JPH0711050B2 - High strength cemented carbide and method for producing the same - Google Patents

High strength cemented carbide and method for producing the same

Info

Publication number
JPH0711050B2
JPH0711050B2 JP63198700A JP19870088A JPH0711050B2 JP H0711050 B2 JPH0711050 B2 JP H0711050B2 JP 63198700 A JP63198700 A JP 63198700A JP 19870088 A JP19870088 A JP 19870088A JP H0711050 B2 JPH0711050 B2 JP H0711050B2
Authority
JP
Japan
Prior art keywords
carbide
cemented carbide
solid solution
carbonitride
tungsten carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63198700A
Other languages
Japanese (ja)
Other versions
JPH0247239A (en
Inventor
豪 斉藤
光生 植木
景一 小堀
寿 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP63198700A priority Critical patent/JPH0711050B2/en
Publication of JPH0247239A publication Critical patent/JPH0247239A/en
Publication of JPH0711050B2 publication Critical patent/JPH0711050B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強度及び靱性にすぐれており、切削工具用材
料として用いた場合に耐摩耗性及び耐欠損性にすぐれた
効果を発揮するもので、特に切削工具用材料又は耐摩耗
工具用材料として適する高強度超硬合金及びその製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention has excellent strength and toughness, and exhibits excellent effects of wear resistance and chipping resistance when used as a material for cutting tools. In particular, the present invention relates to a high-strength cemented carbide suitable as a material for cutting tools or a material for wear-resistant tools and a method for producing the same.

(従来の技術) 一般に、炭化タングステンを主成分とする超硬合金は、
大別するとWC-Co系超硬合金とWC-Bl型固溶体−CO系超硬
合金がある。この内、後者の超硬合金は、主として鉄系
材料を被削材とする切削工具用材料として用いられてい
る。この後者の超硬合金をフライス工具部材,エンドミ
ル,ドリルなどの回転切削工具用材料として用いる場合
は、特に過酷な衝撃が加わること又は熱亀裂が発生する
ことにより欠損しやすくなるという問題がある。そこ
で、種々の方向から超硬合金の強度を高めようという検
討が行われている。それらの内、超硬合金の組成成分及
び構造から提案されている代表的なものに、特公昭47-2
3049号公報,特開昭51-124607号公報及び特開昭57-1459
59号公報がある。
(Prior Art) Generally, a cemented carbide containing tungsten carbide as a main component is
Broadly classified, there are WC-Co type cemented carbide and WC-Bl type solid solution-CO type cemented carbide. Among these, the latter cemented carbide is mainly used as a material for a cutting tool that uses an iron-based material as a work material. When the latter cemented carbide is used as a material for rotary cutting tools such as milling tool members, end mills, and drills, there is a problem that it is apt to be damaged due to particularly severe impact or thermal cracking. Therefore, studies have been conducted to increase the strength of the cemented carbide from various directions. Among them, the representative ones proposed from the composition and structure of cemented carbide are Japanese Patent Publication No. 47-2.
JP 3049, JP 51-124607 and JP 57-1459
There is a 59 bulletin.

(発明が解決しようとする問題点) 特公昭47-23049号公報は、最大寸法が0.1〜50μmで、
その最大寸法が最小寸法の少なくとも3倍である不等寸
法の炭化タングステン板状粒子とFe族金属とからなる強
靱な合金が示されている。この特公昭47-23049号公報の
合金は、不等寸法の板状炭化タンスグテンを含有させる
ことによりWC-Fe族合金を強靱にしたものであるけれど
も、これをWC-Bl型固溶体−Fe族金属には応用ができな
いという問題がある。何故ならば、特公昭47-23049号公
報における不等寸法の板状炭化タングステンは、出発物
質に微細な炭化タングステンを用いて焼結工程時にWCを
粒成長させることにより形成させているもので、WC-Fe
族合金にBl型固溶体が添加されると、WCの粒成長が抑制
されるためにWC-Bl型固溶体−Fe族金属には不等寸法の
板状炭化タングステンを形成させることが難かしいとい
う問題がある。
(Problems to be solved by the invention) Japanese Patent Publication No. 47-23049 discloses that the maximum dimension is 0.1 to 50 μm.
A tough alloy consisting of unequal-sized tungsten carbide tabular grains whose maximum size is at least three times the minimum size and a Fe-group metal is shown. The alloy disclosed in JP-B-47-23049 is a WC-Fe group alloy toughened by containing unequal-sized plate-shaped tungsten carbide, but it is a WC-Bl type solid solution-Fe group metal. Has the problem that it cannot be applied. The reason is that the unequal-sized plate-shaped tungsten carbide in Japanese Patent Publication No. 47-23049 is formed by grain growth of WC during the sintering process using fine tungsten carbide as a starting material. WC-Fe
When a Bl-type solid solution is added to a group alloy, grain growth of WC is suppressed, so that it is difficult to form unequal-sized plate-shaped tungsten carbide in the WC-Bl-type solid solution-Fe group metal. There is.

特開昭51-124607号公報は、Co4〜13vol%とTiC,TaC,Nb
C,VCの中の少なくとも1種10〜60vol%と残りWCとから
なり、このWCの平均粒径が3μm以下にして粒径5μm
を超えたものがなく、かつ固溶体炭化物の平均粒径が0.
7μm以下にして粒径1μmを超えたものがない炭化物
分散相の含有していることを特徴とするWC基超硬合金が
示されている。この特開昭51-124607号公報の超硬合金
は、WC-Co系超硬合金に固溶体炭化物を添加すると強度
が低下するという問題に対して、WC及び固溶体炭化物の
粒径の制御により強度低下を抑制したものであるけれど
も、WCの粒内破壊が生じるような機械的衝撃及び熱衝撃
の影響で生じるクラックの進展による欠損に対しては問
題がある。
JP-A-51-124607 discloses Co4 to 13 vol% and TiC, TaC, Nb.
At least one of C and VC consists of 10 to 60 vol% and the rest WC. The average particle size of this WC is 3 μm or less and the particle size is 5 μm.
And the average particle size of the solid solution carbide is 0.
A WC-based cemented carbide is shown which is characterized by containing a dispersed phase of carbide, which has a particle size of 7 μm or less and a particle size of 1 μm or more. In the cemented carbide of JP-A-51-124607, the strength is lowered by controlling the particle size of WC and the solid solution carbide, in contrast to the problem that the strength is lowered when the solid solution carbide is added to the WC-Co type cemented carbide. However, there is a problem with cracking due to the development of cracks caused by the effects of mechanical shock and thermal shock that cause intragranular fracture of WC.

特開昭57-145959号公報は、WC-TiC-TiNの組成図のWCを
主成分とする領域内の複合炭窒化物組成物80〜96重量%
と、残りCo又は50%以下をNiで置換したCoよりなる結合
金属とからなり、複合炭窒化物であるβ相の粒径がWCで
あるα相の粒径よりも小さい硬質合金が示されている。
この特開昭57-145959号公報の硬質合金は、WC-Co系超硬
合金にTiC,TaC,NbC,VCなどの炭化物を添加すると強度が
低下するという問題に対して、複合炭窒化物組成領域の
選定、及びβ相粒径とα相粒径の制御により疲労破壊に
強い合金を得ることを目的としたものであるけれども、
WCの粒内破壊の生じるような機械的衝撃及び熱衝撃のた
めの生じるクラックの進展による欠損に対してはまだ問
題がある。
Japanese Unexamined Patent Publication (Kokai) No. 57-145959 discloses that the composition of WC-TiC-TiN is 80-96% by weight of the composite carbonitride composition in the region containing WC as a main component
And a bond metal consisting of the remaining Co or Co in which 50% or less is replaced with Ni, and the grain size of the β phase that is a composite carbonitride is smaller than the grain size of the α phase that is WC. ing.
The hard alloy disclosed in JP-A-57-145959 is a composite carbonitride composition for the problem that the strength decreases when carbides such as TiC, TaC, NbC and VC are added to the WC-Co type cemented carbide. Although the purpose is to obtain an alloy that is resistant to fatigue fracture by selecting the region and controlling the β-phase grain size and α-phase grain size,
There is still a problem with cracking due to mechanical and thermal shock-induced crack propagation that causes WC intragranular fracture.

本発明は、上述のような問題点を解決したもので、具体
的には、炭化タングステン及びBl型固溶体とでなる硬質
相と、Coを主成分とする結合相とからなる超硬合金の硬
質相中に板状体の炭化タングステンを適量混在させてな
る高強度超硬合金及びその製造方法の提供を目的とする
ものである。
The present invention has solved the above-mentioned problems, specifically, a hard phase made of tungsten carbide and a Bl-type solid solution, and a hard cemented carbide made of a binder phase containing Co as a main component. An object of the present invention is to provide a high-strength cemented carbide in which an appropriate amount of plate-shaped tungsten carbide is mixed in the phase and a method for producing the same.

(問題点を解決するための手段) 本発明者らは、WCの単結晶におけるそれぞれの結晶面の
硬さは(0001)面が2100±40Kgf/mm2,(100)面が1
080±50Kgf/mm2,(101)面が1060±20Kgf/mm2とWC
の結晶面により異なっているということに着目し、耐衝
撃性及び耐熱亀裂性にすぐれていて、特にフライス切削
工具部材に最適な超硬合金について検討していた所、出
発物質としてWの過飽和に固溶してなる(W,Ti,M)C又
は(W,Ti,M)(C,N)(但し、MはW,Tiを除いた4a,5a,6
a族元素の少なくとも1種)を用いて焼結すると、硬さ
が高いといわれている(0001)面の成長してなる板状体
の炭化タングステンが晶出するという第1の知見を得た
ものである。
(Means for Solving Problems) The inventors of the present invention have found that the hardness of each crystal plane in the WC single crystal is 2100 ± 40 Kgf / mm 2 for the (0001) plane and 1 for the (100) plane.
080 ± 50 Kgf / mm 2 , (101) surface is 1060 ± 20 Kgf / mm 2 and WC
Focusing on the fact that it is different depending on the crystal plane of, it has excellent impact resistance and heat crack resistance, and when we were studying a cemented carbide that is most suitable for milling cutting tool members, we found that W was oversaturated as a starting material. (W, Ti, M) C or (W, Ti, M) (C, N) formed as a solid solution (however, M is 4a, 5a, 6 excluding W and Ti)
The first finding was obtained that, when sintered using at least one kind of Group a element), a plate-shaped tungsten carbide having a (0001) plane that is said to have high hardness crystallizes out. It is a thing.

次に、超硬合金の合金特性及び性能特性の向上、特に常
温及び高温における特性をバランス良く向上させるには
超硬合金中に晶出する板状体の炭化タングステンの量及
びその形状寸法が影響を及ぼすという第2の知見を得た
ものである。この第1の知見と第2の知見に基づいて本
発明を完成するに至ったものである。
Next, in order to improve the alloy characteristics and performance characteristics of cemented carbide, in particular at room temperature and high temperature, in a well-balanced manner, the amount of tungsten carbide in the plate-like body crystallized in the cemented carbide and its shape and size influence The second finding is that it exerts The present invention has been completed based on the first and second findings.

すなわち、本発明の高強度超硬合金は、WとTiの複合炭
化物,複合炭窒化物,複合炭酸化物,複合炭窒酸化物、
及びWとTiとZr,Hf,V,Nb,Ta,Cr,Moの中の少なくとも1
種との複合炭化物,複合炭窒化物,複合炭酸化物,複合
炭窒酸化物の中の少なくとも1種のBl型固溶体と、炭化
タングステンとでなる硬質相80〜98重量%と、残りCoを
主成分とする結合相と不可避不純物とからなる超硬合金
において、該超硬合金の断面組織では三角形状、又は最
大寸法が2〜20μmで、この最大寸法が最小寸法の少な
くとも2倍でなる針状,棒状,四角形を主とする多角形
状の中の少なくとも1種として観察される板状体の炭化
タングステンが該超硬合金全体の少なくとも5体積%混
在していることを特徴とするものである。
That is, the high-strength cemented carbide of the present invention is a composite carbide of W and Ti, a composite carbonitride, a composite carbonate, a composite carbonitride,
And W, Ti and at least one of Zr, Hf, V, Nb, Ta, Cr and Mo.
80 to 98% by weight of hard phase consisting of at least one Bl-type solid solution among compound carbide with compound, compound carbonitride, compound carbonate, compound carbonitride and tungsten carbide, and the balance Co In a cemented carbide composed of a binder phase as an ingredient and unavoidable impurities, the cross-sectional structure of the cemented carbide is triangular, or the maximum dimension is 2 to 20 μm, and the maximum dimension is at least twice the minimum dimension. It is characterized in that at least 5% by volume of plate-shaped tungsten carbide, which is observed as at least one of polygonal shapes mainly including rod-shaped and quadrangular shapes, is mixed in the whole cemented carbide.

本発明の高強度超硬合金における硬質相は、板状体の炭
化タングステンとBl型固溶体とからなる場合、又は板状
体の炭化タングステンと従来のほぼ等寸法の炭化タング
ステンとBl型固溶体とからなる場合がある。この硬質相
中に混在する板状体の炭化タングステンは、(0001)面
の成長してなる炭化タングステンであって、実際には超
硬合金の任意の断面における炭化タングステンの形状が
針状,棒状,四角形を主とする多角形状又は三角状でな
るもので、この内三角状の炭化タングステンは(0001)
面の成長してなる三角柱状の板状体の炭化タングステン
であることから、全て板状体の炭化タングステンである
とみなすことができる。また、超硬合金の任意の断面に
おいて存在する板状体の炭化タングステンは、三角状の
炭化タングステンの他に、針状,棒状又は台形状のよう
に四角形を主とする多角形状の形態に観察でき、これら
の炭化タングステンの中で、最大寸法が2〜20μm、こ
の最大寸法が最小寸法の少なくとも2倍でなるものであ
る。これらの板状体の炭化タングステンは、超硬合金全
体の5体積%未満になると破壊靱性値,強度及び耐熱亀
裂性を高める効果が弱くなる。このために、板状体の炭
化タングステンは、超硬合金全体の少なくとも5体積%
混在していることが必要で、耐欠損性及び耐摩耗性から
Bl型固溶体を除いた全ての硬質相が板状体の炭化タング
ステンであることが好ましいことである。さらに、この
板状体の炭化タングステンが後述するような方法でもっ
て一定方向に配向されていると、例えば炭化タングステ
ンの(0001)面が超硬合金の或る面に平行に配向された
場合は、この面の硬度及びこの面を張力面とする抗折強
度は上昇し、しかもこの面に生じるクラックは進展しに
くゝなり、耐欠損性が向上するので好ましいことであ
る。
The hard phase in the high-strength cemented carbide of the present invention is composed of a plate-shaped tungsten carbide and a Bl-type solid solution, or from a plate-shaped tungsten carbide and a conventional approximately equal-sized tungsten carbide and a Bl-type solid solution. May be. The plate-shaped tungsten carbide mixed in this hard phase is a tungsten carbide formed by the growth of the (0001) plane, and the shape of the tungsten carbide in any cross section of the cemented carbide is actually needle-shaped or rod-shaped. , Which has a polygonal shape that is mainly a quadrangle or a triangular shape, and the tungsten carbide having a triangular shape is (0001)
Since it is a plate-shaped tungsten carbide having a triangular prism shape in which the surface is grown, it can be regarded as a plate-shaped tungsten carbide. In addition to the triangular tungsten carbide, the plate-shaped tungsten carbide present in any cross section of the cemented carbide is observed in a polygonal shape such as a needle shape, a rod shape, or a trapezoidal shape, which is mainly a quadrangle. Of these tungsten carbides, the maximum dimension is 2 to 20 μm, and the maximum dimension is at least twice the minimum dimension. When the tungsten carbide of these plate-like materials is less than 5% by volume of the whole cemented carbide, the effect of enhancing the fracture toughness value, strength and heat crack resistance becomes weak. For this reason, the tungsten carbide in the form of plates is at least 5% by volume of the whole cemented carbide.
It is necessary to mix them, and from the viewpoint of fracture resistance and wear resistance
It is preferable that all hard phases except the Bl-type solid solution are plate-shaped tungsten carbide. Furthermore, when the tungsten carbide of the plate-like body is oriented in a certain direction by a method described later, for example, when the (0001) plane of tungsten carbide is oriented parallel to a certain plane of cemented carbide, The hardness of this surface and the bending strength with this surface as a tension surface are increased, and the cracks generated on this surface are hard to propagate, and the fracture resistance is improved, which is preferable.

硬質相中に混在しているBl型固溶体は、具体的には、例
えば(W,Ti)C,(W,Ti)(C,N),(W,Ti)(C,O),
(W,Ti)(C,N,O),(W,Ti,M)C,(W,Ti,M)(C,N),
(W,Ti,M)(C,O),(W,Ti,M)(C,N,O)(但し、Mは
Zr,Hf,Ta,Nb,V,Cr,Moの中の少なくとも1種を示す。)
で表わせる立方晶構造の化合物を挙げることができる。
The Bl type solid solution mixed in the hard phase is specifically, for example, (W, Ti) C, (W, Ti) (C, N), (W, Ti) (C, O),
(W, Ti) (C, N, O), (W, Ti, M) C, (W, Ti, M) (C, N),
(W, Ti, M) (C, O), (W, Ti, M) (C, N, O) (where M is
At least one of Zr, Hf, Ta, Nb, V, Cr and Mo is shown. )
A compound having a cubic crystal structure represented by

これらの炭化タングステンとBl型固溶体とからなる硬質
相が超硬合金全体の80重量%未満になると、相対的に結
合相が20重量%を超えて多くなって耐塑性変形性及び耐
摩耗性の低下となる。このために、(0001)面の成長し
てなる板状体の炭化タングステンを超硬合金中に存在さ
せても、その効果が殆んど現われない傾向となる。逆
に、硬質相が超硬合金全体の98重量%を超えて多くなる
と、相対的に結合相が2重量%未満となって緻密な超硬
合金になり難く、その結果(0001)面の成長してなる板
状体の炭化タングステンを超硬合金中に存在させても強
度に対する著しい効果が現われない傾向となる。これら
の理由から、本発明の高強度超硬合金中の硬質相は、80
〜98重量%と定めたものである。
When the hard phase composed of these tungsten carbide and Bl type solid solution is less than 80% by weight of the whole cemented carbide, the relative amount of the binder phase exceeds 20% by weight and the plastic deformation resistance and wear resistance are relatively increased. It will decrease. For this reason, even if the tungsten carbide in the form of a plate having a (0001) plane grown therein is present in the cemented carbide, the effect tends to be hardly exhibited. On the other hand, if the hard phase exceeds 98% by weight of the total cemented carbide, the binder phase becomes relatively less than 2% by weight, and it becomes difficult to form a dense cemented carbide, resulting in the growth of the (0001) plane. Even if the plate-shaped tungsten carbide formed as described above is present in the cemented carbide, there is a tendency that no remarkable effect on the strength appears. For these reasons, the hard phase in the high-strength cemented carbide of the present invention is 80
It is defined as ~ 98% by weight.

本発明の高強度超硬合金における結合相は、Coのみから
なる場合、又は少なくとも50%のCoと残り、例えばFe,N
i,W,Cr,Mo,Ti,Zr,Hf,Ta,Nb,Vの中の少なくとも1種とか
らなる場合がある。
The binder phase in the high-strength cemented carbide of the present invention consists of Co only, or at least 50% Co and the rest, such as Fe, N
It may consist of at least one of i, W, Cr, Mo, Ti, Zr, Hf, Ta, Nb, and V.

本発明の高強度超硬合金を製造する場合は、2〜3の方
法が考えられるが、容易性,経済性及び安定性から下記
の方法が好ましいことである。
In the case of producing the high-strength cemented carbide of the present invention, two or three methods are conceivable, but the following method is preferable from the viewpoint of easiness, economy and stability.

すなわち、本発明の高強度超硬合金の製造方法は、周期
律表4a,5a,6a族金属の炭化物,炭窒化物,炭酸化物及び
これらの相互固溶体の中の少なくとも1種の第1粉末と
Coを主成分とする第2粉末とでなる出発物質を用いて、
混合,成形及び焼結工程を経て、WとTiの複合炭化物,
複合炭窒化物,複合炭酸化物,複合炭窒酸化物,及びW
とTiとZr,Hf,V,Nb,Ta,Cr,Moの中の少なくとも1種との
複合炭化物,複合炭窒化物,複合炭酸化物,複合炭窒酸
化物の中の少なくとも1種のBl型固溶体と、炭化タング
ステンとでなる硬質相80〜98重量%と、残りCoを主成分
とする結合相と不可避不純物とからなる超硬合金を得る
ための製造方法であって、該出発物質としての該第1粉
末にWを過飽和に固溶してなる固溶体を用いて、焼結工
程中に、該Wを過飽和に固溶してなる固溶体から該超硬
合金の断面組織では三角形状、又は最大寸法が2〜20μ
mで、この最大寸法が最小寸法の少なくとも2倍でなる
針状,棒状,四角形を主とする多角形状の中の少なくと
も1種として観察される板状体の炭化タングステンを該
超硬合金全体の少なくとも5体積%晶出させることを特
徴とする製造方法である。
That is, the method for producing a high-strength cemented carbide according to the present invention comprises the following steps: 1st powder of at least one of carbides, carbonitrides and carbonates of metals of groups 4a, 5a and 6a of the periodic table and their mutual solid solutions.
Using a starting material consisting of a Co-based second powder and
Composite carbide of W and Ti through mixing, forming and sintering process,
Compound carbonitride, compound carbon oxide, compound carbonitride oxide, and W
At least one of the Bl type of complex carbides, complex carbonitrides, complex carbonates, and complex carbonitrides of Ti and Ti and at least one of Zr, Hf, V, Nb, Ta, Cr, Mo A solid solution, a hard phase consisting of tungsten carbide 80-98 wt%, a manufacturing method for obtaining a cemented carbide consisting of a binder phase containing Co as the main component and unavoidable impurities, wherein the starting material is A super-saturated solid solution of W is used in the first powder, and a solid solution obtained by super-saturating W of the solid solution is formed into a triangular shape or a maximum cross-sectional structure of the cemented carbide during the sintering process. 2 to 20μ in size
In m, the plate-shaped tungsten carbide observed as at least one of needle-shaped, rod-shaped, and polygonal shapes mainly having a quadrangle whose maximum dimension is at least twice the minimum dimension is added to the whole of the cemented carbide. The production method is characterized in that at least 5% by volume is crystallized.

本発明の高強度超硬合金の製造方法における出発物質と
しての第1粉末は、例えば(W,Ti)C,(W,Ti)(C,
N),(W,Ti)(C,O),(W,Ti)(C,N,O),(W,Ti,
M)C,(W,Ti,M)(C,N),(W,Ti,M)(C,O),(W,Ti,
M)(C,N,O)(但し、MはZr,Hf,V,Nb,Ta,Cr,Moの中の
少なくとも1種を示す。)で表わせる固溶体で、特にW
を過飽和に含有させてなる固溶体を用いることが重要で
ある。具体的には、第1粉末として例えば第1図のWC-T
i(C,N)-M(C,N)擬三元系状態図における A [88.4wt%WC-11.6wt%Ti(Cx,Ny)], B [72.8wt%WC-27.2wt%Ti(Cx,Ny)], C [40.3wt%WC-14.8wt%Ti(Cx,Ny)-44.9wt%M(C
x,Ny), D [59.1wt%WC-10wt%Ti(Cx,Ny)-30.9wt%M(Cx,
Ny), (但し、x+y=1,1≧x≧0,M:Zr,Hf,Ta,Nb,V,Cr,Moの
中の少なくとも1種を表わす。)の各点で囲まれた範囲
の組成でなる固溶体を用いて、焼結時にこのWの過飽和
に含有してなる固溶体から(0001)面の成長してなる板
状体の炭化タングステンを晶出させる方法である。この
第1粉末としては、従来の出発物質を混在させて用いる
こともできるが、板状体の炭化タングステンを多く晶出
させるためには、上述のWの過飽和に含有してなる固溶
体のみを用いることが好ましいことである。
The first powder as a starting material in the method for producing a high-strength cemented carbide of the present invention is, for example, (W, Ti) C, (W, Ti) (C,
N), (W, Ti) (C, O), (W, Ti) (C, N, O), (W, Ti,
M) C, (W, Ti, M) (C, N), (W, Ti, M) (C, O), (W, Ti,
M) (C, N, O) (where M represents at least one of Zr, Hf, V, Nb, Ta, Cr, Mo), and especially W
It is important to use a solid solution in which is supersaturated. Specifically, as the first powder, for example, WC-T shown in FIG.
i (C, N) -M (C, N) Pseudoternary phase diagram A [88.4wt% WC-11.6wt% Ti (Cx, Ny)], B [72.8wt% WC-27.2wt% Ti ( Cx, Ny)], C [40.3wt% WC-14.8wt% Ti (Cx, Ny) -44.9wt% M (C
x, Ny), D [59.1wt% WC-10wt% Ti (Cx, Ny) -30.9wt% M (Cx,
Ny), (provided that x + y = 1,1 ≧ x ≧ 0, M: Zr, Hf, Ta, Nb, V, Cr, Mo represents at least one kind). This is a method of crystallizing a plate-shaped tungsten carbide having a (0001) plane grown from a solid solution containing W in supersaturation at the time of sintering using a solid solution having a composition. As the first powder, a conventional starting material can be mixed and used, but in order to crystallize a large amount of tungsten carbide in a plate-like body, only the solid solution contained in the above W supersaturation is used. Is preferred.

この第1粉末と、Coのみ又はCoと例えばNi,Fe,Cr,Vとで
なる第2粉末とを用いて、従来の粉末冶金による配合,
混合,造粒,乾燥,成形及び焼結の各工程を経て本発明
の高強度超硬合金を作製することができる。この内、焼
結工程は、加熱焼結から冷却による従来の方法でもっ
て、板状体の炭化タングステンを晶出することできるけ
れども、特に加熱焼結と、加熱焼結後に加圧加熱を行う
ことにより板状体の炭化タングステンを一定方向に配向
させることができるものである。具体的には、例えば焼
結の完了時又は焼結から冷却に入って未だ液相の共存し
ている時点で一方向から加圧すると板状体の炭化タング
ステンの(0001)面が加圧面に平行に配向した超硬合金
を得ることできる。
Using this first powder and a second powder consisting of Co alone or Co and, for example, Ni, Fe, Cr, V, a conventional powder metallurgy formulation,
The high strength cemented carbide of the present invention can be produced through the steps of mixing, granulating, drying, forming and sintering. Among these, in the sintering step, the plate-shaped tungsten carbide can be crystallized by the conventional method of heating and cooling, but it is particularly necessary to perform the heating and the heating under pressure after the heating and sintering. This makes it possible to orient the plate-shaped tungsten carbide in a fixed direction. Specifically, for example, when pressure is applied from one direction at the time of completion of sintering or at the time when cooling enters from sintering and a liquid phase still exists, the (0001) surface of the plate-shaped tungsten carbide becomes the pressing surface. Cemented carbides oriented parallel can be obtained.

(作用) 本発明の高強度超硬合金は、断面で観察した場合に、三
角状,台形状,針状又は棒状でなる(0001)面の成長し
てなる板状体の炭化タングステンが摩擦摩耗時における
炭化タングステン粒子の脱落の防止、及びクラックの伝
播を阻止する作用をし、その結果、耐摩耗性,破壊靱性
値及び強度がすぐれているものである。また、本発明の
高強度超硬合金の製造方法は、出発物質として用いるW
の過飽和に含有している固溶体が焼結時に板状体の炭化
タングステンの晶出を容易にしているものである。
(Operation) In the high-strength cemented carbide of the present invention, when observed in a cross section, the tungsten carbide of the plate-shaped body formed by growing the (0001) plane in the shape of a triangle, a trapezoid, a needle or a rod is frictionally worn. At the time, it acts to prevent the tungsten carbide particles from falling off and to prevent the propagation of cracks, resulting in excellent wear resistance, fracture toughness and strength. In addition, the method for producing a high-strength cemented carbide of the present invention uses W used as a starting material.
The super-saturated solid solution of (1) facilitates crystallization of tungsten carbide in a plate-like body during sintering.

(実施例) 実施例1 重量比で、WC/TiC/TaC=78/12/10の固溶体粉末(第1固
溶体),WC/TiC/TaC=56/24/20の固溶体粉末(第2固溶
体),WC/TiC=70/30の固溶体粉末(第3固溶体)及び平
均粒径1.0〜2.0μmのWC,TaC,Coの各粉末を用いて、ほ
ぼ71wt%WC-10.9wt%TiC-9.1wt%TaC-9wt%Co組成にな
るように第1表の如く配合した。この配合粉末を混合及
び加圧成形後、真空炉で1400℃,1時間保持にて焼結し、
本発明品1,比較品1及び比較品2を得た。さらに、本発
明品1と同一試料を上述の条件で焼結後、一方向から30
kgf/cm2の圧力を加え、試料中の板状体WCの(0001)面
を一方向に向けるように配向させて本発明品2を得た。
(Example) Example 1 A solid solution powder of WC / TiC / TaC = 78/12/10 (first solid solution) and a solid solution powder of WC / TiC / TaC = 56/24/20 (second solid solution) by weight. , WC / TiC = 70/30 solid solution powder (third solid solution) and WC, TaC, Co powders with an average particle size of 1.0 to 2.0 μm, approximately 71 wt% WC-10.9 wt% TiC-9.1 wt% The composition was as shown in Table 1 so that the composition would be TaC-9wt% Co. After mixing and pressure molding this blended powder, sinter at 1400 ° C for 1 hour in a vacuum furnace,
Inventive product 1, comparative product 1 and comparative product 2 were obtained. Furthermore, after sintering the same sample as the product 1 of the present invention under the above-mentioned conditions, 30
A pressure of kgf / cm 2 was applied to orient the plate (WC) in the sample so that the (0001) plane was oriented in one direction to obtain a product 2 of the present invention.

こうして得た本発明品1,2及び比較品1,2の合金組織にお
ける合金中の板状体WCの量並びに合金の硬さ(Hv),破
壊靱性値(K1c),抗折力値(TRS)を求めて第2表に示
した。
The amounts of the plate-like bodies WC in the alloys of the alloy structures of the invention products 1 and 2 and the comparative products 1 and 2 thus obtained, and the hardness (Hv), fracture toughness value (K 1 c), and transverse rupture strength value of the alloy. The (TRS) was calculated and shown in Table 2.

尚、合金組織中の板状体WCは、任意の断面(破断面でも
可)を走査型電子顕微鏡にて観察し、三角状のものは全
て板状体WCとし、他の針状,棒状及び台形状のWCについ
ては最大寸法及び最小寸法を測定して求めた。
In addition, the plate-shaped body WC in the alloy structure is observed with a scanning electron microscope at any cross section (a fractured surface is also possible), and all triangular shapes are plate-shaped bodies WC. The trapezoidal WC was obtained by measuring the maximum and minimum dimensions.

次に、本発明品1,2及び比較品1,2のそれぞれをJIS規格
のSPP422形状に作製して、(但し、本発明品2は、加圧
面を掬い面とした。)下記(ア),(イ)及び(ウ)の
切削条件でもって切削試験を行い、(ア),(イ)の切
削試験では平均逃げ面摩耗量(VB),最大逃げ面摩耗量
(VBM)及び掬い面摩耗量(KT)を求め、(ウ)の切削
試験では欠損又はチッピング時の送り速度を求めて、そ
れぞれの結果を第3表に示した。
Next, each of the present invention products 1 and 2 and the comparative products 1 and 2 was manufactured in a JIS standard SPP422 shape (however, in the present invention product 2, the pressing surface was the scooping surface.) (A) The cutting test is conducted under the cutting conditions of (a) and (c). In the cutting tests of (a) and (a), the average flank wear amount (V B ), the maximum flank wear amount (V BM ) and the scooping The amount of surface wear (K T ) was determined, and in the cutting test of (C), the feed rate at the time of chipping or chipping was determined, and the respective results are shown in Table 3.

(ア)の旋削試験条件 被削材 S48C (HB 210〜230) 切削速度 160 m/min 送り量 0.3 mm/min 切込み量 1.5 mm 切削時間 20 min (イ)の旋削試験条件 被削材 SNCM439(HB 290〜310) 切削速度 180 m/min 送り量 0.39mm/min 切込み量 1.5 mm 切削時間 3 min (ウ)のフライス切削条件 被削材 S48C (HB 230〜260)4本スロット入り 切削速度 100 m/min 切込み量 1.5 mm 寿命判定 0.24mm/revの送り速度から始めて、欠損 又はチッピング時の送り速度で評価 実施例2 重量比で、WC/TiC/TaC=70/12/18の固溶体粉末(第4固
溶体),WC/TiC/TaC=44/22.4/33.6の固溶体粉末(第5
固溶体)及び実施例1で用いた第3固溶体,WC,TaC,Coの
各粉末でもって、ほぼ63.7wt%WC-10.9wt%TiC-16.4wt
%TaC-9wt%Co組成になるように第4表の如く配合し
た。この配合粉末を実施例1と同様の工程及び条件でも
って焼結し、本発明品3,比較品3及び比較品4を得た。
さらに、本発明品3と同一試料を実施例1の本発明品2
と同条件でもって作製して本発明品4を得た。
Turning test condition (a) Work material S48C (HB 210 to 230) Cutting speed 160 m / min Feed rate 0.3 mm / min Depth of cut 1.5 mm Cutting time 20 min (a) Turning test condition Work material SNCM439 (HB 290 to 310) Cutting speed 180 m / min Feed rate 0.39 mm / min Depth of cut 1.5 mm Cutting time 3 min (c) Milling cutting conditions Work material S48C (HB 230 to 260) 4 slots included Cutting speed 100 m / min Depth of cut 1.5 mm Life judgment Starting from a feed rate of 0.24 mm / rev and evaluated by the feed rate when chipping or chipping Example 2 By weight ratio, solid solution powder of WC / TiC / TaC = 70/12/18 (4th solid solution), solid solution powder of WC / TiC / TaC = 44 / 22.4 / 33.6 (5th solid solution)
Solid solution) and the third solid solution used in Example 1, WC, TaC, and Co powders, approximately 63.7 wt% WC-10.9 wt% TiC-16.4 wt
% TaC-9 wt% Co composition as shown in Table 4. This compounded powder was sintered under the same steps and conditions as in Example 1 to obtain the product 3 of the present invention, the comparative product 3 and the comparative product 4.
Furthermore, the same sample as the product 3 of the present invention was used as the product 2 of the present invention of Example 1.
The present invention product 4 was obtained under the same conditions as above.

こうして得た本発明品3,4及び比較品3,4の合金組織にお
ける合金中の板状体WCの量並びに合金の硬さ,破壊靱性
値,、抗折力値を求めて第5表に示した。
The amounts of the plate-like bodies WC in the alloys of the alloy structures of the inventive products 3 and 4 and the comparative products 3 and 4 thus obtained, the hardness of the alloy, the fracture toughness value, and the transverse rupture strength value were determined and are shown in Table 5. Indicated.

この本発明品3,4及び比較品3,4をそれぞれSPP422の形状
に作製し、実施例1の(ア),(イ),(ウ)の各切削
条件でもって切削試験を行い、それぞれの結果を第6表
に示した。
The present invention products 3 and 4 and the comparative products 3 and 4 were produced in the shape of SPP422, and a cutting test was performed under the respective cutting conditions of (a), (a), and (c) of Example 1, and The results are shown in Table 6.

実施例3 実施例1で用いた第1固溶体,第2固溶体,WC及びCoの
各粉末でもって、74.5wt%WC-11.5wt%TiC-9.5wt%TaC-
4.5wt%Co組成になるように第7表の如く配合した。こ
の配合粉末を実施例1と同様の工程及び条件でもって焼
結し、本発明品5及び比較品5を得た。この本発明品5
及び比較品5の合金組織における合金中の板状体WCの量
並びに合金の硬さ,破壊靱性値,抗折力値を求めて、そ
の結果を第8表に示した。
Example 3 With the powders of the first solid solution, the second solid solution, WC and Co used in Example 1, 74.5 wt% WC-11.5 wt% TiC-9.5 wt% TaC-
The composition was as shown in Table 7 so that the composition would be 4.5 wt% Co. The compounded powder was sintered according to the same process and conditions as in Example 1 to obtain Inventive product 5 and Comparative product 5. This invention product 5
Also, the amount of the plate-shaped body WC in the alloy structure of Comparative Product 5 and the hardness, fracture toughness value, and transverse rupture strength value of the alloy were determined, and the results are shown in Table 8.

実施例4 実施例2で用いた第4固溶体,第5固溶体及び実施例1
で用いたWC,Coの各粉末でもって、66.8wt%WC-11.5wt%
TiC-17.2wt%TaC-4.5wt%Co組成になるように第9表の
如く配合した。この配合粉末を実施例1と同様の工程及
び条件でもって焼結し、本発明品6及び比較品6を得
た。この本発明品6及び比較品6の合金組織における合
金中の板状体WCの量並びに合金の硬さ,破壊靱性値,抗
折力値を求めて,その結果を第10表に示した。
Example 4 Fourth solid solution, fifth solid solution and Example 1 used in Example 2
66.8wt% WC-11.5wt% with each powder of WC and Co used in
TiC-17.2 wt% TaC-4.5 wt% Co was compounded as shown in Table 9. The compounded powder was sintered according to the same steps and conditions as in Example 1 to obtain Inventive product 6 and Comparative product 6. The amounts of the plate-shaped members WC in the alloy structures of the present invention product 6 and the comparative product 6, the hardness of the alloy, the fracture toughness value and the transverse rupture strength value were determined, and the results are shown in Table 10.

(発明の効果) 以上の結果、本発明の高強度超硬合金は、従来の超硬合
金に比較して、特に破壊靱性値がすぐれているという効
果がある。また、切削試験の結果から判断すると、本発
明の高強度超硬合金は、高温における耐摩耗性及び耐欠
損性にすぐれるという効果がある。これらのことから、
本発明の高強度超硬合金は、重切削又は高送り切削のよ
うに高温で衝撃の加わる切削工具用材料、もしくはミク
ロンドリル,印字ピンなどの微細工具材料、あるいはド
リル,エンドミルなどの切刃の鋭角な工具材料、さらに
は耐摩耗工具用材料などの従来の超硬合金が用いられて
いる全ての用途範囲に応用できる産業上有用な材料であ
る。
(Effects of the Invention) As a result, the high-strength cemented carbide of the present invention has an effect that the fracture toughness value is particularly excellent as compared with the conventional cemented carbide. In addition, judging from the results of the cutting test, the high-strength cemented carbide of the present invention has an effect of being excellent in wear resistance and fracture resistance at high temperatures. from these things,
The high-strength cemented carbide of the present invention is used for cutting tools such as heavy cutting or high-feed cutting, to which impact is applied at high temperature, or fine tool materials such as micron drills and printing pins, or cutting blades such as drills and end mills. It is an industrially useful material that can be applied to a wide range of applications in which conventional cemented carbide is used, such as sharp-edged tool materials, and even wear resistant tool materials.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の高強度超硬合金を得るための出発物
質として、特に適するWC-Ti(C,N)-M(C,N)擬三元系
状態図である。但し、Mは、Zr,Hf,Ta,Nb,V,Cr,Moの中
の少なくとも1種を表わす。
FIG. 1 is a WC-Ti (C, N) -M (C, N) quasi-ternary phase diagram that is particularly suitable as a starting material for obtaining the high-strength cemented carbide of the present invention. However, M represents at least one of Zr, Hf, Ta, Nb, V, Cr and Mo.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】WとTiの複合炭化物,複合炭窒化物,複合
炭酸化物,複合炭窒酸化物、及びWとTiとZr,Hf,V,Nb,T
a,Cr,Moの中の少なくとも1種との複合炭化物,複合炭
窒化物,複合炭酸化物,複合炭窒酸化物の中の少なくと
も1種のBl型固溶体と、炭化タングステンとでなる硬質
相80〜98重量%と、残りCoを主成分とする結合相と不可
避不純物とからなる超硬合金において、該超硬合金の断
面組織では三角形状、又は最大寸法が2〜20μmで、こ
の最大寸法が最小寸法の少なくとも2倍でなる針状,棒
状,四角形を主とする多角形状の中の少なくとも1種と
して観察される板状体の炭化タングステンが該超硬合金
全体の少なくとも5体積%混在していることを特徴とす
る高強度超硬合金。
1. A composite carbide of W and Ti, a composite carbonitride, a composite carbonate, a composite carbonitride, and W, Ti and Zr, Hf, V, Nb, T.
Hard phase consisting of tungsten carbide and at least one Bl-type solid solution among at least one of a, Cr and Mo, complex carbide, complex carbonitride, complex carbonate, complex carbonitride In a cemented carbide consisting of ˜98% by weight and the remaining Co as a binder phase and unavoidable impurities, the cross-sectional structure of the cemented carbide is triangular or has a maximum dimension of 2 to 20 μm. At least 5% by volume of the plate-shaped tungsten carbide, which is observed as at least one kind of polygonal shape mainly composed of needle-like, rod-like, and quadrangular particles having at least twice the minimum dimension, is mixed in the whole cemented carbide. High strength cemented carbide.
【請求項2】上記板状体の炭化タングステンが一定方向
に配向されていることを特徴とする特許請求の範囲第1
項記載の高強度超硬合金。
2. The tungsten carbide of the plate-shaped body is oriented in a fixed direction.
High-strength cemented carbide according to the item.
【請求項3】周期律表4a,5a,6a族金属の炭化物,炭窒化
物,炭酸化物及びこれらの相互固溶体の中の少なくとも
1種の第1粉末と、Coを主成分とする第2粉末とでなる
出発物質を用いて、混合,成形及び焼結工程を経て、W
とTiの複合炭化物,複合炭窒化物,複合炭酸化物,複合
炭窒酸化物、及びWとTiとZr,Hf,V,Nb,Ta,Cr,Moの中の
少なくとも1種との複合炭化物,複合炭窒化物,複合炭
酸化物,複合炭窒酸化物の中の少なくとも1種のBl型固
溶体と、炭化タングステンとでなる硬質相80〜98重量%
と、残りCoを主成分とする結合相と不可避不純物とから
なる超硬合金を得るための製造方法において、該出発物
質としての該第1粉末にWを過飽和に固溶してなる固溶
体を用いて、焼結工程中に、該Wを過飽和に固溶してな
る固溶体から該超硬合金の断面組織では三角形状、又は
最大寸法が2〜20μmで、この最大寸法が最小寸法の少
なくとも2倍でなる針状,棒状,四角形を主とする多角
形状の中の少なくとも1種として観察される板状体の炭
化タングステンを該超硬合金全体の少なくとも5体積%
晶出させることを特徴とする高強度超硬合金の製造方
法。
3. A first powder of at least one of carbides, carbonitrides, and carbonates of metals of groups 4a, 5a, and 6a of the periodic table and a mutual solid solution thereof, and a second powder containing Co as a main component. Using the starting material consisting of
And Ti compound carbide, compound carbonitride, compound carbon oxide, compound carbonitride, and compound carbide of W and Ti and at least one of Zr, Hf, V, Nb, Ta, Cr and Mo, 80-98% by weight of hard phase consisting of tungsten carbide and at least one Bl type solid solution among complex carbonitride, complex carbonate and complex carbonitride
And a manufacturing method for obtaining a cemented carbide consisting of a binder phase containing the remaining Co as a main component and inevitable impurities, using a solid solution obtained by supersaturating W in the first powder as the starting material. During the sintering process, the cross-sectional structure of the cemented carbide is formed into a triangular shape from the solid solution of W in a supersaturated solid solution, or the maximum dimension is 2 to 20 μm, and the maximum dimension is at least twice the minimum dimension. A plate-shaped tungsten carbide observed as at least one of polygonal shapes mainly consisting of needle-shaped, rod-shaped, and quadrangular, which is at least 5% by volume of the whole cemented carbide.
A method for producing a high-strength cemented carbide, characterized by crystallization.
【請求項4】上記焼結工程は、加熱焼結と、加熱焼結後
の加圧加熱により上記板状体の炭化タングステンを一定
方向に配向させることをを特徴とする特許請求の範囲第
3項記載の高強度超硬合金の製造方法。
4. The sintering process according to claim 3, characterized in that the tungsten carbide of the plate-like body is oriented in a certain direction by heat sintering and pressure heating after the heat sintering. A method for producing a high-strength cemented carbide according to the item.
JP63198700A 1988-08-09 1988-08-09 High strength cemented carbide and method for producing the same Expired - Lifetime JPH0711050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63198700A JPH0711050B2 (en) 1988-08-09 1988-08-09 High strength cemented carbide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63198700A JPH0711050B2 (en) 1988-08-09 1988-08-09 High strength cemented carbide and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0247239A JPH0247239A (en) 1990-02-16
JPH0711050B2 true JPH0711050B2 (en) 1995-02-08

Family

ID=16395574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63198700A Expired - Lifetime JPH0711050B2 (en) 1988-08-09 1988-08-09 High strength cemented carbide and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0711050B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100286970B1 (en) 1996-12-16 2001-04-16 오카야마 노리오 Cemented carbide, its production method and cemented carbide tools
JP4951958B2 (en) * 2005-12-21 2012-06-13 株式会社タンガロイ Cermet for cutting tools
JP7321413B2 (en) * 2019-04-01 2023-08-07 Ntkカッティングツールズ株式会社 ceramic cutting tools
CN115925424B (en) * 2022-12-20 2023-07-21 湘潭大学 Preparation method of nano precipitated phase reinforced supersaturated tungsten ultra-high Wen Gaoshang ceramic

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739301A (en) * 1980-08-20 1982-03-04 Max Co Ltd Measuring tape device for both manual and electrical drive

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739301A (en) * 1980-08-20 1982-03-04 Max Co Ltd Measuring tape device for both manual and electrical drive

Also Published As

Publication number Publication date
JPH0247239A (en) 1990-02-16

Similar Documents

Publication Publication Date Title
US7179319B2 (en) Fine grained sintered cemented carbide, process for manufacturing and use thereof
JP6237530B2 (en) Hard material, sintered body, tool using sintered body, method for manufacturing hard material, and method for manufacturing sintered body
EP0759480A1 (en) Plate-crystalline tungsten carbide-containing hard alloy, composition for forming plate-crystalline tungsten carbide and process for preparing said hard alloy
JP2710934B2 (en) Cermet alloy
US20040079191A1 (en) Hard alloy and W-based composite carbide powder used as starting material
JPS6112847A (en) Sintered hard alloy containing fine tungsten carbide particles
JPH0711050B2 (en) High strength cemented carbide and method for producing the same
JPH07278719A (en) Particulate plate crystal cemented carbide containing wc and its production
EP3950183B1 (en) Wc-based cemented carbide cutting tool having excellent defect resistance and chipping resistance, and surface-coated wc-based cemented carbide cutting tool
JPS63297537A (en) Nitrogen-containing tungsten carbide based sintered alloy
JP2006144089A (en) Hard metal made of superfine particle
JP3318887B2 (en) Fine-grained cemented carbide and method for producing the same
JPH0346538B2 (en)
JP2668962B2 (en) End mill made of tungsten carbide based cemented carbide with excellent fracture resistance
JPS6256944B2 (en)
JPH11124650A (en) Wc-containing cemented carbide subjected to transgranular dispersion strengthening by oxide, and its production
JP2514088B2 (en) High hardness and high toughness sintered alloy
JP3107701B2 (en) High hardness cemented carbide
JP3474254B2 (en) High-strength tough cemented carbide and its coated cemented carbide
JP2002029845A (en) Super-hard sintered compact
JPH10324942A (en) Ultra-fine cemented carbide, and its manufacture
JPH11152535A (en) Hard alloy and its production
JPH05339659A (en) Production of sintered hard alloy having sheet-like tungsten carbide and coated sintered hard alloy
JPH1192852A (en) Intergranular metal dispersion strengthened wc-containing cemented carbide and its production
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090208

Year of fee payment: 14