JPH07111277B2 - Refrigeration system operation controller - Google Patents

Refrigeration system operation controller

Info

Publication number
JPH07111277B2
JPH07111277B2 JP5539089A JP5539089A JPH07111277B2 JP H07111277 B2 JPH07111277 B2 JP H07111277B2 JP 5539089 A JP5539089 A JP 5539089A JP 5539089 A JP5539089 A JP 5539089A JP H07111277 B2 JPH07111277 B2 JP H07111277B2
Authority
JP
Japan
Prior art keywords
compressor
expansion valve
capacity
opening
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5539089A
Other languages
Japanese (ja)
Other versions
JPH02233944A (en
Inventor
克行 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP5539089A priority Critical patent/JPH07111277B2/en
Publication of JPH02233944A publication Critical patent/JPH02233944A/en
Publication of JPH07111277B2 publication Critical patent/JPH07111277B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍コンテナ等に設けられる冷凍装置の運転
制御装置に関し、特に、圧縮機容量の低減対策に係るも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a refrigerating machine provided in a refrigerating container or the like, and particularly to a measure for reducing the capacity of a compressor.

(従来の技術) 従来より、この種の冷凍装置の運転制御装置としては、
例えば、特開昭63−46360号公報に開示されたものがあ
る。
(Prior Art) Conventionally, as an operation control device for this type of refrigeration system,
For example, there is one disclosed in JP-A-63-46360.

すなわち、容量の調整可能な圧縮機、凝縮器、開度の調
整可能な膨張弁、蒸発器を順に接続して冷媒循環回路を
構成すると共に、凝縮器と膨張弁とをバイパスするホッ
トガスバイパスラインを設け、熱負荷が変動し、所望の
庫内設定温度に対して所定幅をもって設定された所定温
度範囲より庫内温度が高くなると、上記圧縮機の容量を
増大させると共に、膨張弁の開度を制御して庫内温度が
所定温度範囲内に入るようにしている。そして、庫内温
度が上記所定温度範囲内にあるときは、ホットガスバイ
パスラインを流れるホットガス量を制御して庫内温度が
上記庫内設定温度に収束するようにしている。
That is, a hot gas bypass line that bypasses the condenser and the expansion valve while configuring a refrigerant circulation circuit by sequentially connecting a compressor with an adjustable capacity, a condenser, an expansion valve with an adjustable opening degree, and an evaporator When the heat load fluctuates and the temperature inside the storage chamber becomes higher than a predetermined temperature range set with a predetermined width with respect to a desired temperature inside the storage chamber, the capacity of the compressor is increased and the opening degree of the expansion valve is increased. Is controlled so that the internal temperature falls within a predetermined temperature range. When the temperature inside the refrigerator is within the predetermined temperature range, the amount of hot gas flowing through the hot gas bypass line is controlled so that the temperature inside the refrigerator converges to the set temperature inside the refrigerator.

(発明が解決しようとする課題) 上述した冷凍装置の容量制御装置においては、従来、定
常運転状態より圧縮機の容量を低減しようとすると、冷
媒循環回路の液ラインを流れる冷媒液量と、ホットガス
バイパスラインを流れるホットガス量とを同時に検出し
なければならず、制御が難しくなるという問題があっ
た。
(Problems to be Solved by the Invention) In the capacity control device of the refrigeration apparatus described above, conventionally, when trying to reduce the capacity of the compressor from the steady operation state, the refrigerant liquid amount flowing through the liquid line of the refrigerant circulation circuit and the hot The amount of hot gas flowing through the gas bypass line must be detected at the same time, which makes control difficult.

そこで、電子膨張弁を用いて冷媒循環回路の冷媒循環量
を制御し、庫内温度が所定温度になるようにしているも
のがある。
Therefore, there is one in which an electronic expansion valve is used to control the refrigerant circulation amount in the refrigerant circulation circuit so that the internal cold storage temperature becomes a predetermined temperature.

しかしながら、これでは、電子膨張弁の開度を圧縮機の
容量と個別に制御しているため、一旦、圧縮機の容量段
数が増大すると、その後、外気温度の低下により庫内熱
負荷が減少しても、圧縮機が高容量運転を継続したまま
であるため、圧縮機の電力消費が大きいという問題があ
った。また、電子膨張弁を制御して液冷媒量を制御して
いるので、熱負荷が低下すると、圧縮機の能力が大きい
まま電子膨張弁を絞ることになるため、蒸発器内におけ
る冷媒の蒸発温度が低下し、着霜量が増加することにな
る。更には、偏流による蒸発器の温度分布が悪化し、吹
出空気温度分布が悪化するという問題があった。
However, in this case, since the opening degree of the electronic expansion valve is controlled separately from the capacity of the compressor, once the number of capacity stages of the compressor increases, the internal heat load decreases due to the decrease of the outside air temperature. However, there is a problem that the power consumption of the compressor is large because the compressor continues to operate at a high capacity. Also, since the amount of liquid refrigerant is controlled by controlling the electronic expansion valve, if the heat load decreases, the electronic expansion valve will be throttled while the capacity of the compressor remains large, so the evaporation temperature of the refrigerant in the evaporator will be reduced. Will decrease and the amount of frost will increase. Further, there is a problem that the temperature distribution of the evaporator is deteriorated due to the uneven flow, and the temperature distribution of blown air is deteriorated.

本発明は、斯かる点に鑑みてなされたものであり、膨張
弁が所定時間継続して低開度にあると、圧縮機の容量を
低下或いは吸入ガス量を低下させることにより、熱負荷
の減少に対応し得るようにして、消費電力の低減並びに
着霜量の増大防止等を図ることを目的するものである。
The present invention has been made in view of such a point, and when the expansion valve is continuously at a low opening for a predetermined time, the capacity of the compressor is decreased or the amount of intake gas is decreased to reduce the heat load. The purpose is to reduce power consumption and prevent an increase in the amount of frost so that the amount of frost can be reduced.

(課題を解決するための手段) 上記目的を達成するため、請求項(1)に係る発明の講
じた手段は、第1図に示すように、先ず、容量の調整可
能な圧縮機(1)、凝縮器(3)、開度の調整可能な膨
張弁(4)および蒸発器(5)を順次接続してなる冷媒
循環回路(11)と、上記膨張弁(4)の開度を制御する
膨張弁制御手段(14)とが設けられている。
(Means for Solving the Problems) In order to achieve the above object, the means taken by the invention according to claim (1) is, as shown in FIG. 1, first, a compressor (1) whose capacity is adjustable. , A condenser (3), a refrigerant circulation circuit (11) in which an expansion valve (4) with adjustable opening and an evaporator (5) are sequentially connected, and the opening of the expansion valve (4) is controlled. Expansion valve control means (14) is provided.

そして、上記膨張弁(4)の開度を検出する開度検出手
段(8)が設けられる一方、該開度検出手段(8)の検
出信号を受けて、 膨張弁(4)の開度が予め設定された開度以下の状態で
所定時間継続すると、上記圧縮機(1)の容量を低下さ
せる容量低減手段(15)が設けられた構成としている。
An opening degree detecting means (8) for detecting the opening degree of the expansion valve (4) is provided, while the opening degree of the expansion valve (4) is changed by receiving a detection signal from the opening degree detecting means (8). A capacity reducing means (15) is provided for reducing the capacity of the compressor (1) when it is continued for a predetermined time in a state of being less than a preset opening degree.

また、請求項(2)に係る発明の講じた手段は、圧縮機
(1)、凝縮器(3)、開度の調整可能な膨張弁(4)
及び蒸発器(5)を順次接続してなる冷媒循環回路(1
1)と、上記膨張弁(4)の開度を制御する膨張弁制御
手段(14)とが設けられている。
The means taken by the invention according to claim (2) is a compressor (1), a condenser (3), and an expansion valve (4) with adjustable opening.
Refrigerant circulation circuit (1
1) and expansion valve control means (14) for controlling the opening of the expansion valve (4).

そして、上記蒸発器(5)と圧縮機(1)との間に設け
られて圧縮機(1)の吸入ガス量を調整する吸入ガス量
調整手段(6)と、上記膨張弁(4)の開度を検出する
開度検出手段(8)とを備える一方、該開度検出手段
(8)の検出信号を受けて膨張弁(4)の開度が予め設
定された所定値以下の状態で所定時間継続すると、圧縮
機(1)の吸入ガス量を減少させるように上記吸入ガス
量調整手段(6)を制御する容量低減手段(16)を備え
た構成としている。
The intake gas amount adjusting means (6) provided between the evaporator (5) and the compressor (1) for adjusting the intake gas amount of the compressor (1) and the expansion valve (4). An opening detection means (8) for detecting the opening is provided, and while the opening of the expansion valve (4) is below a predetermined value set in advance in response to a detection signal of the opening detection means (8). A structure is provided with a capacity reducing means (16) for controlling the suction gas amount adjusting means (6) so as to reduce the suction gas amount of the compressor (1) when continuing for a predetermined time.

また、請求項(3)及び(4)に係る発明が講じた手段
は、請求項(1)又は(2)記載の冷凍装置の運転制御
装置において、容量低減手段(15),(16)は、庫内温
度が設定温度に対して所定値をもった所定温度範囲内に
ある状態において、膨張弁(4)の開度が設定開度以下
の状態で所定時間継続すると作用するように構成され、
また、請求項(5)に係る発明が講じた手段は、請求項
(3)又は(4)の冷凍装置の運転制御装置において、
容量低減手段(15),(16)の庫内温度を蒸発器(5)
の吹出空気温度とした構成としている。
Further, the means taken by the inventions according to claims (3) and (4) is the operation control device for a refrigerating apparatus according to claim (1) or (2), in which the capacity reducing means (15) and (16) are When the internal temperature is within a predetermined temperature range having a predetermined value with respect to the set temperature, the expansion valve (4) is configured to operate when the opening degree of the expansion valve (4) is equal to or less than the set opening degree for a predetermined time. ,
The means taken by the invention according to claim (5) is the operation control device for a refrigerating apparatus according to claim (3) or (4),
Evaporator (5) controls the internal temperature of the capacity reducing means (15), (16)
It is set to the blown air temperature.

また、請求項(6)に係る発明が講じた手段は、上記請
求項(2)記載の冷凍装置の運転制御装置において、吸
入ガス量調整手段(6)が吸入電磁弁(6a)と、該吸入
電磁弁(6a)に並列接続されたキャピラリー(6b)とよ
り構成されている。
Further, the means taken by the invention according to claim (6) is the operation control device for a refrigerating apparatus according to claim (2), wherein the intake gas amount adjusting means (6) is an intake solenoid valve (6a), It is composed of a capillary (6b) connected in parallel to the intake solenoid valve (6a).

(作用) 上記構成により、請求項(1)に係る発明では、例え
ば、冷蔵運転時において、膨張弁制御手段(14)が膨張
弁(4)の開度を制御して冷媒循環量を制御し、庫内温
度を設定温度に収束させる。
(Operation) With the above configuration, in the invention according to claim (1), for example, during the refrigerating operation, the expansion valve control means (14) controls the opening degree of the expansion valve (4) to control the refrigerant circulation amount. , The temperature inside the refrigerator is converged to the set temperature.

一方、熱負荷が減少し、上記膨張弁(4)の開度が所定
値、例えば、50%以下となり、この低開度が所定時間継
続すると、容量低減手段(15)により圧縮機(1)容量
を低下させ、熱負荷に釣合う圧縮機(1)容量に調節す
る。
On the other hand, when the heat load decreases and the opening degree of the expansion valve (4) becomes a predetermined value, for example, 50% or less, and this low opening degree continues for a predetermined time, the compressor (1) is reduced by the capacity reducing means (15). Reduce the capacity and adjust the compressor (1) capacity to match the heat load.

また、請求項(2)に係る発明では、熱負荷が減少し、
膨張弁(4)の所定値以下の開度が所定時間継続する
と、容量低減手段(16)が吸入ガス量調整手段(6)を
制御し、具体的に請求項(6)に係る発明では、吸入電
磁弁(6a)を閉鎖して、吸入ガスがキャピラリー(6b)
を流れるように、圧縮機(1)の吸入ガス量を減少させ
て、圧縮機(1)容量を低減させる。
In the invention according to claim (2), the heat load is reduced,
When the opening of the expansion valve (4) equal to or less than a predetermined value continues for a predetermined time, the capacity reducing means (16) controls the intake gas amount adjusting means (6), and specifically, in the invention according to claim (6), The suction solenoid valve (6a) is closed and the suction gas is stored in the capillary (6b).
The amount of gas sucked into the compressor (1) is reduced so as to flow through the compressor (1) to reduce the capacity of the compressor (1).

また、請求項(3)及び(4)に係る発明では、容量低
減手段(15),(16)は庫内温度、具体的に請求項
(5)に係る発明では蒸発器(5)の吹出空気温度が所
定温度範囲内にあり、安定している状態で作用する。
Further, in the inventions according to claims (3) and (4), the capacity reducing means (15) and (16) are the temperature inside the refrigerator, specifically, in the invention according to claim (5), the blowout of the evaporator (5). The air temperature is within a predetermined temperature range, and it operates in a stable state.

(実施例) 以下、本発明の実施例を図面に沿って詳細に説明する。(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

請求項(1)に係る発明の実施例を第2図に示す。An embodiment of the invention according to claim (1) is shown in FIG.

同図において、(A)は冷凍コンテナ等に設けられる冷
凍装置、(1)は容量を33%と67%と100%に変更可能
なアンロード付き圧縮機、(3)は空冷ファン(F1)及
びモータ(MF1)が付設された凝縮器、(18)はレシー
バ、(4)はPID制御される電子膨張弁、(5)は庫内
ファン(F2)及びモータ(MF2)が付設せられた蒸発
器、(9)はアキュムレータであり、各機器(1),
(3),(18),(4),(5),(19)は上述の順に
冷媒配管(20)により直列に接続されて、冷媒循環回路
(11)を形成しており、冷媒を圧縮機(1)により上記
冷媒循環回路(11)を流通循環させることにより、凝縮
器(3)にて冷媒ガスの有する熱を庫外に放出して冷媒
ガスを液化し、蒸発器(5)にて冷媒ガスが気化するこ
とにより庫内熱を吸収し、もって庫内を冷却するように
構成されている。
In the figure, (A) is a refrigerating device installed in a refrigerating container, (1) is a compressor with unloading capacity that can be changed to 33%, 67%, and 100%, and (3) is an air-cooling fan (F1). And a condenser equipped with a motor (MF1), (18) a receiver, (4) a PID-controlled electronic expansion valve, (5) a fan (F2) inside the compartment and a motor (MF2) attached Evaporator, (9) is an accumulator, each device (1),
(3), (18), (4), (5), (19) are connected in series by the refrigerant pipe (20) in the above-mentioned order to form the refrigerant circulation circuit (11) and compress the refrigerant. By circulating the refrigerant circulation circuit (11) with the machine (1), the heat of the refrigerant gas is released to the outside of the refrigerator in the condenser (3) to liquefy the refrigerant gas and to the evaporator (5). The refrigerant gas is vaporized to absorb the heat in the refrigerator, thereby cooling the inside of the refrigerator.

また、(2)は上記圧縮機(1)と凝縮器(3)との間
に介設された三方比例弁であり、(10)は一端が該三方
比例弁(2)に接続され、他端が上記凝縮器(3)、レ
シーバ(18)及び電子膨張弁(4)をバイパスして蒸発
器(5)の吸入側冷媒配管(12)に接続せられたホット
ガスバイパスラインで、該ホットガスバイパスライン
(10)はドレンパンヒータ部(13)を備えている。ま
た、(Th1)及び(Th2)は蒸発器(5)の入口冷媒温度
及び出口冷媒温度を検出する冷媒温度センサであり、
(Th3)及び(Th4)は上記蒸発器(5)の吸込空気温度
及び吹出空気温度(庫内温度)を検出する空気温度セン
サである。
Further, (2) is a three-way proportional valve interposed between the compressor (1) and the condenser (3), and (10) has one end connected to the three-way proportional valve (2) and the other. A hot gas bypass line whose end bypasses the condenser (3), the receiver (18) and the electronic expansion valve (4) and is connected to the suction side refrigerant pipe (12) of the evaporator (5). The gas bypass line (10) includes a drain pan heater section (13). Further, (Th1) and (Th2) are refrigerant temperature sensors for detecting the inlet refrigerant temperature and the outlet refrigerant temperature of the evaporator (5),
(Th3) and (Th4) are air temperature sensors for detecting the intake air temperature and the blown air temperature (internal temperature) of the evaporator (5).

そして、上記各温度センサ(Th1),(Th2),(Th
3),(Th4)の検出信号は、第3図に示すように、コン
トローラ(21)に入力されるように構成されており、該
コントローラ(21)には、A/D変換器(23)、I/0ポート
(24)、RAM(25)、ROM(26)及びCPU(27)が備えら
れている。そして、上記コントローラ(21)には、上記
電子膨張弁(4)の開度を検出する開度検出手段(8)
が備えられると共に、冷凍運転時には上記各冷媒温度セ
ンサ(Th1)、(Th2)の検知信号に基づき所定の過熱度
になるように上記電子膨張弁(4)のモータ(MEV)をP
ID制御する一方、冷蔵運転時は蒸発器(5)の吹出空気
温度センサ(Th4)の検知信号に基づき、該吹出空気温
度が所定温度範囲(設定温度に対して±5℃の範囲)に
入るように上記電子膨張弁(4)のモータ(MEV)をPID
制御する膨張弁制御手段(14)が含まれている。また、
上記コントローラ(21)には、デフロスト運転時に三方
比例弁(2)のモータ(MV)をPID制御してホットガス
バイパス量を制御するホットガス制御手段(17)が含ま
れている。
Then, the temperature sensors (Th1), (Th2), (Th
The detection signals of 3) and (Th4) are configured to be input to the controller (21) as shown in FIG. 3, and the controller (21) includes an A / D converter (23). , I / 0 port (24), RAM (25), ROM (26) and CPU (27). The controller (21) has an opening detection means (8) for detecting the opening of the electronic expansion valve (4).
Is provided, and the motor (MEV) of the electronic expansion valve (4) is controlled so as to have a predetermined superheat degree based on the detection signals of the refrigerant temperature sensors (Th1) and (Th2) during the refrigerating operation.
While performing ID control, during the refrigerating operation, the blown air temperature falls within a predetermined temperature range (± 5 ° C relative to the set temperature) based on the detection signal of the blown air temperature sensor (Th4) of the evaporator (5). PID the motor (MEV) of the electronic expansion valve (4)
Expansion valve control means (14) for controlling is included. Also,
The controller (21) includes hot gas control means (17) for controlling the amount of hot gas bypass by PID controlling the motor (MV) of the three-way proportional valve (2) during defrost operation.

更に、上記コントローラ(21)には、熱負荷の増加に対
応して上記圧縮機容量を増大制御する圧縮機容量制御手
段(7)が備えられている。その上、上記コントローラ
(21)には、上記開度検出手段(8)の信号を受けて、
蒸発器(5)の吹出空気温度が所定温度範囲内にあると
きに電子膨張弁(4)の開度が所定値、例えば50%以下
の状態が所定時間、例えば20分、継続すると、圧縮機
(1)の容量を低減させる容量低減手段(15)が含まれ
ている。
Further, the controller (21) is provided with a compressor capacity control means (7) for increasing and controlling the compressor capacity in response to an increase in heat load. In addition, the controller (21) receives a signal from the opening detection means (8),
When the temperature of the air blown from the evaporator (5) is within the predetermined temperature range, the opening of the electronic expansion valve (4) is kept at a predetermined value, for example 50% or less, for a predetermined time, for example 20 minutes A capacity reducing means (15) for reducing the capacity of (1) is included.

更にまた、第3図において、(Tr)は変圧器、(S)は
運転/停止スイッチ、(31)は高圧圧力開閉器、(32)
は低圧圧力開閉器、(33)は油圧保護圧力開閉器、(3
4)はランプスイッチ、(35)は油圧リセットスイッ
チ、(36)は圧縮機保護サーモスイッチ、(37)は変圧
器(Tr)の結線切換用、(38)は電圧切換用、(39),
(40)は圧縮機モータ用のそれぞれ手動切換開閉器であ
り、該各開閉器(37)〜(40)は全て連動している。
Furthermore, in FIG. 3, (Tr) is a transformer, (S) is a start / stop switch, (31) is a high pressure switch, (32)
Is a low pressure switch, (33) is a hydraulic protective pressure switch, (3
4) is a lamp switch, (35) is a hydraulic reset switch, (36) is a compressor protection thermoswitch, (37) is for switching the transformer (Tr) wiring, (38) is for voltage switching, (39),
Reference numeral (40) is a manual switching switch for the compressor motor, and the switches (37) to (40) are all interlocked.

(MC)は圧縮機モータ、(10c)は、上記圧縮機モータ
(MC)を作動させると同時に凝縮器(3)の送風ファン
モータ(MF1)への通電を許容する常開接点(10C−1)
を有する圧縮機リレー、(10F)は蒸発器(5)の送風
ファンモータ(MF2)を作動させる常開接点(10F−1)
を有する蒸発器ファンリレー、(20S)は冷媒配管(1
2)の冷媒流れを許容又は阻止する電磁弁のリレーであ
る。
(MC) is a compressor motor, and (10c) is a normally open contact (10C-1) that allows the blower fan motor (MF1) of the condenser (3) to be energized while operating the compressor motor (MC). )
Compressor relay (10F) is a normally open contact (10F-1) that operates the fan motor (MF2) of the evaporator (5)
Evaporator fan relay, with (20S) refrigerant pipe (1
It is a solenoid valve relay that allows or blocks the flow of refrigerant in 2).

次に、上記冷凍装置(A)の運転制御動作について第4
図の制御フローに基づき説明する。
Next, regarding the operation control operation of the refrigeration system (A),
A description will be given based on the control flow in the figure.

先ず、ステップST1において、冷凍装置(A)が定常運
転状態にあり、例えば、圧縮機(1)が容量100%で運
転されている場合、ステップST2に移り、蒸発器(5)
の吹出空気温が庫内設定温度に対して±0.5℃以内の所
定温度範囲内であるか否かを判定し、範囲外の場合に
は、ステップST3に移り、膨張弁制御手段(14)が電子
膨張弁(4)をPID制御してステップST2に戻り、吹出空
気温度が所定温度範囲内に入るようにする。一方、ステ
ップST2において、吹出空気温度が所定範囲内にある場
合には、ステップST4に移り、開度検出手段(8)の検
出信号により電子膨張弁(4)の開度が50%以下か否か
が判断される。そして、該電子膨張弁(4)の開度が50
%より大きい場合には、ステップST2に戻り、上述の動
作を繰り返す。
First, in step ST1, when the refrigeration system (A) is in a steady operation state and, for example, the compressor (1) is operating at 100% capacity, the process proceeds to step ST2 and the evaporator (5)
It is determined whether or not the blown air temperature of is within a predetermined temperature range within ± 0.5 ° C with respect to the set temperature in the refrigerator, and if it is out of the range, the process proceeds to step ST3, and the expansion valve control means (14) The electronic expansion valve (4) is PID-controlled to return to step ST2 so that the blown air temperature falls within a predetermined temperature range. On the other hand, in step ST2, when the blown air temperature is within the predetermined range, the process proceeds to step ST4, and it is determined whether the opening degree of the electronic expansion valve (4) is 50% or less according to the detection signal of the opening degree detection means (8). Is determined. And the opening degree of the electronic expansion valve (4) is 50
If it is larger than%, the process returns to step ST2 and the above operation is repeated.

一方、上記ステップST4において、電子膨張弁(4)の
開度が50%以下の場合には、ステップST5に移り、タイ
マをスタートさせてステップST6に移り、タイマがカウ
ントアップしたか否かが判定される。このタイマは、例
えば、20分に設定されており、この20分が経過するま
で、ステップST7に移り、電子膨張弁(4)の開度が50
%以下であるか否かを判定し、50%以下の場合はステッ
プST6に移り、50%以下の低開度が20分以上継続するか
否かを判定している。そして、20分経過前に弁開度が50
%以上になると、ステップST8に移りタイマをクリアし
た後、ステップST2に戻り、上述した通常の冷媒制御動
作に戻る。
On the other hand, in step ST4, when the opening degree of the electronic expansion valve (4) is 50% or less, the process proceeds to step ST5, the timer is started and the process proceeds to step ST6, and it is determined whether or not the timer counts up. To be done. This timer is set to, for example, 20 minutes, and until this 20 minutes has elapsed, the process proceeds to step ST7 and the opening degree of the electronic expansion valve (4) is set to 50.
% Or less. If it is 50% or less, the process proceeds to step ST6, and it is determined whether the low opening of 50% or less continues for 20 minutes or more. And before 20 minutes have passed, the valve opening is
When it becomes more than%, after moving to step ST8 and clearing the timer, it returns to step ST2 and returns to the normal refrigerant control operation described above.

そして、50%以下の低開度が20分継続すると、ステップ
ST6よりステップST9に移り、容量低減手段(15)が、圧
縮機(1)の容量を67%に低減してステップST2に戻る
ことになる。
When the low opening of 50% or less continues for 20 minutes, the step
The process moves from ST6 to step ST9, and the capacity reducing means (15) reduces the capacity of the compressor (1) to 67% and returns to step ST2.

つまり、圧縮機(1)の容量100%運転している状態
で、該容量が大きい場合に、容量を低減させる。
That is, when the capacity of the compressor (1) is operating at 100% and the capacity is large, the capacity is reduced.

その後、図示しないが、67%の運転時においても、上記
ステップST1〜ST9と同様に制御し、電子膨張弁(4)の
開度が50%以下の低開度で20分継続すると、ステップST
9で圧縮機(1)の容量を33%に低減する。
After that, although not shown, even when operating at 67%, control is performed in the same manner as steps ST1 to ST9 above, and if the opening of the electronic expansion valve (4) continues for 20 minutes at a low opening of 50% or less, step ST
At 9, reduce the capacity of the compressor (1) to 33%.

従って、熱負荷が減少し、電子膨張弁(4)の開度が50
%以下で20分継続すると圧縮機(1)の容量を低減させ
るようにしたために、低熱負荷時における圧縮機(1)
の高容量運転を防止し得るので、電力消費の軽減及び蒸
発器(5)の着霜抑制を図ることができると共に、庫内
食料品の水分蒸発による劣化、目減り等をも防止するこ
とができる。
Therefore, the heat load is reduced and the opening degree of the electronic expansion valve (4) is 50
%, The capacity of the compressor (1) is reduced if it is continued for 20 minutes, so that the compressor (1) at low heat load
Since high capacity operation can be prevented, power consumption can be reduced and frost formation on the evaporator (5) can be suppressed, and deterioration and loss of foodstuffs in the storage due to water evaporation can be prevented. .

第5図は、請求項(2)に係る発明の実施例を示してお
り、本実施例では、前実施例の容量低減手段(15)が直
接圧縮機(1)の容量を低下させるのに代えて、蒸発器
(5)の下流側であってアキュムレータ(19)と圧縮機
(1)との間に吸入ガス調整手段(6)が設けられたも
のである。
FIG. 5 shows an embodiment of the invention according to claim (2). In this embodiment, the capacity reducing means (15) of the previous embodiment directly reduces the capacity of the compressor (1). Instead, the suction gas adjusting means (6) is provided downstream of the evaporator (5) and between the accumulator (19) and the compressor (1).

該吸入ガス調整手段(6)は、冷媒循環回路(11)に吸
入電磁弁(6a)が介設されると共に、該電磁弁(6a)を
バイパスして該電磁弁(6a)と並列にキャピラリー(6
b)が接続されて構成されており、該吸入電磁弁(6a)
が容量低減手段(16)で開閉されるようになっている。
The suction gas adjusting means (6) has a suction electromagnetic valve (6a) interposed in the refrigerant circulation circuit (11), bypasses the electromagnetic valve (6a), and is parallel to the electromagnetic valve (6a). (6
b) is connected to the intake solenoid valve (6a).
Is opened and closed by the capacity reducing means (16).

つまり、容量低減手段(16)は、電子膨張弁(4)の開
度が所定値以下の状態で所定時間継続すると、上記吸入
電磁弁(6a)を閉とし、冷媒は流動抵抗の大きいキャピ
ラリー(6b)を流れ、圧縮機(1)の吸入ガス量が低下
し、圧縮機容量が低下するように構成されている。
That is, the capacity reducing means (16) closes the suction solenoid valve (6a) when the opening degree of the electronic expansion valve (4) is kept at a predetermined value or less and continues for a predetermined time, and the refrigerant has a large flow resistance in the capillary ( 6b), the intake gas amount of the compressor (1) is reduced, and the compressor capacity is reduced.

第6図は、本実施例の制御フローを示し、先ず、前実施
例と同様にステップST1において、例えば、圧縮機
(1)を連続運転するとステップST2からステップST8と
同様に動作し、電子膨張弁(4)が50%以下の低開度を
20分継続すると、ステップST8からステップST12に移
り、吸入電磁弁(6a)を閉じ、冷媒がキャピラリー(6
b)を流れるようにして、圧縮機(1)の吸入ガス量を
低減し、冷凍容量を減少させる。
FIG. 6 shows a control flow of this embodiment. First, in step ST1 as in the previous embodiment, for example, when the compressor (1) is continuously operated, it operates in the same manner as step ST2 to step ST8, and electronic expansion is performed. Valve (4) can be set to a low opening of 50% or less
After continuing for 20 minutes, the process proceeds from step ST8 to step ST12, the suction solenoid valve (6a) is closed, and the refrigerant is cooled by the capillary (6
The amount of gas sucked into the compressor (1) is reduced by flowing b) to reduce the refrigeration capacity.

その他の構成、作用は前実施例と同様である。Other configurations and operations are similar to those of the previous embodiment.

なお、本実施例では、圧縮機(1)の容量は3段切換え
としているが、2段若しくは4段等に切換えるようにし
てもよく、同じく、吸入ガス量調整手段(6)は3段以
上に切換えるようにしてもよい。
In this embodiment, the capacity of the compressor (1) is switched to three stages, but it may be switched to two stages, four stages, etc. Similarly, the intake gas amount adjusting means (6) has three stages or more. You may switch to.

更にまた、請求項(1)に係わる発明と請求項(2)に
係わる発明を並用して、圧縮機容量と吸入ガス量の双方
を制御するようにしてもよい。
Furthermore, the invention according to claim (1) and the invention according to claim (2) may be used together to control both the compressor capacity and the intake gas amount.

(発明の効果) 以上説明したように、請求項(1)及び(2)に係る発
明によれば、膨張弁の低開度が所定時間継続すると、圧
縮機の容量が低下するようにしたために、庫内熱負荷容
量が減少した場合には、冷媒循環回路及び庫内温度に悪
影響を与えることなく、容易に圧縮機容量の減少を行い
得るので、従来技術による場合に比較し、電力消費が少
なく、しかも、蒸発器内の冷媒蒸発温度の低下を防止す
ることができるので、着霜を防止することができると共
に、それによる庫内食料品等の目減り、脱水による劣化
の減少を防止することができる。その上、偏流による蒸
発器の温度分布の不均一を防止することができることか
ら、庫内温度分布への悪影響がなく、経済的かつ良好な
冷凍、冷蔵、保冷を行うことができる。
(Effects of the Invention) As described above, according to the inventions according to claims (1) and (2), when the low opening degree of the expansion valve continues for a predetermined time, the capacity of the compressor is reduced. When the internal heat load capacity is reduced, the compressor capacity can be easily reduced without adversely affecting the refrigerant circulation circuit and the internal temperature, so that the power consumption is lower than that in the conventional technology. Since it is possible to prevent a decrease in the evaporation temperature of the refrigerant in the evaporator, it is possible to prevent the formation of frost, and to prevent the foodstuffs in the refrigerator from being depleted and deterioration caused by dehydration. You can In addition, since it is possible to prevent uneven temperature distribution in the evaporator due to uneven flow, there is no adverse effect on the temperature distribution inside the refrigerator, and economical and favorable freezing, refrigerating, and cold keeping can be performed.

また、請求項(3)〜(5)に係る発明によれば、庫内
が安定している状態で圧縮機の容量又は吸入ガス量を低
下させるので、冷媒循環回路や庫内温度への悪影響を確
実に防止することができる。
Further, according to the inventions according to claims (3) to (5), the capacity of the compressor or the amount of suction gas is reduced in a state where the inside of the refrigerator is stable, so that the refrigerant circulation circuit and the temperature inside the refrigerator are adversely affected. Can be reliably prevented.

また、請求項(6)に係る発明によれば、吸入ガス量調
整手段を吸入電磁弁及びキャピラリーで構成するので、
簡単な構造でもって確実に動作させることができる。
Further, according to the invention of claim (6), since the intake gas amount adjusting means is composed of the intake solenoid valve and the capillary,
The simple structure enables reliable operation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図、第2図は冷凍
装置の冷媒回路図、第3図は同電気回路図、第4図は同
制御フロー図である。第5図は他の実施例を示す冷媒回
路図、第6図は同制御フロー図である。 (1)……圧縮機、(2)……調整手段、(3)……凝
縮器、(4)……電子膨張弁、(5)……蒸発器、
(6)……吸入ガス量調整手段、(6a)……吸入電磁
弁、(6b)……キャピラリー、(7)……圧縮機容量制
御手段、(8)……開度検出手段、(11)……冷媒循環
回路、(14)……膨張弁制御手段、(15)……容量低減
手段、(16)……容量低減手段。
FIG. 1 is a block diagram showing a configuration of the present invention, FIG. 2 is a refrigerant circuit diagram of a refrigerating apparatus, FIG. 3 is an electric circuit diagram thereof, and FIG. 4 is a control flow chart thereof. FIG. 5 is a refrigerant circuit diagram showing another embodiment, and FIG. 6 is a control flow chart thereof. (1) ... compressor, (2) ... adjusting means, (3) ... condenser, (4) ... electronic expansion valve, (5) ... evaporator,
(6) ... intake gas amount adjusting means, (6a) ... intake solenoid valve, (6b) ... capillary, (7) ... compressor capacity control means, (8) ... opening degree detection means, (11 ) ... Refrigerant circulation circuit, (14) ... Expansion valve control means, (15) ... Capacity reduction means, (16) ... Capacity reduction means.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】容量の調整可能な圧縮機(1)、凝縮器
(3)、開度の調整可能な膨張弁(4)および蒸発器
(5)を順次接続してなる冷媒循環回路(11)と、上記
膨張弁(4)の開度を制御する膨張弁制御手段(14)
と、上記膨張弁(4)の開度を検出する開度検出手段
(8)と、該開度検出手段(8)の検出信号を受けて膨
張弁(4)の開度が予め設定された開度以下の状態で所
定時間継続すると、上記圧縮機(1)の容量を低下させ
る容量低減手段(15)とを備えていることを特徴とする
冷凍装置の運転制御装置。
1. A refrigerant circulation circuit (11) in which a compressor (1) with adjustable capacity, a condenser (3), an expansion valve (4) with adjustable opening and an evaporator (5) are sequentially connected. ) And expansion valve control means (14) for controlling the opening of the expansion valve (4)
And an opening degree detecting means (8) for detecting the opening degree of the expansion valve (4), and the opening degree of the expansion valve (4) is preset in response to a detection signal from the opening degree detecting means (8). An operation control device for a refrigerating apparatus, comprising: a capacity reducing means (15) for reducing the capacity of the compressor (1) when the operation is continued for a predetermined time in a state of not more than the opening degree.
【請求項2】圧縮機(1)、凝縮器(3)、開度の調整
可能な膨張弁(4)及び蒸発器(5)を順次接続してな
る冷媒循環回路(11)と、上記膨張弁(4)の開度を制
御する膨張弁制御手段(14)と、上記蒸発器(5)と圧
縮機(1)との間に設けられて圧縮機(1)の吸入ガス
量を調整する吸入ガス量調整手段(6)と、上記膨張弁
(4)の開度を検出する開度検出手段(8)と、該開度
検出手段(8)の検出信号を受けて膨張弁(4)の開度
が予め設定された所定値以下の状態で所定時間継続する
と、圧縮機(1)の吸入ガス量を減少させるように吸入
ガス量調整手段(6)を制御する容量低減手段(16)と
を備えていることを特徴とする冷凍装置の運転制御装
置。
2. A refrigerant circulation circuit (11) in which a compressor (1), a condenser (3), an expansion valve (4) with adjustable opening and an evaporator (5) are sequentially connected, and the expansion. It is provided between the expansion valve control means (14) for controlling the opening degree of the valve (4) and the evaporator (5) and the compressor (1) to adjust the intake gas amount of the compressor (1). Intake gas amount adjusting means (6), opening detecting means (8) for detecting the opening of the expansion valve (4), and an expansion valve (4) receiving a detection signal of the opening detecting means (8). The capacity reducing means (16) for controlling the intake gas amount adjusting means (6) so as to reduce the intake gas amount of the compressor (1) when the opening degree of the compressor continues for a predetermined time in a state of being equal to or less than a preset predetermined value. An operation control device for a refrigeration system, comprising:
【請求項3】請求項(1)記載の冷凍装置の運転制御装
置において、容量低減手段(15)は、庫内温度が設定温
度に対して所定幅をもった所定温度範囲内にある状態に
おいて、膨張弁(4)の開度が設定開度以下の状態で所
定時間継続すると、圧縮機(1)の容量を低下させるよ
うに構成されていることを特徴とする冷凍装置の運転制
御装置。
3. The operation control device for a refrigerating apparatus according to claim 1, wherein the capacity reducing means (15) is in a state in which the internal temperature is within a predetermined temperature range having a predetermined width with respect to the set temperature. An operation control device for a refrigerating apparatus, which is configured to reduce the capacity of the compressor (1) when the expansion valve (4) is opened for a predetermined time or longer in a state where the opening is less than a set opening.
【請求項4】請求項(2)記載の冷凍装置の運転制御装
置において、容量低減手段(16)は、庫内温度が設定温
度に対して所定幅をもった所定温度範囲内にある状態に
おいて、膨張弁(4)の開度が設定開度以下の状態で所
定時間継続すると、圧縮機(1)の容量を低下すべく吸
入ガス量調整手段(6)を制御するように構成されてい
ることを特徴とする冷凍装置の運転制御装置。
4. The operation control device for a refrigerating machine according to claim 2, wherein the capacity reducing means (16) is in a state in which the internal temperature is within a predetermined temperature range having a predetermined width with respect to the set temperature. When the opening degree of the expansion valve (4) is equal to or smaller than the set opening degree and continues for a predetermined time, the suction gas amount adjusting means (6) is controlled so as to reduce the capacity of the compressor (1). An operation control device for a refrigeration system, which is characterized in that:
【請求項5】請求項(3)又は(4)記載の冷凍装置の
運転制御装置において、容量低減手段(15),(16)が
基準とする庫内温度は蒸発器(5)の吹出空気温度であ
ることを特徴とする冷凍装置の運転制御装置。
5. The operation control device for a refrigerating apparatus according to claim 3 or 4, wherein the internal cold storage temperature, which is set as a reference by the capacity reducing means (15), (16), is the air blown out from the evaporator (5). An operation control device for a refrigeration system, which is a temperature.
【請求項6】請求項(2)記載の冷凍装置の運転制御装
置において、吸入ガス量調整手段(6)は、吸入電磁弁
(6a)と、該吸入電磁弁(6a)に並列接続されたキャピ
ラリー(6b)とより構成されていることを特徴とする冷
凍装置の運転制御装置。
6. The operation control device for a refrigerating apparatus according to claim 2, wherein the intake gas amount adjusting means (6) is connected in parallel to the intake solenoid valve (6a) and the intake solenoid valve (6a). An operation control device for a refrigeration system, which is configured with a capillary (6b).
JP5539089A 1989-03-06 1989-03-06 Refrigeration system operation controller Expired - Fee Related JPH07111277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5539089A JPH07111277B2 (en) 1989-03-06 1989-03-06 Refrigeration system operation controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5539089A JPH07111277B2 (en) 1989-03-06 1989-03-06 Refrigeration system operation controller

Publications (2)

Publication Number Publication Date
JPH02233944A JPH02233944A (en) 1990-09-17
JPH07111277B2 true JPH07111277B2 (en) 1995-11-29

Family

ID=12997187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5539089A Expired - Fee Related JPH07111277B2 (en) 1989-03-06 1989-03-06 Refrigeration system operation controller

Country Status (1)

Country Link
JP (1) JPH07111277B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667353B (en) * 2010-08-12 2014-12-24 富士电机株式会社 Localized cooling system, and control device thereof

Also Published As

Publication number Publication date
JPH02233944A (en) 1990-09-17

Similar Documents

Publication Publication Date Title
US4481787A (en) Sequentially controlled single evaporator refrigerator
RU2480684C2 (en) Method and device for defrosting with hot steam
JPH11304329A (en) Cooling operation controller of refrigerator
KR20010108743A (en) Kimchi refrigerator and control method thereof
JP3267187B2 (en) Heat pump water heater
JPH04214158A (en) Operation controller for refrigerating device
JP2745828B2 (en) Operation control device for refrigeration equipment
JPH09318205A (en) Refrigerating device
JPH07111277B2 (en) Refrigeration system operation controller
JP2503636B2 (en) Refrigeration system operation controller
JPH07305903A (en) Controller for freezer
JPH0156355B2 (en)
JPH05308943A (en) Freezing equipment
JP2643671B2 (en) Operation control device for refrigeration equipment
JPS63251780A (en) Operation controller in refrigerator
JP3291314B2 (en) Refrigeration equipment
JP2003139459A (en) Refrigerator
JP3006005B2 (en) Operation control device for refrigeration equipment
JPH04366365A (en) Controlling device for operation of refrigerating plant
JP2500531B2 (en) Refrigeration system operation controller
JPH0263152B2 (en)
JPS63129286A (en) Refrigerator
JPH01179876A (en) Refrigerating device
JPH07117301B2 (en) Refrigeration system operation controller
JPH0571855B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081129

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees