion and contraction accompanying the temperature change of the probe needle.

【0006】[0006]

【作用】測定温度に設定した半導体温度特性測定装置の
加熱ステージの上に、平板状の応力吸収熱媒体を設け、
これにプローブ針の先端を接触させて昇温するので、従
来のパッドに接触した状態で温度を変える方法に比較し
て、ウエハ上に形成した半導体回路ユニットを破損する
ことがない。また、設定温度を上昇する際、プローブ針
束が膨張して本熱媒体との間に応力が生じても、該熱媒
体によりその応力が吸収されるので、プローブ針束が破
損することもない。また、従来の非接触状態でプローブ
針の温度を変える方法に比較して、きわめて短時間に所
期の測定温度に変更することができる。従って、多数の
設定温度で測定する場合、測定の待ち時間を著しく減ら
すことが出来るので効率的な測定が可能となる。
[Function] A flat stress absorbing heat medium is provided on the heating stage of the semiconductor temperature characteristic measuring device set to the measurement temperature,
Since the tip of the probe needle is brought into contact with this to raise the temperature, the semiconductor circuit unit formed on the wafer is not damaged as compared with the conventional method of changing the temperature in the state of being in contact with the pad. Further, even if the probe needle bundle expands and a stress is generated between the probe needle bundle and the main heating medium when the set temperature is raised, the stress is absorbed by the heating medium, so that the probe needle bundle is not damaged. . In addition, compared to the conventional method of changing the temperature of the probe needle in the non-contact state, it is possible to change to the desired measurement temperature in an extremely short time. Therefore, when measuring at a large number of preset temperatures, the waiting time for measurement can be significantly reduced, and efficient measurement is possible.

【0007】[0007]

【実施例】【Example】

(実施例1)図3に示す、縦10cm、横30cm、厚
さ3cmステンレスの中空板の内にニクロム製ジュール
熱発熱体を有する加熱ステージ6と、ウエハ上の各半導
体回路ユニットのパッド部分と電気的に接続して信号を
入出力すためのプローブ針束4と、図示していない10
0倍の光学顕微鏡下でプローブ針束を三次元方向に自在
に位置を微調整する位置決め操作機構7と、このプロー
ブ針束からの信号を測定処理するための半導体特性測定
器8から成る半導体温度測定装置において、該加熱ステ
ージ6の上面の片端に図1(a)に示す応力吸収熱媒体
10を有する装置を設けた。
(Embodiment 1) As shown in FIG. 3, a heating stage 6 having a Nichrome Joule heating element in a stainless steel hollow plate having a length of 10 cm, a width of 30 cm, and a thickness of 3 cm, and a pad portion of each semiconductor circuit unit on a wafer. A probe needle bundle 4 for electrically connecting and inputting / outputting a signal, and a not shown 10
A semiconductor temperature measuring device including a positioning operation mechanism 7 for finely adjusting the position of the probe needle bundle in a three-dimensional direction under a 0 × optical microscope and a semiconductor characteristic measuring instrument 8 for measuring and processing a signal from the probe needle bundle. In the measuring device, a device having the stress absorbing heat medium 10 shown in FIG. 1A was provided at one end of the upper surface of the heating stage 6.

【0008】本実施例の応力吸収熱媒体用の板材として
は、熱伝導性に優れたグラファイト、工業用ダイヤモン
ド、金、ステンレス等が可能である。スプリング材とし
ては、熱伝導性、弾性共に優れたカーボンファイバ、
金、銅、ステンレスなどが可能である。本実施例では、
板材として縦0.5cm、横0.5cm、厚さ0.1c
mの工業用ダイヤモンド板を、スプリング材として太さ
直径0.1mmで、コイル直径が1.0mmのカーボン
ファイバ5対で結合した構造の応力吸収熱媒体を用い
た。測定はまず、本半導体温度特性測定装置の加熱ステ
ージ6上の他の部分に、各ユニットごとに8個のパッド
を有する2000個の半導体回路ユニット1を含む3イ
ンチ径、450μ厚の測定対象とする半導体ウエハ3を
載せ、まず常温で全数のユニットの回路特性を測定し
た。次に、測定温度を100℃で測定すべく、加熱ステ
ージを100℃に設定し、顕微鏡下で観察しながら前記
応力吸収熱媒体のうえに8針がセットとなったプローブ
針束の先端を接触させた。プローブ針束の各針の先端の
温度が、従来の方法の約1/10の時間である約10分
で100℃に達したので、位置決め操作機構7によりこ
のプローブ針束4を測定対象とする半導体ウエハ3の一
つの回路ユニットの8個の各パッドの中央に対応する各
針を接触させた。以降本位置決め操作機構により、自動
的に2000個の回路ユニットの温度特性を7時間で測
定した。測定完了後パッド周辺のパッシベーション膜を
顕微鏡で全数検査したが、破損、損傷等は皆無であっ
た。
As the plate material for the stress absorbing heat medium of this embodiment, graphite, industrial diamond, gold, stainless steel or the like, which has excellent thermal conductivity, can be used. As the spring material, carbon fiber with excellent thermal conductivity and elasticity,
Gold, copper, stainless steel, etc. are possible. In this embodiment,
0.5cm long, 0.5cm wide, and thickness 0.1c
As the spring material, a stress-absorbing heat medium having a structure in which five m carbon fibers having a diameter of 0.1 mm and a coil diameter of 1.0 mm were bonded together was used as a spring material. First of all, the measurement is performed on the other part on the heating stage 6 of the present semiconductor temperature characteristic measuring apparatus, including 2000 semiconductor circuit units 1 having 8 pads for each unit, and a measurement object having a diameter of 3 inches and a thickness of 450 μm. The semiconductor wafer 3 to be mounted was placed, and the circuit characteristics of all the units were measured at room temperature. Next, in order to measure the measurement temperature at 100 ° C., the heating stage was set at 100 ° C., and while observing under a microscope, the tip of the probe needle bundle in which 8 needles were set on the stress absorbing heat medium was brought into contact. Let Since the temperature of the tip of each needle of the probe needle bundle reached 100 ° C. in about 10 minutes which is about 1/10 of the time of the conventional method, the probe needle bundle 4 is measured by the positioning operation mechanism 7. Each needle corresponding to the center of each of the eight pads of one circuit unit of the semiconductor wafer 3 was brought into contact. After that, the temperature characteristic of 2000 circuit units was automatically measured in 7 hours by this positioning operation mechanism. After the measurement was completed, all passivation films around the pads were inspected with a microscope, but no damage or damage was found.

【0009】(実施例2)実施例1において、応力吸収
熱媒体の上部のダイヤモンド板に、図1(b)に示すよ
うに、プローブ針束の傾きと同程度の傾きの側面を有す
る円錐状の凹部を設け、プローブ針束の側部と広い面積
で接触させた。温度変化にともなうプローブ針の膨張に
より凹部の円錐面との間に生ずる応力は円錐面により容
易に緩和された。この場合、プローブ針束の各針の先端
が100℃に達するのに時間4分を要した。これ以外
は、実施例1と同様な結果が得られた。
(Embodiment 2) In Embodiment 1, as shown in FIG. 1 (b), the diamond plate on the upper part of the stress absorbing heat medium has a conical shape having a side surface having an inclination similar to that of the probe needle bundle. Of the probe needle bundle was made to come into contact with a wide area of the probe needle bundle. The stress generated between the concave surface and the conical surface of the recess due to the expansion of the probe needle due to the temperature change was easily relieved by the conical surface. In this case, it took 4 minutes for the tip of each needle of the probe needle bundle to reach 100 ° C. Other than this, the same results as in Example 1 were obtained.

【0010】(実施例3)実施例1の、半導体温度特性
測定装置の加熱ステージ上の応力吸収熱媒体が、図1
(c)に示す2枚のステンレス板と金属ウールである場
合についての実施例を示す。金属ウール材料としては、
熱伝導性に優れた金、銅、ステンレスなどがある。本実
施例では、実施例1の応力吸収熱媒体と同じサイズの二
枚のステンレス板の間にステンレスウールを1グラムだ
けサンドイッチ状に挿んで該ステンレス板に接合したも
のを用いた。この場合、プローブ針束の各針の先端が1
00℃に達する時間は7分を要した。これ以外は、実施
例1と同様な結果が得られた。
(Embodiment 3) The stress absorbing heat medium on the heating stage of the semiconductor temperature characteristic measuring apparatus of Embodiment 1 is as shown in FIG.
An example in the case of two stainless plates and metal wool shown in (c) is shown. As a metal wool material,
Examples include gold, copper, and stainless steel, which have excellent thermal conductivity. In this example, a stainless steel wool of 1 gram was sandwiched between two stainless steel plates of the same size as the stress absorbing heat medium of Example 1 and joined to the stainless steel plate. In this case, the tip of each needle of the probe needle bundle is 1
It took 7 minutes to reach 00 ° C. Other than this, the same results as in Example 1 were obtained.

【0011】(実施例4)実施例1の、半導体温度特性
測定装置の加熱ステージの熱媒体がダイヤモンド粉末床
である場合についての実施例を示す。粉末材料として
は、熱伝導性に優れたグラファイト、工業用ダイヤモン
ド、金、ステンレスなどがある。本実施例では、実施例
1の応力吸収熱媒体の代わり縦2cm、横2cm、厚さ
1cmステンレスブロックの上面に縦1cm、横1c
m、深さ0.5cmの凹部を設け、ここに10ηm径か
ら100ηm径までのステンレス粉2.0グラムを収納
したものを用いた。本応力吸収熱媒体の断面図を図1
(d)に示す。この場合、プローブ針束の各針の先端が
100℃に達する時間はが5分を要した。これ以外は、
実施例1と同様な結果が得られた。
(Embodiment 4) An embodiment in which the heating medium of the heating stage of the semiconductor temperature characteristic measuring apparatus of Embodiment 1 is a diamond powder bed will be described. Examples of the powder material include graphite having excellent thermal conductivity, industrial diamond, gold and stainless steel. In this example, the stress absorbing heat medium of Example 1 was replaced by 2 cm in length, 2 cm in width, and 1 cm in thickness.
A recess having a depth of 0.5 cm and a depth of 0.5 cm was provided, and 2.0 g of stainless powder having a diameter of 10 ηm to 100 ηm was stored therein. A cross-sectional view of the stress absorbing heat medium is shown in FIG.
It shows in (d). In this case, it took 5 minutes for the tip of each needle of the probe needle bundle to reach 100 ° C. Other than this,
The same result as in Example 1 was obtained.

【0012】[0012]

【発明の効果】本発明の半導体温度特性測定装置でウエ
ハ上に形成した半導体回路ユニットの温度特性を測定す
る際、該ユニットの破損を著しく減少することができ
る。また温度調整に要する時間を極めて短縮することが
できる。
When the temperature characteristic of the semiconductor circuit unit formed on the wafer is measured by the semiconductor temperature characteristic measuring apparatus of the present invention, damage to the unit can be significantly reduced. Further, the time required for temperature adjustment can be extremely shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる応力吸収熱媒体の縦断面図であ
る。
FIG. 1 is a vertical cross-sectional view of a stress absorbing heat medium according to the present invention.

【図2】本発明にかかる半導体温度特性測定装置を用い
てプローブ針束の温度調整をしている状態を示す概略図
である。
FIG. 2 is a schematic diagram showing a state in which the temperature of a probe needle bundle is adjusted using the semiconductor temperature characteristic measuring apparatus according to the present invention.

【図3】従来例を説明するための概略図である。FIG. 3 is a schematic diagram for explaining a conventional example.

【図4】従来例のプローブ針束と半導体回路ユニットの
パッドとの関係を示す概略図である。
FIG. 4 is a schematic view showing a relationship between a probe needle bundle and a pad of a semiconductor circuit unit in a conventional example.

【図5】従来例の作用を説明するための図面であり、同
図(a)は常温時の状態を示し、同図(b)は高温時の
状態を示す図である。
5A and 5B are views for explaining the operation of a conventional example, FIG. 5A shows a state at room temperature, and FIG. 5B shows a state at high temperature.

【符号の説明】[Explanation of symbols]

1:半導体ウエハ上の半導体回路ユニット 2:半導体回路ユニットのパッド 3:半導体ウエハ 4:プローブ針束 41:昇温時のプローブ針束とウエハ上のパッドとの接
触点の移動方向 5:パッシベーション膜 6:加熱ステージ 7:位置決め操作機構 8:半導体特性測定器 10:応力吸収熱媒体
1: Semiconductor circuit unit on semiconductor wafer 2: Pad of semiconductor circuit unit 3: Semiconductor wafer 4: Probe needle bundle 41: Moving direction of contact point between probe needle bundle and pad on wafer at temperature rise 5: Passivation film 6: Heating stage 7: Positioning operation mechanism 8: Semiconductor characteristic measuring instrument 10: Stress absorption heat medium

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 半導体ウエハを所期の測定温度に設定す
るための加熱ステージと、ウエハ上に形成した各半導体
回路ユニットのパッド部分と電気的に接続して信号を取
り出すためのプローブ針束と、該パッド部と該プローブ
針束の相対的位置を顕微鏡下で観察しながら移動調整す
るための位置決め操作機構と、該プローブ針束からの信
号を処理する半導体特性測定器とを有する半導体温度特
性測定装置において、プローブ針束の先端を該測定温度
に速やかに移行させるための、該加熱ステージの上に位
置する応力吸収熱媒体を有する半導体温度特性測定装
置。
1. A heating stage for setting a semiconductor wafer to a desired measurement temperature, and a probe needle bundle for electrically connecting to a pad portion of each semiconductor circuit unit formed on the wafer to take out a signal. A semiconductor temperature characteristic having a positioning operation mechanism for moving and adjusting the relative position of the pad portion and the probe needle bundle while observing under a microscope, and a semiconductor characteristic measuring device for processing a signal from the probe needle bundle. In the measuring device, a semiconductor temperature characteristic measuring device having a stress absorbing heat medium located on the heating stage for promptly shifting the tip of the probe needle bundle to the measuring temperature.
【請求項2】 応力吸収熱媒体が2枚の板とその間をス
プリングで結合した構造を有し、該板がグラファイト、
又は工業用ダイヤモンド、又は金属から成り、該スプリ
ング材が、カーボンファイバ、又は金属から成ることを
特徴とする請求項1に記載の半導体温度特性測定装置。
2. The stress absorbing heat medium has a structure in which two plates are connected to each other by a spring, and the plates are made of graphite.
2. The semiconductor temperature characteristic measuring device according to claim 1, wherein the spring material is made of industrial diamond or metal, and the spring material is made of carbon fiber or metal.
【請求項3】 応力吸収熱媒体の上側の板の上面に円錐
上の凹部を有し、かつその凹部の側面の傾きがプローブ
針束の傾きと同程度であることを特徴とする請求項2に
記載の半導体温度特性測定装置。
3. A conical recess is provided on the upper surface of the upper plate of the stress absorbing heat medium, and the inclination of the side surface of the recess is about the same as the inclination of the probe needle bundle. The semiconductor temperature characteristic measuring device according to.
【請求項4】 応力吸収熱媒体が、二枚の板とその間に
金属ウールを挿入したことを特徴とする請求項2に記載
の半導体温度特性測定装置。
4. The semiconductor temperature characteristic measuring device according to claim 2, wherein the stress absorbing heat medium comprises two plates and metal wool inserted between them.
【請求項5】 応力吸収熱媒体が、金属粉末床、又はグ
ラファイト粉末床、又はダイヤモンド粉末床から成るこ
とを特徴とする請求項1に記載の半導体温度特性測定装
置。
5. The semiconductor temperature characteristic measuring device according to claim 1, wherein the stress absorbing heat medium comprises a metal powder bed, a graphite powder bed, or a diamond powder bed.
JP25681793A 1993-10-14 1993-10-14 Apparatus for measuring temperature coefficient of semiconductor Pending JPH07111283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25681793A JPH07111283A (en) 1993-10-14 1993-10-14 Apparatus for measuring temperature coefficient of semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25681793A JPH07111283A (en) 1993-10-14 1993-10-14 Apparatus for measuring temperature coefficient of semiconductor

Publications (1)

Publication Number Publication Date
JPH07111283A true JPH07111283A (en) 1995-04-25

Family

ID=17297850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25681793A Pending JPH07111283A (en) 1993-10-14 1993-10-14 Apparatus for measuring temperature coefficient of semiconductor

Country Status (1)

Country Link
JP (1) JPH07111283A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345493B2 (en) 1993-11-16 2008-03-18 Formfactor, Inc. Wafer-level burn-in and test
US7944225B2 (en) 2008-09-26 2011-05-17 Formfactor, Inc. Method and apparatus for providing a tester integrated circuit for testing a semiconductor device under test
US8095841B2 (en) 2008-08-19 2012-01-10 Formfactor, Inc. Method and apparatus for testing semiconductor devices with autonomous expected value generation
US8122309B2 (en) 2008-03-11 2012-02-21 Formfactor, Inc. Method and apparatus for processing failures during semiconductor device testing
JP7040671B1 (en) * 2020-12-03 2022-03-23 三菱電機株式会社 Semiconductor laser inspection equipment and semiconductor laser inspection method
JP2022089153A (en) * 2020-12-03 2022-06-15 三菱電機株式会社 Semiconductor laser inspection device and semiconductor laser inspection method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345493B2 (en) 1993-11-16 2008-03-18 Formfactor, Inc. Wafer-level burn-in and test
US8122309B2 (en) 2008-03-11 2012-02-21 Formfactor, Inc. Method and apparatus for processing failures during semiconductor device testing
US8095841B2 (en) 2008-08-19 2012-01-10 Formfactor, Inc. Method and apparatus for testing semiconductor devices with autonomous expected value generation
US7944225B2 (en) 2008-09-26 2011-05-17 Formfactor, Inc. Method and apparatus for providing a tester integrated circuit for testing a semiconductor device under test
JP7040671B1 (en) * 2020-12-03 2022-03-23 三菱電機株式会社 Semiconductor laser inspection equipment and semiconductor laser inspection method
WO2022118444A1 (en) * 2020-12-03 2022-06-09 三菱電機株式会社 Semiconductor laser inspection apparatus and semiconductor laser inspection method
JP2022089153A (en) * 2020-12-03 2022-06-15 三菱電機株式会社 Semiconductor laser inspection device and semiconductor laser inspection method

Similar Documents

Publication Publication Date Title
US6043671A (en) Semiconductor inspection device with guide member for probe needle for probe card and method of controlling the same
JP4825812B2 (en) Semiconductor wafer inspection method and apparatus using chuck device capable of adjusting temperature
JP5289419B2 (en) Device for detecting temperature on integrated circuit manufacturing tool substrate
JP3066784B2 (en) Probe card and manufacturing method thereof
JP3327277B2 (en) Surface temperature sensor head
US5731587A (en) Hot stage for scanning probe microscope
JPH10319044A (en) Probe card
WO2006003798A1 (en) Substrate temperature measuring apparatus and processor
US10295590B2 (en) Probe card with temperature control function, inspection apparatus using the same, and inspection method
WO2008056627A1 (en) Probe card for inspecting solid state image sensor
JPH07111283A (en) Apparatus for measuring temperature coefficient of semiconductor
JP2001210683A (en) Chucking mechanism of prober
JPH04343041A (en) Probe
JP4006081B2 (en) Manufacturing method of semiconductor device
JP2003344498A (en) Semiconductor tester
US4872835A (en) Hot chuck assembly for integrated circuit wafers
JP2008034569A (en) Semiconductor integrated circuit checking probe card and its manufacturing method
EP0052857B1 (en) Hardness tester
JPH11125566A (en) Surface temperature measurement sensor and temperature measurement probe
CN113514352B (en) Micro-nano material and structural force thermal coupling high cycle fatigue test method and test device
JP2001319953A (en) Prober
JP2879282B2 (en) Probe device
JP2005147976A (en) Temperature-measuring apparatus, chuck monitor, and plasma processing device
JP2778573B2 (en) Heating stage
JP3563726B2 (en) Wafer support member